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Flexible forecast presentation
overcomes longstanding
obstacles to using probabilistic
seasonal forecasts

James W. Hansen*, Tufa Dinku, Andrew W. Robertson,

Remi Cousin, Sylwia Trzaska and Simon J. Mason

International Research Institute for Climate and Society, Columbia University, Palisades, NY,

United States

We describe an innovative forecast presentation that aims to overcome

obstacles to using seasonal climate forecasts for decision making, trace

factors that influenced how seasonal forecast conventions have evolved,

and describe a workshop process for training and supporting farmers in

sub-Saharan Africa to use probabilistic seasonal forecasts. Mainstreaming

seasonal climate forecasts through Regional Climate Outlook Forums (RCOFs)

was an important milestone in the development of climate services. Most

RCOFs and National Meteorological Services (NMS) adopted a subjective

process to arrive at a consensus among di�erent sources of prediction, and

express the forecast as probabilities that rainfall in the upcoming season

will fall in “below-normal,” “normal” or “above-normal” historical tercile

categories. The Flexible Forecast is an online presentation that rectifies the

main criticisms of the tercile convention by presenting downscaled forecasts

as full probability distributions in probability-of-exceedance format along with

the historical climate distribution. A map view provides seasonal forecast

quantities, anomalies, or probabilities of experiencing above or below a

user-selected threshold in amount or percentile, at the spatial resolution of

the underlying gridded data (typically 4 to 5 km). We discuss factors that

contributed to the persistence of the tercile convention, and milestones that

paved the way to adopting seasonal forecast methods and formats that better

align with user needs. The experience of adopting the new flexible forecast

presentation regionally and at a national level in Eastern Africa illustrates the

challenges and how they can be overcome. We also describe a seasonal

forecast training and planning workshop process that has been piloted with

smallholder farmers in several African countries. Beginning with participants’

collective memory of past seasonal climate variations, the process leads

them incrementally to understand the forecast presented in probability-of-

exceedance format, and apply it to their seasonal planning decisions.
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Introduction

The development of forecasting at a seasonal lead

time created new opportunities to manage risk in climate-

sensitive sectors, and contributed significantly to the eventual

development of climate services. Operational seasonal climate

forecasts are available to decision makers from global and

regional climate centers and many National Meteorological

Services (NMS), through online portals, bulletins, and in-person

forums. Since their inception in 1997, a network of Regional

Climate Outlook Forums (RCOFs) across the developing world

has been a focal point of international efforts to support the

production of seasonal climate forecasts, and their use by

climate-sensitive sectors (Buizer et al., 2016; WMO, 2016). Most

global, regional and national seasonal forecast providers present

the forecasts as maps showing the probability that total rainfall

or average temperature in the upcoming season will fall in

“below-normal,” “normal” or “above-normal” tercile categories

(Min et al., 2009; Barnston and Tippett, 2014). This format has

the advantage of showing probabilistic information about the

forecast in a single map. However, it is quite constraining for

decision makers, as it hides a great deal of information that

seasonal forecast systems provide and that decision makers need

for planning and risk management decisions.

This paper describes a forecast presentation that aims to

address many of the known needs of decision makers operating

at different levels, and overcomes longstanding obstacles to

using seasonal climate forecasts for local decision making. We

trace developments that initially impeded then later enabled

adoption of improved seasonal forecast methods and new ways

to present forecast information, and describe our experience

training and supporting smallholder farmers in sub-Saharan

Africa to interpret and use downscaled seasonal forecasts

expressed as a shifted probability distribution.

The flexible forecast presentation

Rationale for a new seasonal forecast
presentation

Regional Climate Outlook Forums (RCOFs), initiated in

1996 in Southern Africa, helped mainstream the routine use of

seasonal forecasts across the developing world, and bolstered the

foundation for climate services (Hansen et al., 2011; Hewitt et al.,

2020). Many RCOFs and most NMS follow conventions that

the first RCOFs adopted, including using a subjective process to

arrive at a consensus among different forecasts. These consensus

seasonal forecasts are presented as maps of tercile probabilities

that are homogeneous over large areas, without any information

about the spatial and interannual variability of the underlying

local climate. NMS are charged with downscaling and tailoring

the forecasts to user needs. In many countries, the probabilistic

information is often collapsed into a deterministic forecast of

the most probable 1 or 2 tercile categories (e.g., “rainfall will

be normal to above-normal”) before it reaches rural populations

and the general public.

