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Forced changes in El
Niño–Southern Oscillation due
to global warming and the
associated uncertainties in
ACCESS-ESM1.5 large
ensembles

Harun A. Rashid*

Climate Science Centre, CSIRO Oceans and Atmosphere, Aspendale, VIC, Australia

Understanding the forced response of El Niño–Southern Oscillation (ENSO)

to future global warming (GW) is important for reliable climate projections;

however, many important aspects of this response are yet to be fully

understood. Here, we use two large ensembles of CMIP6 historical and

SSP3-7.0 experiments (each with 40 ensemble members), performed with

ACCESS-ESM1.5, to investigate the combined greenhouse gas (GHG) and

aerosol forced changes in selected ENSO properties. We document the forced

changes in ENSO’s amplitude, power spectrum, skewness, and feedbacks

and quantify the internal variability associated with these forced changes.

There is a modest but statistically significant GW-induced increase in the

ensemble-mean ENSO amplitude and a sizable ensemble variation (due to

internal variability) with both increases (in 80% of the members) and decreases.

To understand themechanismof this variation, we examine the role of changes

in the mean state and atmosphere-ocean coupling processes in the Pacific.

We find that the ensemble variation of GW-induced ENSO amplitude change

is most sensitive to the zonal wind forcing change. A change in the zonal

gradient of mean sea surface temperatures (SSTs) also plays an important role

in the ENSO amplitude change, with the changes in the atmospheric Bjerknes

feedback and thermocline feedback playing a minor role. The implications and

some caveats of these findings are discussed.

KEYWORDS

ENSO, global warming, ENSO processes, earth system models, large ensembles

Introduction

El Niño–Southern Oscillation (ENSO) is the dominant mode of interannual climate

variability, which impacts global weather through teleconnections. It is important

to understand its dynamical responses to the historical and future climate changes,

in order to provide skillful predictions of ENSO under the present climate and

reliable projections under a possible future warming climate. Observational data have
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played a central role in increasing our understanding of

historical ENSO variability (Bjerknes, 1969; Rasmusson and

Carpenter, 1982; Wallace et al., 1998). Models have also played a

critical role in this understanding by interpreting observational

data and providing a tool to examine different aspects of

ENSO dynamics by experimentations (Gill and Rasmusson,

1983; Zebiak and Cane, 1987; Battisti and Hirst, 1989; Jin,

1997). Subsequently, models of intermediate complexity have

been successfully used in routine predictions of ENSO variability

at seasonal-to-interannual timescales. At the same time, global

atmosphere-ocean coupledmodels with comprehensive physical

parametrizations (hereafter, CGCMs) and earth system models

(ESMs) with the addition of biogeochemical processes have

been developed for wider climate and earth system applications.

Different generations of these models have been used in

successive Coupled Model Intercomparison Projects (CMIPs),

under which numerical simulations were performed with

standardized forcing datasets for pre-industrial, historical and

possible future climate conditions (Taylor et al., 2012; Eyring

et al., 2016). Among other things, these climate simulations

have provided an unprecedented opportunity to study climate

variability associated with historical ENSO events and their

changes under possible future pathways of anthropogenic GHG

and aerosol emissions.

A significant number of past studies have sought to

understand the effects of GHG induced global warming (GW)

on ENSO variability using multi-model simulations from

various CMIP archives (Philip and van Oldenborgh, 2006;

Collins et al., 2010; Chen et al., 2015, 2017; Ham and Kug,

2016; Rashid et al., 2016; Ying et al., 2019; Fredriksen et al.,

2020; Cai et al., 2021). Many of these studies showed a

small forced (i.e., ensemble-averaged) response of ENSO to

GW (but with a large inter-model variation), while others

reported a strong forced ENSO response, often using a subset

of models chosen based on some criteria. However, the

latest, CMIP6 models show a somewhat stronger ensemble-

mean increase in ENSO variability than the CMIP5 models

do (Fredriksen et al., 2020; Grose et al., 2020; Cai et al.,

2022). Contrasting results of weakened ENSO variability in

equilibrated GW simulations have also been published (e.g.,

Callahan et al., 2021). While much has been learned from such

multi-model studies, an obstacle to reconciling the contrasting

results has been the structural differences between different

models used in these studies. The structural difference arises

from differences in the model formulation, numerics, and

physical parametrizations of the participating models, among

other things. With the recent advances in high performance

computing, many modeling centers have now performed large

ensembles (LEs) of simulations using single models, with

typically more than 30 ensemble members per experiment. The

LEs use the same set of forcing (for the same experiment) but

different initial conditions and thus provide an opportunity

to remove the effect of structural differences from model

analysis results including ENSO analysis (Zheng et al., 2018;

Deser et al., 2020; Ng et al., 2021; Hyun et al., 2022).