The initiation of RCOFs coincided with a strong and

highly-publicized 1997/98 El Niño event. These events led

to a surge of awareness within climate-sensitive sectors and

the general public; and interest, research and investment in

supporting applications of seasonal forecasts, particularly for

agriculture, across the developing world (Hansen et al., 2011;

Vaughan et al., 2014). Experience with farmers and other

local decision makers, across countries and contexts, quickly

revealed several weaknesses that limited the usability of forecasts

available through RCOFs and NMS for local agricultural

decision-making. The most widely reported criticism of the

resulting forecast products is that they do not directly provide

information about expected climate conditions at the local scale

at which most climate-sensitive decision are made (O’Brien

et al., 2000; Jochec et al., 2001; Ingram et al., 2002; Patt

and Gwata, 2002; Podestá et al., 2002; Vogel and O’Brien,

2006). Although analyses of local historical data could be used

to infer local historical rainfall ranges from forecast tercile

probabilities, forecast probabilities derived at a regional scale are

not necessarily reliable at a local scale (e.g., Gong et al., 2003),

and may not provide additional information about local climate

conditions that are important for decisions. Second, forecast

probabilities are associated with thresholds that are defined

by tercile boundaries (i.e., 67th and 33rd percentiles of the

distribution) and not by needs of decisionmakers. In agriculture,

relevant thresholds are context-specific, defined by factors such

as crop water and growing season length requirements. Malaria

control planning in Southern Africa is concerned about the

probability for precipitation to fall into the climatological 25th

percentile tails (Thomson et al., 2006). Disaster risk managers

are concerned with relatively infrequent extreme events, such

as the probability for rainfall to exceed the 90th percentile.

Third, forecast categories are difficult to interpret. The need to

process both directional shifts from the “normal” tercile, and

probability shifts from the 33% climatological tercile probability

(e.g., “increased probability of below-normal rainfall”) imposes

a level of complexity that often leads to misinterpretation.

Research with farmers in Australia found that they have

difficulty distinguishing between the probability of experiencing

a forecast category and the direction of the event from “normal”

(median in this study), and have particular trouble when

changes in the probability (decreased from climatology) and

the event (exceeding the median) are in opposite directions

(Coventry and Dalgleish, 2014). These forecast categories are

often misinterpreted as something other than historic terciles

(O’Brien et al., 2000; Patt and Schrag, 2003; Klopper et al.,

2006; Pennesi, 2007). For example, communal farmers in

Zimbabwe considered most years as “below normal” and very

few as “normal” (Patt and Schrag, 2003), and Namibian farmers
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interpreted “normal” in a manner that included unusually high

rainfall years (O’Brien et al., 2000). Furthermore, in some

countries the NMS interprets probabilities differently (e.g.,

in Ethiopia as percentage of land area falling in the given

tercile). Fourth, acting appropriately on forecast information

requires understanding the degree of accuracy, or conversely

the uncertainty, of the forecast (Ziervogel and Calder, 2003;

Suarez and Patt, 2004). Although probabilistic tercile forecasts

account for forecast uncertainty, the format leaves ambiguity

about the accuracy of the forecast system, which can in turn

lead to inappropriate management responses (Nicholls and

Kestin, 1998; Orlove and Tosteson, 1999; Hammer et al., 2001;

Changnon, 2002). Finally, farmers need information beyond

average conditions during the growing season, such as timing

of the season start and end, and risk of damaging dry spells or

other extremes (O’Brien et al., 2000; Phillips andMcIntyre, 2000;

Ingram et al., 2002; Klopper et al., 2006).

Features of the flexible forecast

The Flexible Forecast Maproom is an online seasonal

forecast presentation that aims to address many of the known

needs of decision makers. It was first developed at the IRI

as an alternative way to present the IRI’s operational global

seasonal forecasts (Blumenthal et al., 2014), and later adapted

and extended to several collaborating Regional Climate Centers

(RCCs) and NMS building on the IRI’s ENACTS initiative

(Nsengiyumva et al., 2021). What makes the forecasts flexible,

relative to the tercile convention, is the ability to present

information derived from the full probability distribution of

the forecast along with historical climatological conditions for

a specified location.

The Flexible Forecast Maproom opens with a map view,

and allows users to access additional information for any

selected location at the spatial resolution of the forecast.

For decision makers who work at an aggregate scale,

the opening map view provides forecast probabilities of

experiencing above or below a user-specified threshold or

percentile of the climatological distribution, and in some

implementations, forecast quantities or anomalies in terms

of physical units (temperature in ◦C, or precipitation in

mm) (Figure 1). Selected forecast statistics are shown at

the spatial resolution of the underlying gridded data. By

selecting an individual grid cell location, decision makers

who work at a local scale can access locally downscaled

seasonal forecast, expressed as full probability distributions

in probability-of-exceedance (POE) and probability density

function formats, along with the historical climatological

distributions (Figure 2).

The general process for producing a forecast distribution

for a given location involves first statistically downscaling

large-scale predictors for each hindcast year onto observed

historical data, then using hindcast residuals to derive the

probability distribution around the expected value of the

current downscaled forecast. The Senegal forecast shown in

Figures 1, 2 was produced by downscaling General Circulation

Models (GCM) rainfall fields onto gridded historical rainfall

data for 1993–2016, using canonical correlation analysis

(Mason et al., 2019; Acharya et al., 2021). The predictor

was rainfall from an ensemble of three General Circulation

Models (GCM), CanSIPS v.1, COLA-RSMAS-CCSM4 and

NCEP-CFS v.2 from the North American Multimodel

Ensemble project (Kirtman et al., 2014), over the domain

5–2◦N and 5–25◦W. The predictand was July-September

rainfall total on a ∼4 km grid across Senegal, generated

by merging quality-controlled daily rain gauge data with

estimates from satellite thermal infrared remote sensing

(Dinku et al., 2022). While the linear downscaling method

used is expected to provide the best possible estimates of the

forecast distribution at each location, random variability

and any instances of inhomogeneity in the sample of

historical observations can lead to discontinuities between

adjacent locations.

The Flexible Forecast addresses several common criticisms

of the tercile convention (Hansen et al., 2011, 2019) (Table 1).

Downscaling the forecast onto local climate data, and

presenting the climatological distribution alongside the forecast

distribution, in physical units (e.g., mm rainfall), provides all of

the information needed to anticipate upcoming seasonal climate

conditions at the local scale of decision-making. Presenting

the full forecast distribution provides forecast quantities or

probabilities associated with any decision-relevant threshold,

and avoids misinterpretations that are common to categorical

probabilistic forecasts. The ability to compare the shapes

and position of the forecast and climatological distributions

conveys the degree of uncertainty of the forecast relative to

climatology, and hence the skill of the forecast, more clearly

than tercile probability shifts. Assuming hindcast residuals

are used to calibrate a forecast distribution, the narrower

the forecast distribution, the greater the accuracy of the

forecast system.

One of the features that makes the new presentation

flexible is the ability to represent a range of predictands in a

common format. Prototype Flexible Forecast products have been

developed for onset and duration of the rainfed agricultural

season, and for crop water requirements satisfaction index based

on a daily soil water balance in Rwanda, and for coffee yields

in Guatemala (Pons et al., 2021). Although these variables

could also be presented in the tercile format, the objective

forecast and statistical downscaling methods that make the

Flexible Forecast possible are also prerequisites to generating

seasonal forecasts of many useful derived seasonal climate and

impact variables.
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FIGURE 1

Map view of Flexible Forecast Maproom from Senegal, showing forecast probability that July-September 2022 precipitation will exceed the 50th

percentile, issued April 2022. Source: https://iridl.ldeo.columbia.edu/maproom/ACToday/Senegal/SeasRainFcst.html?Set-Language=en&field=

exceeding (accessed June 22, 2022).

Drivers of evolving seasonal forecast
presentation conventions

The use of POE graphs to communicate seasonal forecasts

and climatological time series as probability distributions is

not new. Forecasts based on the full probability distribution

have been promoted as a complement or alternative to

categorical probability formats for the USA (Barnston et al.,

2000; Hartmann et al., 2002; National Academy of Sciences,

2006), and were adopted alongside the tercile convention by

NOAA’s Climate Prediction Center in the 1990s (Barnston et al.,

2000). Within agriculture, POE graphs had been widely used in

weather-driven agricultural modeling applications agricultural

decision support tools by the mid-2000s, particularly in

Australia and the USA (e.g., Moore et al., 1997; Paz et al., 2007;

Breuer et al., 2008; Carberry et al., 2009; Hochman et al., 2009).

Yet the tercile convention, and other probabilistic categorical

formats (e.g., probability of exceeding median) have dominated

forecast information generated by global, regional and national

climate institutions.

Inertia against change

The persistence of the tercile convention, despite widespread

criticism, can be explained in part by the inertia of the RCOF
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FIGURE 2

Pixel view of Flexible Forecast Maproom from Senegal, showing July-September 2022 precipitation forecast for a 4-km pixel location in Kaolack

District, issued April 2022. Source: https://iridl.ldeo.columbia.edu/maproom/ACToday/Senegal/SeasRainFcst.html?Set-Language=en&region=

bb%3A-15.88125%3A13.55625%3A-15.84375%3A13.59375%3Abb&field=exceeding&plotrange2=1000 (accessed June 22, 2022).

process, belief that seasonal forecasts were meaningful only

over large areas, national data gaps and NMS policies that

limited the use of historical observations to evaluate and

interpret forecasts at a local scale, and engagement processes

that limited the influence of users. Through most of their 25-

year history, RCOFs tended to perpetuate the status quo by
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TABLE 1 Solutions to constraints to usability of tercile seasonal

forecast presentation [adapted from Hansen et al. (2019)].

Complaint Solution

Lack of information about local

climate

Present downscaled forecast

alongside the local climatological

distribution.

Tercile categories define arbitrary

thresholds

Provide full forecast and

climatological probability

distribution at a local scale, and

allow map view users to select

thresholds relevant to their

decisions.

Tercile categories prone to

misinterpretation

Ambiguity about forecast accuracy,

uncertainty

Limited relevance of average

seasonal conditions

Expand suite of forecast climate

and impact variables.

implicitly endorsing the tercile convention as best practice, and

by providing member country NMS with regional consensus

forecasts in a form that limited options for responding to

additional decision maker needs. As the RCOFs succeeded

in raising awareness and mainstreaming seasonal forecasts

across the developing world, the conventions they used to

communicate them naturally shaped public understanding of

seasonal forecasts.