However, a downside of such single-model LEs is that the

analysis results may be affected by any systematic biases of

the model, which could otherwise be greatly reduced using a

large enough multi-model ensemble. Therefore, single-model

LEs are not a replacement, rather they are complementary to

multi-model ensembles.

In this study, we investigate the response of ENSO to

GW using two sets of single-model LE simulations performed

with the Australian Community Climate and Earth System

Simulator version 1.5 (ACCESS-ESM1.5) (Ziehn et al., 2020).

The experiments used are the CMIP6 historical and SSP3-

7.0 experiments. We choose the SSP3-7.0 experiment over

other ScenarioMIP experiments, as this was recommended

for performing large ensemble simulations and studying the

potential changes in internal variability mode, such as ENSO,

over a substantial range of global average radiative forcing and

temperature change (Eyring et al., 2016; O’Neill et al., 2016).

Some previous studies looked at ENSO responses to GW using

single-model LEs for CMIP5 experiments (Maher et al., 2018;

Zheng et al., 2018; Ng et al., 2021; Hyun et al., 2022). They found

small increases or decreases in ensemble-mean (i.e., forced)

ENSO amplitude with large ensemble variations (or, inter-

member uncertainties); Maher et al. (2018) and Ng et al. (2021)

also found different ENSO responses in two different models.

Hyun et al. (2022) suggest that an inverse relationship between

the intensity of present-day internal variability and future ENSO

amplitude change is the cause of ensemble variations they

found in two large ensembles. They, however, did not offer

any physical mechanism for such an inverse relationship. Here,

we find a small but statistically significant forced change in

ENSO amplitude in ACCESS-ESM1.5 LE, with a wide variation

among the ensemble members. In addition to this forced ENSO

response and the associated uncertainties, we investigate the

role of the main ENSO processes in the ensemble variation

of the ENSO amplitude change. In particular, we examine

the impacts of GW-induced changes in ENSO forcing, ENSO

feedbacks and the zonal gradient of tropical Pacific mean SSTs

on ensemble variations of ENSO amplitude change. To our

knowledge, this is the first attempt to examine the relation

between the ENSO amplitude and process changes in single-

model LEs.

This article is organized as follows. First, we describe the

observational data, ACCESS-ESM1.5 LE simulations for the

historical and SSP3-7.0 experiments, and the analysis method.

The changes in the tropical Pacific mean-state SST between

two experiments are then described. After this, we discuss the

changes of selected ENSO properties under GW; this is followed

by a discussion of the relative contributions of the mean-

state SST and different ENSO processes to ENSO amplitude
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changes. Finally, a summary and discussion of the results are

provided.

Observational and reanalysis data,
ACCESS-ESM1.5 large ensembles,
and analysis method

The SST data for 1870–2014 from the HadISST dataset

(Rayner et al., 2003), zonal wind stress (ZWS) (1958–2014)

from ERA interim and ERA5 reanalyses (Dee et al., 2011;

Hersbach et al., 2020), and the thermocline depth (THD) (1958–

2014) calculated from the ORAS4 ocean temperature reanalysis

(Balmaseda et al., 2013) were used to compare with the

analysis results of ACCESS-ESM1.5 historical LE simulations.

The ACCESS-ESM1.5 historical and SSP3-7.0 LE simulations,

each with 40 members, cover the 1850–2014 and 2015–2100

periods, respectively. The same CMIP6 historical and future

scenario forcing data were used as boundary conditions for

all simulations of the respective experiment, with different

ensemble members starting from different initial conditions.

The latter were taken from the ACCESS-ESM1.5 pre-industrial

control simulation at 20-year intervals. The details of the

ACCESS-ESM1.5 model and its experiment designs for CMIP6

have been described in Ziehn et al. (2020). An overview of

all the ACCESS simulations for CMIP6, the preparation of

forcing datasets and some climate and biogeochemical results

are presented in Mackallah et al. (2022). Rashid et al. (2022)

discuss the simulation of historical climate variability (including

ENSO) and change in a subset of the ACCESS-ESM1.5 LE. The

ACCESS-ESM1.5 simulated ENSO variability for the historical

period compares favorably with the observed ENSO variability.

However, there are some biases, especially in the simulation of

seasonal ENSO phase locking and skewness (to be discussed

below), which are commonly experienced by many state-of-the-

art climate models.

As explained in the introduction, the ENSO response to

GW is estimated using the changes in ENSO properties in

the SSP3-7.0 ensemble with respect to the historical ensemble.

The change of an ensemble-mean ENSO property between

the two experiments is defined as the forced change and the

ensemble (or inter-member) variation of GW-induced changes

in individual ensemble members indicates the uncertainty due

to internal variability. We quantify the uncertainty in salient

ENSO properties: ESNO seasonal phase locking, power spectra

and skewness, but an especial focus is given on the ensemble

variation of ENSO amplitude changes. We study the roles of

the prominent ENSO processes—the ZWS forcing of ENSO-

related SST variability, the atmospheric Bjerknes feedback, and

the thermocline feedback—and the zonal gradient of mean

SSTs in the ensemble variation of ENSO amplitude changes.