While much of the early research on the applications of

seasonal forecasts focused on farmers, some researchers argued

against supporting farm level applications based on belief that

useful skill was possible only at an aggregate scale (e.g., Broad

and Agrawala, 2000; Johnston et al., 2004; Ziervogel, 2004;

Ziervogel and Downing, 2004), until accumulating experience

(e.g., Gong et al., 2003; Moron et al., 2006; Robertson et al.,

2009) showed that downscaling to individual stations resulted

in only modest loss of skill. Although gaps in meteorological

observations and restrictive NMS data policies did not hinder

the forecast process of international climate modeling centers

or the subjective consensus process that early RCOFs adopted,

these barriers to accessing historical observations shifted the

challenge of interpreting and evaluating forecasts relative to

local climatology from forecast providers to users, and may have

delayed evaluations of forecast skill at a local scale.

The RCOFs were initially established to raise the credibility

of the forecasts available from NMS by building their capacity

and by reconciling multiple and sometimes conflicting forecast

sources (Patt et al., 2007). The role of the international, regional

and national climate institutions that led the RCOFs included

convening users from climate-sensitive sectors, disseminating

forecast information, and educating users. Although the RCOF

process did improve awareness, credibility and use of seasonal

forecasts, the process that gave users little influence over the

design of the climate information products and little ownership

of the process adversely impacted their salience and legitimacy

(Basher et al., 2001; Cash and Buizer, 2005; Cash et al., 2006;

Vogel and O’Brien, 2006; Hansen et al., 2007; Patt et al.,

2007). The climate services community has since recognized

the weaknesses of such a supply-driven approach, and endorsed

the need to engage users in co-producing services (Kirchhoff

et al., 2015; Buizer et al., 2016; Bednarek et al., 2018). Still,

two decades later an analysis based on RCOF literature and

interviews of participants in the WMO Global RCOF Review

workshop (September, 2017), concluded that “user engagement

within the RCOFs is currently framed quite narrowly, and, in

practice, the role of users is often constrained to downstream

involvement (i.e., after the forecast has been produced)” (Daly

and Dessai, 2018).

Enablers of change

Developments that helped enable the growing adoption

of alternatives to the tercile convention include: gradual

improvements in seasonal prediction practice and skill,

adoption of multivariate statistical downscaling tools, expanding

adoption of data merging to fill historical NMS data gaps,

technical advances in objective multi-model seasonal forecast

downscaling methods, a WMO recommendation to adopt

objective seasonal forecast methods; and successful experience

training and supporting decision makers to understand and use

forecasts presented as full probability distributions.

The earliest RCOFs based subjective consensus forecasts

on a mix of dynamic and statistical forecast systems. During

the subsequent 2–1/2 decades, improvements in GCMs, ocean

temperature forecasts, muti-model ensemble methods and post-

processing have led to improvements in predictive skill and

hence user confidence in seasonal forecasts (Khan et al., 2017;

Johnson et al., 2019; Lin et al., 2020; Becker et al., 2022).

Most RCOFs adopted the use of a small set of multivariate

statistical tools, particularly the Climate Predictability Tool

(CPT, Mason et al., 2019), to correct spatial biases, calibrate

forecasts, derive forecast probability distribution from hindcast

residuals, and assess forecast skill. In many cases, RCOFs used

consistent sets of objective downscaling methods to process

forecasts from different sources, then applied a subjective

process to arrive at a final consensus among the different

sources. Supported by RCOF training, NMS in many countries

developed the capacity to use these tools, yet their use to tailor

downscaled seasonal forecasts to the needs of farmers and other

local decision makers was limited to custom products and pilot

activities with users at station locations with complete historical

records. The development of merging methods to fill data

gaps overcame the final technical obstacle to produce localized

forecast information across a country on an operational basis.

The IRI’s ENACTS (Enhancing National Climate Services)
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initiative has supported more than a dozen NMS to fill spatial

and temporal gaps in their station records by merging quality-

controlled station records with proxy satellite remote sensing

(for rainfall) and reanalysis (for temperature) data, producing

long-term (beginning in 1981), high-resolution (∼4 km) gridded

historical data sets (Dinku et al., 2022). Because NMS steward

much more data than are available to external organizations,

these national data sets are expected to be of higher quality than

similar global products (Dinku et al., 2014, 2018, 2022).

Although the availability of statistical downscaling tools

and data merging methods addressed the main technical

hurdles to addressing tercile forecast usability constraints, these

tools initially required selecting a single seasonal prediction

model and therefore conflicted with the established practice of

basing operational forecasts on a consensus among multiple

forecast models. In 2017, WMO began to recommend that

RCOFs globally adopt seasonal forecast procedures that are

objective, traceable and reproducible, and that quantify forecast

quality (WMO, 2020). In response, IRI introduced a next

generation (NexGen) seasonal forecasts system that enables

forecasters to select the best dynamical models for the region

or country of interest through a process-based evaluation,

and automates the generation and verification of tailored

multi-model, statistically calibrated predictions (Acharya et al.,

2021). CPT was modified to combine and downscale multiple

predictor fields gridded historical climate data, and linked to a

Python interface that automates the forecast production process.