The ENSO forcing and feedbacks are defined using ENSO

indices calculated for various Niño regions and are specified at

appropriate places below.

Changes in the tropical pacific mean
state of SST

The time-mean SSTs and their seasonal cycle in the tropical

Pacific play an important role in determining the overall

character of ENSO. Many studies have shown that a biased

mean state can have adverse impacts on the simulated ENSO

events, for example, by affecting the air-sea interaction processes

(e.g., Sun et al., 2016; Bayr et al., 2018). The seasonal and

ensemble mean SSTs from ACCESS-ESM1.5 LEs are shown

in Figure 1 for the historical and SSP3-7.0 experiments, along

with observations. The corresponding ensemble spreads are also

shown (as light blue and red colors), calculated as the ensemble

minimum and maximum at each longitude. During the DJF and

MAM seasons, there are significant cold biases in the simulated

mean SSTs in the western and central equatorial Pacific. The

largest cold biases are found during MAM (the coldest being

−1.1◦C near 175◦E), when the cold bias region extends to the

eastern equatorial Pacific. This cold SST bias is associated with

biases in atmospheric vertical motion (descending bias) and

erroneous positive feedbacks by low-level clouds in the eastern

equatorial Pacific, as shown by Rashid and Hirst (2016) for

ACCESS-1.3 (the coupled model version of ACCESS-ESM1.5

used for CMIP5). The origin of the vertical motion and cloud

feedback biases is the atmospheric model, and these biases

enhance in the coupled simulation. Some other CMIP5 models

also show similar or worse MAM cold SST biases, especially

those which show seasonal phase locking bias of ENSO as for

ACCESS-1.3 (Rashid and Hirst, 2016). The smallest cold biases

are found during JJA and SON also in the western equatorial

Pacific. In all but the MAM season, there are warm SST biases

in the eastern equatorial Pacific. These warm biases, while

confined in smaller regions, are larger in magnitude than the

cold biases, with the maximum warm bias exceeding 2.6◦C

found during SON in the far eastern Pacific. The ensemble

spreads are in general very small compared to the corresponding

mean SST values.

The projected SST warming due to the increased GHG

concentrations in the SSP3-7.0 scenario exceeds 2◦C in all four

seasons. The largest projected warming occurs in MAM (with

a Pacific average of 2.49◦C) and the smallest warming in SON

(with a Pacific average of 2.24◦C), with the maximum warmings

for all seasons occurring in the eastern Pacific. The ensemble

spreads are, again, a lot smaller than the projected warming.

Realistic simulations of time mean ZWS and thermocline

depth are also important for simulated ENSO dynamics.

ACCESS-ESM1.5 simulates these variables reasonably well,

with some associated biases; these are briefly discussed in

Supplementary Figures S1, S2.
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FIGURE 1

Seasonal mean equatorial Pacific SSTs (◦C), averaged over 5◦S−5◦N latitudes, from observations (black curve) and ACCESS-ESM1.5 large

ensemble simulations for CMIP6 (colored curves). The time mean SSTs were calculated over 1870–2014 for HadISST and over 1850–2014 and

2015–2100 for the historical and SST3-7.0 experiments, respectively. The ensemble-means (thick blue and red curves) and ensemble spreads

(blue and red shades) were estimated from 40 ensemble members of each experiment. The spreads were estimated as the di�erence between

the ensemble maximum and minimum of seasonal mean SSTs at each longitude.

Changes of selected ENSO
properties under global warming

The properties of simulated ENSO events and the associated

biases for ACCESS-1.3 were discussed in detail before (Rashid

et al., 2013; Rashid and Hirst, 2016). ACCESS-ESM1.5 shares

similar ENSOproperties and biases (some of which are discussed

in Rashid et al., 2022). Briefly, the ENSO evolutions in these

two models are consistent with an extended Bjerknes feedback

loop, in which the growth phase occurs through a deepening

thermocline and increasing SST anomalies in the eastern

equatorial Pacific, forced by western-central equatorial Pacific

westerly wind anomalies. The zonal advective and thermocline

feedbacks and Kelvin wave propagations are involved in this

growth phase. The increasing SST anomalies reinforce the

westerly anomalies through an atmospheric positive feedback.

The decay phase occurs through a weakening of the thermocline

feedback associated with the seasonal shift of the westerly wind

anomaly and a strengthened thermodynamic damping (Rashid

and Hirst, 2016).