These developments address the main sources of reluctance

to adopting objective forecast methods and addressing the

limitations of the tercile convention.

Experience in Eastern Africa

Through three overlapping projects supported by the U.S.

and UK governments, we supported simultaneous efforts by the

regional climate center, ICPAC (IGAD Climate Prediction and

Applications Center), and by Rwanda’s NMS, Meteo Rwanda,

to implement improved objective seasonal forecasting methods.

The introduction of flexible presentation of seasonal forecast

in East Africa started at Meteo Rwanda in 2017. Meteo

Rwanda’s Flexible Forecast Maproom was based on available

global seasonal forecast model output, downscaled onto their

ENACTS 4-km gridded dataset using CPT. The Flexible Forecast

Maproom was introduced to the IGAD Climate Predication and

Application Center (ICPAC) around the same time, leveraging

the tools developed for Rwanda. ICPAC, based in Nairobi,

provides a range of services and online information products to

strengthen the resilience of 11 member countries in the Greater

Horn of Africa (GHA) region, and organizes the Greater Horn

of Africa Climate Outlook Forum (GHACOF) three times a year.

Years of repeated stakeholder interactions, beginning with a

side meeting at the 44th meeting in August 2016, were required

for GHACOF to fully accept the new forecast presentation.

Although ICPAC staff, and user communities we interacted with

at these events, responded favorably to the flexible forecasts,

ICPAC and the NMS in the region were slow to adopt the

new presentation. Interactions between ICPAC and member

country NMS impeded change at both levels. The NMS looked

to ICPAC and GHACOF to define best practice, and resisted

deviating from their established conventions. On the other

hand, among the NMS Directors, who constitute the board

that governs ICPAC, some initially resisted efforts to change

GHACOF conventions. In our interactions at a 44th GHACOF

(August 2016) side event, and in project collaborations in

Rwanda and Ethiopia, some NMS directors expressed reluctance

to abandon the established tercile convention that was familiar

to them and their users, and concern that downscaled forecasts

should be should be developed by NMS at the national rather

than by ICPAC at the regional level. The main technical hurdle

was that ICPAC and NMS still used a subjective consensus

among multiple forecasts to derive their official forecasts, and

objective forecasts produced by downscaling with CPT were not

consistent with the official forecasts.

This started changing because of three main developments.

First, ICPAC adopted fully objective seasonal forecast methods

in response toWMO’s recommendation. Second, IRI introduced

a next generation (“NextGen”) seasonal forecasting system that

generalized CPT to use multiple dynamical model outputs as

predictors. This made it possible to use the same set of predictors

for official forecasts—still following the tercile convention—

and downscaled forecasts in the Flexible Forecast format. The

adoption of NexGen by ICPAC, following initial implementation

by Rwanda and Ethiopia, created a favorable environment for

adopting the flexible forecast presentation in the region, as

countries look to ICAPC for guidance, and ICPAC plays a

major role in strengthening member countries’ NMS. Finally,

participants at the 48th GHACOF (February 2018) agreed to

introduce objective, downscaled seasonal forecasts, in parallel

with the established consensus forecasts, and over 2–4 years

evaluate which forecast products best serve the GHACOF user

community (Kipkogei et al., 2018).

Supporting farmers to use flexible
forecasts

While farmers routinely make critical farming and

livelihood decisions in the face of climate variability

and imperfect information, some training is needed to

understanding any new probabilistic information format.

Workshops that combine training and participatory planning

have been shown to increase farmers’ use of probabilistic

climate information and resulting benefits in Zimbabwe (Patt

et al., 2005), Burkina Faso (Roncoli et al., 2008), Kenya (Rao

et al., 2015), Senegal (Ouedraogo et al., 2021) and Rwanda
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(Birachi et al., 2020). Several participatory communication

processes have been designed to help farmers and other

local decision makers understand and use seasonal forecasts

in the conventional tercile format. Participatory Scenario

Planning (PSP), developed by CARE International, convenes

local governments and other stakeholders to incorporate

seasonal forecasts into their planning (Ambani et al., 2018).

PSP accounts for the uncertainty of seasonal forecasts by

discussing options that would be appropriate for each of the

forecast tercile categories. Participatory Integrated Climate

Services for Agriculture (PICSA), developed by the University

of Reading, combines location-specific climate information

with participatory activities including resource mapping,

activity calendars and budgeting activities to support farmers

to improve crop, livestock and livelihood decisions (Clarkson

et al., 2022). It emphasizes using historical analyses to adapt the

farming and livelihood system to the local climate, and includes

a seasonal forecast workshop process based on tercile forecasts.