Recently, a variety of metrics have been proposed for

ENSO assessment in climate model simulations (Planton

et al., 2020). Here, we examine the GW-induced changes in

some important ENSO properties (amplitude, power spectra,

seasonal phase locking and skewness) using the ACCESS-

ESM1.5 historical and SSP3-7.0 experiments (Figure 2). The

Niño-3 index (detrended monthly SST anomalies averaged

over 5◦S−5◦N and 210◦E−270◦E) is frequently used as an

index of ENSO, and we do the same here. The simulated

ENSO amplitudes (defined as the standard deviations of the

Niño-3 index) for individual ensemble members are shown in

Figure 2A. The amplitudes in the historical ensemble are mostly

larger than the observed amplitude (the horizontal dashed line),

which become even larger in the SSP3-7.0 ensemble (in 32 out of

40 members). The ensemble-mean amplitudes are, respectively,

0.85 and 0.92◦C for the two experiments, an 8% increase due to
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FIGURE 2

Selected ENSO properties and their changes under global warming as estimated from ACCESS-ESM1.5 large ensembles. (A) ENSO amplitudes

(standard deviations of the Niño-3 index) for individual ensemble members of the historical and SSP3-7.0 experiments; the horizontal dashed

line indicates the observed amplitude; (B) power spectra; (C) annual variation of ENSO amplitudes; (D) probability density functions; and (E)

skewness. The ENSO properties were calculated using the Niño-3 indices from observations (black curve) and the ACCESS-ESM1.5 large

ensembles (colored curves). The plotting conventions are as in Figure 1.

GW. The difference of means for the two ensembles is highly

statistically significant, as determined by a two-sided t-test (p =

1.5 × 10−6) and confirmed by a separate bootstrap resampling

test. Figure 2B shows the power spectra of the Niño-3 indices

calculated from observations (black curve), ESM1.5 historical

(blue curve and shading) and SSP3-7.0 (red curve and shading)

experiments. The observed spectrum shows two prominent

peaks around 3.5- and 5.5-year periods (the inverse of the

frequencies at which the primary and secondary maximum

spectral powers occur). Note that the precise positions of

spectral peaks may somewhat change depending on the time

period and the observational dataset used. A single prominent

spectral peak, at just over 3-year period, appears in the ESM1.5

ensemble means for the historical and SSP3-7.0 experiments.

However, many of the individual members of the LE show two

or more peaks in their spectra. The ENSO-peak period also

varies within the ensemble members, ranging from 2.6 to 4.8

years for the historical ensemble and 2.4–4.8 years for the SSP3-

7.0 ensemble. The latter ensemble has a slightly higher mean

spectral power than the former; however, the ensemble spreads

of the two ensembles considerably overlap with each other.

The annual variation of ENSO amplitude also shows

considerable ensemble spreads (Figure 2C). However, the

seasonal phase locking of ENSO, the occurrence of maximum
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ENSO variability at a particular calendar month, is consistent

across the ensemble members. ACCESS-ESM1.5 suffers from a

systematic error in its simulated seasonal ENSO phase locking,

with themaximum variability occurring in February orMarch in

the historical ensemble, instead of December as for observations.

This error was also found in ACCESS-1.3, as mentioned above.

As for the period of ENSO’s dominant spectral peak, it

is difficult to get the seasonal phase locking right in climate

model simulations. Indeed, themajority of the 42 CMIP5models

studied by Rashid and Hirst (2016) showed the maximum

ENSO variability occurring in months other than December.

Due to this phase locking bias, the simulated ENSO variability

is larger than the observed variability during the first half of the

calendar year. The ensemble-mean ENSO variability in SSP3-7.0

is similar to that in the historical experiment during the first

half of the year but increases significantly during the second

half of the year, with the largest increase (∼0.16◦C) occurring in

October. The ensemble spread in the annual cycle of projected

ENSO amplitudes tends to be smaller in the middle of the year,

and the annual-mean (i.e., averaged over all calendar months)

spread is about 33% larger in projections than in the historical

simulations. The projected peak ENSO variability occurs mostly

in February and March (as for the historical simulations), but

eight of the ensemble members now show correct phase locking

with the peak variability occurring in December.

It is of interest to see if or how the probability distributions of

ENSO-related SST anomalies are affected by the global warming.

Figure 2D shows the kernel density estimates (KDEs) of the

Niño-3 indices from observations and the historical and SSP3-

7.0 simulations. We have chosen KDEs over histograms for

clarity of presentations. The observed Niño-3 index has a well-

known positively skewed distribution (black curve), with the

extreme El Niño events being stronger than the extreme La

Niña events. On the other hand, the simulated Niño-3 indices

show negative ensemble-mean skewness for both the historical

and SSP3-7.0 experiments. The individual ensemble members,

however, show a wide range of skewness: −0.42 to 0.05 for

the historical experiment and −0.51 to 0.08 for the SSP3-7.0

experiment (Supplementary Figure S3). This negative skewness

bias implies that the simulated La Niña events are stronger

than the El Niño events in both experiments, in contrast to

the observational result. There is no significant difference in

ensemble-mean skewness between the historical and SSP3-7.0

ensembles, and there is also no significant correlation between

the skewness values of individual members in these ensembles

(Figure 2E). The negative skewness bias is seen in many CMIP

models, for which several mechanisms have been proposed

in the literature. These mechanisms include the cold bias in

simulated Pacific mean-state SSTs (leading to weak positive

non-linear air-sea interaction), a weak subsurface non-linear

dynamic heating in the ocean, and non-linear atmospheric

feedbacks (Frauen and Dommenget, 2010; Sun et al., 2016;

Hayashi et al., 2020). However, we haven’t found any correlation

between the central equatorial Pacific cold bias and skewness in

the ACCESS-ESM1.5 ensemble members (not shown).

Causes of the uncertainty in ENSO
amplitude change under global
warming

It is well-known that the ENSO-driven SST variability is

governed by the atmosphere-ocean coupling processes in the

tropical Pacific (see Timmermann et al., 2018 for a recent

review). The processes that most significantly contribute to

ENSO’s growth and phase transition are surface wind responses

to the equatorial eastern Pacific SST variations (the Bjerknes

or zonal wind feedback), the zonal advection of mean SSTs

by the anomalous current (the zonal advective feedback) and

the vertical advection of anomalous subsurface temperatures

by the mean upwelling (the thermocline feedback). The two

latter feedbacks are related to the ocean dynamic responses to

zonal wind forcing that cause in-phase variations of eastern

Pacific SST anomalies (Jin and An, 1999; Kim et al., 2014).

A diagnostic quantity that encapsulates both these feedback

processes is the zonal wind forcing of SST anomalies, which was

found to be useful for studying ENSO-amplitude changes under

GW (Rashid et al., 2016).

Figure 3 shows quantities related to the Bjerknes feedback,

zonal wind forcing and thermocline feedback, computed as lag-

regression coefficients between the SST and thermocline depth

anomalies averaged over the Niño-3 region and ZWS anomalies

averaged over the Niño-4 region. In each panel, regression

coefficients between two variables at different lags are plotted

for observations and the historical and SSP3-7.0 experiments.

For the two experiments, the ensemble medians and spreads

(the 5th−95th percentile range) are plotted. The top panel

shows the Niño-4 ZWS responses to the Niño-3 SST indices

(i.e., the Bjerknes feedback). As in many other CMIP models

(e.g., Bellenger et al., 2014), the simulated ZWS responses in

ACCESS-ESM1.5 are a lot weaker than the observed response

(Figure 3A). The strength of the feedback increases for lags

between−5 and 5 months in the SSP3-7.0 experiment relative to

the historical experiment but still remains significantly weaker

than the observed strength. Note that the Bjerknes feedback is

conventionally defined as the zero-lag regression of ZWS on

to the SSTs; we do the same in the subsequent analysis. The

middle panel (Figure 3B) shows the Niño-3 SST responses to

the Niño-4 ZWS anomalies (i.e., the zonal wind forcing). In

this case, the simulated SST responses are somewhat stronger

than the observed response, and the maximum responses are

found at small positive lags (e.g., when ZWS leads SST by

2–3 months). The ZWS forcing is defined as the maximum

regression coefficients (at 2–3 month leads) (Rashid et al.,

2016), which also strengthens under GW, as for the Bjerknes

feedback. The thermocline-SST coupling coefficients, obtained
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by regressing the Niño-3 SST anomalies onto the thermocline

anomalies in the same region, is shown in the bottom panel.

As for the Bjerknes feedback and ZWS forcing discussed above,

only the coupling strengths at zero or positive lags (i.e., when

the thermocline anomalies lead) are related to the thermocline

feedback. The thermocline feedback, thus defined, peaks at the

2-months lead for observations and at 6- and 5-months leads

for the historical and SSP3-7.0 simulations, respectively. The

peak (0.036◦C/m) of the historical ensemble median feedbacks

is close to the observed value (0.038◦C/m), and the peak

(0.043◦C/m) of the SSP3-7.0 ensemble median feedbacks is

stronger than the corresponding historical value (Figure 3C).

However, this strengthening of the thermocline feedback under

GW is less clear-cut, as the ensemble spreads for the two

experiments overlap at all lags.

The relationship between the changes in these ENSO

processes and those in ENSO amplitude is illustrated in

Figure 4 using scatter diagrams. The zonal gradient of time-

mean SSTs in the Pacific also is an important controlling

factor for ENSO variability, so we examine its relationship with

ENSO amplitude, as well. There is a significant correlation

between the simulated ENSO amplitudes and mean zonal

SST gradients for different ensemble members, indicating an

increasing ENSO amplitude with decreasing magnitude of

the SST gradient, and vice-versa (Figure 4A). The correlation

is moderate in the historical ensemble (r = 0.54), which

becomes significantly stronger in the SSP3-7.0 ensemble (r =

0.81). The observed SST difference (Niño-3 minus Niño-4)

is −2.69◦C, which is substantially larger than the ensemble-

mean value (−1.82◦C) of the historical ensemble. The SSP3-

7.0 ensemble-mean value (−1.81◦C) remains largely unchanged

from the historical ensemble-mean value, but the ensemble

spread increases under GW.