Rationale and framework

Recognizing the limitations of the tercile format, the IRI

developed and piloted a participatory workshop process in 2004

to help farmers understand and act on probabilistic seasonal

forecasts in the POE format that would later be incorporated

into the Flexible Forecast Maproom. Although the new format

was not yet routinely available at the time, we considered that

building capacity in the user community to understand, use

and demand improved climate information would better serve

farmers in the long term than building capacity to make use of

products that were widely available but poorly aligned with their

needs (Hansen et al., 2019).

The workshop process was based on a few premises. Farmers

have a good understanding of climate variability and factor the

resulting uncertainty into their management decisions, but they

understand climate uncertainty in terms of their memory of

past climate variations and impacts rather than in statistical

terms. Although farmers, out of necessity, know how to factor

climatic uncertainty into their decisions, they are subject

to common cognitive biases and decision errors associated

with probabilistic information (Tversky and Kahneman, 1974,

1985)—some of which work against effective use of climate

information (Nicholls and Kestin, 1998; Stern and Easterling,

1999). We assumed that participating farmers have a basic level

of numeracy, but made no assumptions about their literacy or

prior ability to read graphs.

The training component of the workshop follows a step-

by step process that starts with farmers’ memory of climate

variability, and leads them to interpret the new graphical

forecast format and apply it to their seasonal planning

decisions. Using collective experience and graphs of historical

climate variability to introduce the new POE forecast format

reduces cognitive challenges to processing probabilistic forecast

information and applying it to management decisions, through

several mechanisms. First, information about climate variability

is presented as natural frequencies associated with past

variability (e.g., “growing season rainfall exceeded 600mm in

10 of the past 30 years”) before it explained as equivalent

probabilities of future conditions (e.g., “the probability that

rainfall will exceed 600mm in the next growing season

is 33%”). Research shows that expressing probabilities as

equivalent natural frequencies largely eliminates widespread

biases in interpreting probabilities (Gigerenzer and Hoffrage,

1995; Cosmides and Tooby, 1996). Second, activities that

connect abstract statistical information to personal and vicarious

experience reduce cognitive challenges to acting appropriately

on probabilistic information by connecting the mind’s analytical

and experiential processing systems (Marx et al., 2007)1.

“Analytical processing” refers to the system our minds

use to process complex information, including probabilistic

information that is expressed in statistical terms such as a

probability distribution or the probability of experiencing an

outcome within a particular category. “Experiential processing”

refers to the system our minds use to process information that

is obtained through repeated experience. Even when people

are trained to interpret probabilistic information accurately,

experiential processing tends to dominate decision making

because it is connected to strong emotion (Epstein, 1994;

Evans, 2008). Research suggests that participatory activities that

relate statistical information to experience, and hence integrate

the analytical and processing modes, can strengthen ability to

incorporate probabilistic information into decision making and

reduce common biases (Epstein, 1994; Hansen et al., 2004;

Weber et al., 2004; Leron and Hazzan, 2006; Marx et al., 2007).

Like other participatory climate communication processes,

the workshop incorporates group discussion to take advantage

of farmer-to-farmer social learning. Farmers in any community

are heterogeneous. Those who quickly understand the new

climate information products and their implication for farm

management decisions help their peers learn. It also seeks

to build confidence in the forecast and the institution that

provides it. The workshop aims to demystify forecasts produced

by the NMS by presenting it with data that describe their

local climate, discussing (in simplified terms) the process of

producing probabilistic forecasts, and showing the accuracy and

uncertainty of the forecast in transparent terms. We believe this

builds confidence in using the forecast, by shifting the object of

trust from the forecast provider to the data and the process.

1 Terminology varies in the cognitive psychology literature. The

distinction between analytical and experiential processing (Epstein, 1994;

Marx et al., 2007) is roughly equivalent to System 1 and System 2

thinking (Stanovich and West, 2000; Evans, 2003), intuition and reasoning

(Kahneman, 2003), and more recently, Type 1 and Type 2 processing

(Evans and Stanovich, 2013).
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Workshop process

There are six steps to the seasonal forecast training,

presentation and planning workshop (Table 2). The workshop

process has a training component (steps 1–4) and a shorter

forecast presentation and planning component (steps 56).

Step 1, purpose and key concepts, involves explaining the

purpose and roadmap of the workshop, and agreeing on the

meaning of key concepts including: weather, climate, variability,

frequency, uncertainty, probability, and forecast. Since the

workshop will use these concepts in ways that might be new

to the community, either because their language does not have

an equivalent word, or the closest word has a different meaning

within the community, it is important to agree on what words

best represent each concept, and on the meaning in the context

of climate information. If time is available, recognizing and

discussing the community’s traditional climate indicators can

help demonstrate respect and foster trust.

Step 2, from memory to variability, is designed to help

farmers relate time series graphs to their collective experience.

The process starts with eliciting participants’ collective memory

of growing season rainfall (i.e., “dry,” “medium,” “wet”),

and resulting agricultural performance (i.e., “poor,” “medium,”

“good”) for the fivemost recent years. Measured seasonal rainfall

totals are then presented and discussed. Involving participants

in constructing a time series graph, to scale, for the set of

years they discussed fosters understanding and confidence,

particularly where participants are unfamiliar with graphs.