Figure 4B shows the relationship between ENSO amplitudes

and the ZWS forcings for individual members of the historical

and SSP3-7.0 ensembles. The ZWS forcing is defined as the

maximum of R(Tauu,SST) values at positive lags; see Figure 3B.

There is a high correlation between the ZWS forcings and ENSO

amplitudes across the members of each ensemble. The already

high correlation (r = 0.8) for the historical ensemble becomes

even higher in the SSP3-7.0 ensemble (r = 0.89), indicating

an intimate relationship between the ZWS forcing and ENSO

amplitude that strengthens further under GW. This is consistent

with the result of a previous analysis of the pre-industrial control

and abrupt-4xCO2 simulations from CMIP5 (Rashid et al.,

2016). Unlike for the SST gradient (and the Bjerknes feedback to

be discussed next), the ZWS forcings in the historical ensemble

(mean = 51.7◦C/N m−2) are stronger than the observed value

(40.8◦C/N m−2), and the SSP3-7.0 ensemble-mean (61.8◦C/N

m−2) is even stronger. Among the four ENSO-related processes

considered here, the ZWS forcing has the largest influence

on simulated ENSO amplitudes. The Bjerknes feedbacks show

a weak correlation (r = 0.29) with ENSO amplitudes in the

FIGURE 3

Lag-regression coe�cients of ENSO variables related to the key

ENSO processes, and their changes under global warming. (A)

Regression of the Niño-4 zonal wind stress index onto the

Niño-3 SST index (related to the atmospheric Bjerknes

feedback), (B) regression of the Niño-3 SST index onto the

Niño-4 zonal wind stress index (related to the zonal wind

forcing of SST), and (C) regression of the Niño-3 SST index onto

the Niño-3 thermocline depth index (related to the thermocline

feedback). The colored thick curves represent the ensemble

medians and the shadings indicate the respective 5–95%

confidence intervals, both estimated from the 40 ensemble

members. In each plot, the first variable leads the second

variable at positive lags.

historical ensemble, which strengthens to amoderate correlation

(r = 0.52) in the SSP3-7.0 ensemble (Figure 4C). The simulated

Bjerknes feedbacks (ensemble-mean = 0.004N m−2/◦C) are

less than half of the observed value (0.013N m−2/◦C), a

bias also experienced by other climate models (e.g., Bellenger

et al., 2014). The ensemble means of the thermocline feedback
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FIGURE 4

Relationship between the key ENSO processes and ENSO amplitudes, as calculated from observations and individual simulations of the

ACCESS-ESM1.5 historical and SSP3-7.0 large ensembles. ENSO amplitudes vs. (A) di�erences of mean SSTs between the Niño-3 and Niño-4

regions (as a proxy for the zonal SST gradient), (B) the zonal wind forcings of ENSO-related SST anomalies, (C) the Bjerknes feedbacks, and (D)

the thermocline feedbacks. The correlation coe�cients for each experiment are shown in the legends. In (A,C), the observed values are shown

as texts (as the values are very large compared to the simulated values, so these cannot be conveniently plotted); in (B,D), the observed values

are plotted as an asterisk.

(defined as the maximum of R(THD,SST) values at positive

lags) for the historical and SSP3-7.0 experiments are 0.036 and

0.043◦C/m, respectively; these are comparable to the observed

value (0.038◦C/m). The simulated feedbacks are moderately

to highly correlated with ENSO amplitudes in the historical

and SSP3-7.0 ensembles, with r = 0.5 and 0.69, respectively

(Figure 4D).

Therefore, all four processes show correlations with ENSO

amplitudes across the members of two large ensembles

of ACCESS-ESM1.5, with the lowest correlations found

for the Bjerknes feedbacks and the highest for the ZWS

forcing. In all four cases, the correlation coefficient increases

from the historical to the SSP3-7.0 ensemble, with the

highest increase occurring for the Bjerknes feedback–ENSO

amplitude correlation (∼79%) and lowest increase for the ZWS

forcing-ENSO amplitude correlation (∼11%). Note, however,

that these two increases occur from the lowest and highest

historical correlations, respectively.

The differences in SSP3-7.0 and historical ensemble means,

discussed above, indicate GHG forced changes in the ENSO

amplitude and processes. However, there are significant

ensemble variations (due to internal variability) in these

GHG forced changes. The relative contributions of the ENSO

processes to the ensemble variation of ENSO amplitude

change can be estimated using a multiple linear regression

(MLR) analysis:

dENSOamp = a+ b ∗ dSSTgrad + c ∗ dZWSforcing

+ d ∗ dZWSfeedback + e ∗ dTHDfeedback + R
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where, the prefix “d” indicates changes in the dependent

and independent variables from the historical to the SSP3-7.0

experiment, expressed as percentages of the respective historical

values. The variables are vectors consisting of the changes in

relevant statistics in 40 ensemble members (shown as dots in

Figure 4), R is the residual vector, a is the intercept term, and

b, c, d, and e are the regression coefficients. In the ideal case

of the independent variables (or predictors) being uncorrelated

to each other, the sum of the partial variances explained by

the four processes plus the residual variance would be equal

to the ensemble-variance of the ENSO amplitude changes.

However, the independent variables do have low to moderate

mutual correlations (|r| = 0.3–0.54), resulting in a “covariance”

contribution. In our analysis, this covariance contribution is ∼

25% of the total ENSO amplitude variance (see below), which is

less than half of the sum of individual variances explained by the

four processes (∼58%). The effect of these mutual correlations

(or, multicollinearity) can also be quantified by the variance

inflation factors (VIFs). The VIFs for our MLR model range

from 1.37–1.86, which are far less than the threshold VIF value

of 5, above which the multicollinearity becomes problematic

(e.g., James et al., 2013). Therefore, this MLR model can be

useful in providing information about relative contributions of

the processes; a similar model has been effectively used in some

other recent analyses (Rashid, 2021; Rashid et al., 2022).

The result of the MLR analysis is presented in Figure 5. The

four ENSO processes and their covariations together explain

about 83% of the ensemble variance of ENSO amplitude changes

(dENSOamp), leaving ∼17% as the residual variance. There is

a wide range of values for dENSOamp across the ensemble

members (−13–36%), with eight of the 40 members showing

a reduction in ENSO amplitude from the historical to the

SSP3-7.0 experiment (Figure 5A, black curve). That is, the

ensemble variation of 49% in dENSOamp is more than six times

larger than its ensemble mean (7.8%), indicating the internal

variability dominates the forced ENSO amplitude change in

ACCESS-ESM1.5. The MLR predicted dENSOamp for different

ensemble members and the associated residuals are also shown

in Figure 5A. As expected from the high explained variance

(83%) mentioned above, the predicted components are fairly

similar to the full dENSOamp, with small residual values. The

computed regression coefficients for the four processes and

their 5–95% confidence intervals (estimated from a two-sided

t-test) are shown in Figure 5B. The coefficients for dSSTgrad
and dZWSforcing are found to be statistically significant at the

95% level, whereas the other two coefficients, for dZWSfeedback
and dTHDfeedback, are not significantly different from zero.

The negative regression coefficient for dSSTgrad results from

the fact that reduced SST gradients in the SSP3-7.0 experiment

(relative to the historical experiment) are associated with

enhanced ENSO amplitudes, and vice-versa (cf. Figure 4A).

The percentage variances of dENSOamp explained by the four

processes are shown in Figure 5C. The largest contribution

comes from dZWSforcing (∼43%), with the second largest

contribution coming from the covariation of all four processes

(∼25%). The mean-state change, dSSTgrad, contributes around

14% to dENSOamp, with the other two processes contributing

negligible amounts (consistent with Figure 5B).

The fact that the covariance contribution is the second

largest component suggests this result should be interpreted with

caution. We suspect that the near-zero variance contributions

from dZWSfeedback and dTHDfeedback are an artifact of this

substantial covariation between the predictors. In other words,

these two processes do actually have non-zero (albeit small)

contributions to the GW-induced changes in ENSO amplitude

(Supplementary Figure S4), but these are absorbed into the

covariance contribution. This can happen if their ensemble

variations are correlated with the variations of the other more

dominant processes, which is the case here. Nevertheless, the

result discussed above is consistent with the result presented

in Figure 4, where SSTgrad and ZWSforcing were found to

have the largest correlations with ENSO amplitudes across

ensemble members. Also, their changes under GW have

the two largest correlations with ENSO amplitude changes

(Supplementary Figure S4).