Once they are comfortable with the format, computer-generated

graphs with the full set of available historical data are presented

and discussed.

Step 3, from variability to probability, introduces the

probability of exceedance (POE) graph and participants them to

interpret it. However, it is first presented in frequency terms, as

a way to describe historical variability. Involving participants in

sorting recent growing season rainfall totals onto a blank POE

graph, with frequency rather than probability on the vertical

axis, helps them understand the new format and recognize

its relationship with the time series graph. Once they are

comfortable with the format, the facilitator replaces relative

frequency with probability on the vertical axis, and explains

that the relative frequency of experiencing particular climate

conditions in the past is an estimate of the probability that

they will be experienced in the future. Once participants are

comfortable with the graph format and its interpretation, they

practice reading the probability of experiencing rainfall above,

and then below, some threshold that they agree would be

relevant to farm decisions.

Step 4, forecasts shift probabilities, presents a forecast as

new information that shifts the historical (i.e., climatological)

probability distribution, and equips participants to interpret a

forecast in POE format. In a location where farmers are familiar

with El Niña and/or La Niña, the shifted distribution can be

obtained by showing a POE graph for El Niño alongside the

climatological distribution, and the corresponding time series

graph with El Niño years highlighted. A simplified explanation

of what meteorologists mean when they refer to El Niño

(i.e., warmer than normal eastern equatorial Pacific Ocean

temperatures), and how it can influence climate conditions

in other parts of the world, can help build confidence. The

alternative is to ask participants to agree on a familiar location

with a wetter (dryer) climate, discus how its climate would be

represented by a POE curve to the right (left) of their location,

and lead participants to discuss what it would be like to operate

their farm in the climate of the other location. Once participants

demonstrate a qualitative understanding of what a forecast shift

in the probability distribution means, they practice reading

probabilities of experiencing rainfall above and below the agreed

seasonal rainfall total thresholds from Step 3, for a forecast from

a previous year.

Steps 1–4 equip farmers to trust and interpret the seasonal

forecast. In steps 5–6, the focus shifts from training to planning

for the upcoming season. When the forecast is presented,

concepts presented in steps 3–4 will be applied to interpret the

actual forecast.

The current seasonal forecast, current climate conditions,

and potentially other information that might impact farmers’

plans for the upcoming season are presented in Step 5. If

the current forecast includes additional seasonal variables (e.g.,

season onset and cessation dates, probabilities of dry spells,

growing degree-days), these forecasts can be presented and

discussed. The forecast presentation leads into Step 6, farm

planning, when farmers discuss and decide what seasonal

management decisions, if any, they will change in response to

the forecast. Group discussion allows participants to learn from

other farmers, and get feedback on their ideas.While agricultural

extension personnel and other professionals present may

provide information about management options and answer

questions, the process aims to support farmers’ decision making.

The full forecast training, communication and planning

workshop is needed only the first time farmers are exposed to

the Flexible Forecast format. It might be desirable to conduct

the training (steps 1–4) during a slow part of the agricultural

calendar when farmers and facilitators have more time available,

and hold a shorter workshop to present the actual forecast

and adjust plans for the upcoming season (steps 5–6). The

size of a workshop should generally be limited to about 25–

30 farmers so all individuals can participate in discussion

and participatory activities, and the facilitator can gauge when

participants understand the concepts.

The process can be adapted to farmers with differing

education and literacy levels. For example, where literacy rates

are low, pictures could be used to identify graph components

and characterize farmers’ perceptions of recent years, and

more discussion and repetition will likely be required. Where

participants are unfamiliar with percentages, probabilities could
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TABLE 2 Summary of steps in farmer seasonal forecast training and planning workshop.

Step Purpose Process Options

1. Purpose,

concepts

Shape participants’

expectations.

• Present workshop purpose

• Define key terms and concepts

• Discuss indigenous climate indicators to

build trust.

2. From memory

to variability

Relate time series

measurements and graphs to

participants’ experience.

• Elicit recent growing season conditions.

• Introduce time series graph, validate against

collective memory.

• Participatory activity drawing time series graph,

to scale, for elicited years.

• Calculate probability of exceeding thresholds

from time series graph.

3. From variability

to probability

Understand relationship

between variability and

probability, and interpret

POE graph.

• Sort time series into frequency of exceedance

graph.

• Re-define y-axis from relative frequency to

probability, and discuss relationship between

past frequency and future probability.

• Practice reading probability of experiencing

above or below a threshold.

• Participatory activity sorting recent time series

into frequency of exceedance, to scale.

4. Forecasts

shift probabilities

Understand forecast as a

shifted probability

distribution.

• Show POE curve shifted to the right and/or to

the left of the climatological distribution, and

discuss its implication for climate and for

farming.

• Practice reading shifts in probability of

exceeding a threshold.

• Highlight El Niño years in time series graph,

and show POE graph for El Niño years alongside

all years.