Summary and discussions

In this work, we have analyzed and documented the

responses of ENSO to the combined GHG and aerosol forcings

using ACCESS-ESM1.5 LEs for CMIP6 historical and SSP3-

7.0 experiments. Previous studies with multi-model and single-

model LEs showed significant internal variability generated

uncertainties in the forced response of ENSO. Here, for the

first time, we quantify the response uncertainty using ACCESS-

ESM1.5 LEs and investigate the processes responsible for this

uncertainty. We find substantial ensemble spreads in ENSO’s

amplitude, power spectrum, and skewness (Figure 2). The

ensemble mean amplitude increases by about 8% in the SSP3-

7.0 experiment relative to the historical experiment and this

increase is statistically significant according to a two-sided t-

test (p = 1.5 × 10−6) and a separate bootstrap resampling

test. There is also a wide range of changes (−13–36%) across

the ensemble members (Figures 2A, 5A). Consistently, the

ensemble-mean power spectrum shows enhanced power in the

SSP3-7.0 experiment compared to the historical experiment,

mostly around the 3-year period where the mean ENSO spectral

peak is located (Figure 2B); this enhancement is smaller than the

ensemble spreads of both experiments. There appears to be no

significant difference in ensemble-mean skewness between the

two experiments (Figure 2D).

The mechanism of GW-induced changes in ENSO

amplitude is investigated in terms of the changes in prominent

ENSO feedbacks and forcing. The largest percentage changes

happen in the Bjerknes feedback, but these changes are not
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FIGURE 5

Contributions of di�erent ENSO processes to the ensemble variation of ENSO amplitude changes under global warming, as assessed by a

multiple linear regression (MLR) model. (A) ENSO amplitude changes in di�erent ensemble members (black curve), ENSO amplitude changes

predicted by the MLR (red curve), and the residuals (gray curve); (B) the regression coe�cients and their 5–95% confidence intervals (estimated

by a two-sided t-test); and (C) percentage (ensemble) variances of ENSO amplitude changes explained by di�erent ENSO processes, as well as

the covariance and residual contributions. The GW-induced changes (SSP3-7.0 minus historical) for di�erent ensemble members are expressed

as percentages of the respective historical experiment member.

highly correlated (across ensemble members) with ENSO

amplitude changes (Figure 4C and Supplementary Figure S4).

Rather, the latter are best correlated with changes in the

ZWS forcing (r = 0.85) and mean SST gradient (r = −0.72)

(Supplementary Figure S4). The relative contributions to the

ensemble variation (i.e., uncertainty due to internal variability)

of ENSO amplitude changes from the changes in four processes

are quantified using an MLR model. The results from this

MLR model confirm the dominant role of the ZWS forcing

(and mean SST gradient), with the caveat that about 25% of

the ensemble variance of ENSO amplitude changes arise from

covariations of the four processes (Figure 5). The ZWS forcing

is, in turn, linked with the zonal wind–convection coupling

strength in the central-western equatorial Pacific region

(Supplementary Figure S5). The surface westerlies in this region

are coupled, through convergence, with the local convection.

This coupling is strong in observations, with a high correlation

between the Niño-4 ZWS and rainfall anomalies (r = 0.74). The

strength of this coupling is much weaker in ACCESS-ESM1.5

historical simulations, with an ensemble correlation coefficient

of 0.35. However, the correlation increases significantly in the

SSP3-7.0 simulations (r = 0.58), presumably because of the

associated background state warming in the equatorial Pacific.

This explains the dominance of GW-induced changes in the

ZWS forcing on ENSO amplitude changes discussed above. This

result is not unique to ACCESS-ESM1.5 simulations; similar

results were found in a subset of CMIP5 models that showed

ENSO amplitude increases in the abrupt-4xCO2 experiment

(Rashid et al., 2016). However, whether a similar mechanism

works in nature is not clear.

As shown above, the GW signal (as defined by the ensemble

mean) in ENSO amplitude is small (but statistically significant)

compared to its variation due to internal variability. However, a

stronger signal may be found if the ENSO amplitude change is

examined in a scenario experiment with much stronger radiative

forcing, e.g., the CMIP6 SST5-8.5 experiment. Another issue is

that the GHG forcings gradually increase over a period (2015–

2100) in these experiments, so the simulated ENSO variability

does not experience the same level of external forcings over

the whole period. This could be addressed using scenario runs

extended to year 2300 with forcings stabilized at the year

2100 level.

Nevertheless, as mentioned above, the single-model

ensemble results reported here are consistent with those

found from a multi-model ensemble of CMIP5 models using

a different set of experiments, the pre-industrial control and

abrupt-4xCO2 experiments (Rashid et al., 2016). These CMIP5

models also showed a small ensemble-mean increase in ENSO
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amplitude under GW, a large ensemble variation, the dominant

role of ZWS forcing in this variation and a strong connection

to the zonal wind–deep convection coupling. This consistency

of results between different generations of models and between

different sets of experiments indicates the robustness of the

results. Note that some studies reporting robust increases of

ENSO amplitude under GW choose a subset of CMIP5 models

using one or more criteria that may be debatable, although most

of the CMIP6 models show an increase (Fredriksen et al., 2020;

Grose et al., 2020; Cai et al., 2022). However, even the ensemble-

mean increase shown by the CMIP6 models is still modest

compared to the inter-model variation of ENSO amplitude

change. This highlights the importance of understanding this

variation, which is a focus of this study.
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