• Identify a familiar location with a wetter or drier

climate, and discuss how that climate would

affect farm performance and management.

5. Current forecast Present forecast for upcoming

growing season.

• Present current forecast and other information

relevant to planning.

• Review forecast interpretation.

• Respond to any questions.

• Enlist NMS staff to discuss the forecast and local

climate, but only if trained in Flexible

Forecast communication.

6. Farm planning Facilitate discussion of farm

management plans for

upcoming season

• Present framing questions

• Discuss management options in breakout

groups.

• Present and discuss group plans to plenary.

• Address farmer questions and needs for

additional support.

be expressed as number of years out of ten. The participatory

activities deriving time series and POE graphs could probably be

eliminated and overall time reduced where farmers are already

familiar with graphs. While our pilot training workshops took

12–14 h over two days, it may be possible to reduce them to

a single day by eliminating or reducing participatory activities

generating graphs, if the majority of farmers are literate and

comfortable with graphs.

Experience

We first developed the training process in 2003 as a self-

guided tutorial in the form of PowerPoint slides, and tested it

with 13 farmers in southern Florida. Answers to questions built

into the tutorial and a subsequent questionnaire indicated that

the participants found the tutorial useful and understandable,

interpreted the climatological and forecast distribution graphs

correctly in most cases, and expressed greater willingness to

modify their farming practices in response to an El Nino or La

Nina forecast as a result (Hansen et al., 2004). With encouraging

results from the initial study, we adapted the logic as a workshop

protocol, and piloted it with groups of farmers in two locations

in Kenya in 2004, in Senegal (Ndiaye et al., 2013) and Kenya

(Njiru et al., 2015) in 2011, and as part of a training of trainers

workshop in Tanzania in 2013 (Hansen, 2015).

For each of these pilot workshops, research teams manually

downscaled seasonal forecasts and generated and printed the

historical and forecast graphs, based on local station records.

In Rwanda, the Flexible Forecast presentation and elements of

the seasonal forecast workshop process were incorporated into

the PICSA approach. The experience demonstrated that Flexible

forecast Maprooms in combination with historical analysis

Maprooms enable participatory processes to scale to more than

110,000 farmers, by allowing agricultural extension personnel

or other trained facilitators to access, download and print the
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graphs used for farmer workshops, for any grid cell location in

the country, without placing additional burdens on NMS staff

(Hansen et al., 2021).

Reporting from workshop breakout groups and one

quantitative evaluation provide evidence of the effectiveness

of the workshop process. Each of the pilot workshops

included breakout groups that discussed the interpretation of

hypothetical forecasts and their implications for management.

In all cases, breakout group reports to plenary demonstrated

that participating farmers were able to interpret forecasts

presented as shifted POE graphs, and identify appropriate

farm management responses. Participants typically identified

management responses that were consistent with responses

that local agricultural experts had suggested, but that included

options that the experts had not considered. The Kenya 2011

workshops were part of a small (n = 117 farmers) randomized

study that assessed the effectiveness of the training workshops,

and workshops in which forecast-based management advisories

were disseminated, alone and in combination, relative to control

villages that did not participate in forecast-related workshops

(Rao et al., 2015). The forecast showed a weak probability

shift toward higher rainfall for the upcoming October-

December growing season. The results indicate that both

forecast training and forecast-based management advisories

contribute to farmer decisionmaking and livelihoods, with some

differences in the type of benefit. Farmers who were provided

forecast training or advisories, alone or in combination, on

average reduced cropped areas, invested in more intensive

crop management, achieved higher cereal yields, and placed

higher subjective economic value on the service expressed as

willingness-to-pay, relative to farmers from control villages.

Between the two types of intervention, subjective value was

more strongly associated with the training workshop, and

changes in management and cereal yields were more strongly

associated with the advisory workshop. Heterogeneity among

sampled villages and small sample size raise the possibility

that differences were due to factors other than the forecast

communication interventions.

Conclusions

Constraints to the usability of seasonal forecasts for

local decision making in the developing world have been

recognized and studied in depth since RCOFs were initiated

in 1997. Many of these constraints reflect the conventions

that were adopted for producing and communicating forecast

information, confounded by unavailability of local historical

data needed to interpret forecasts, rather than limitations

that are inherent to seasonal climate prediction. The situation

has begun to change as a few countries have adopted

objective forecast methods and a Flexible Forecast online

presentation. The slow process of adopting improved forecast

methods and new information products reflects a tension

between user demand and supply-side forces that favor

the status quo. Now that major technical and institutional

impediments have largely been addressed, we anticipate

that more countries, regional centers and RCOFs will soon

expand the range of options and formats by which their

users can access seasonal forecast information—building on

the principles embodied in the Flexible Forecast Maproom

whether or not they adopt the Maprooms described in

this paper.

Smallholder farmers are among the most vulnerable

populations to the impact of a variable and changing climate,

and hence the focus of much of the effort to support

the application of seasonal forecasts. These efforts reflect

a tension between efforts to simplify forecast information

based on assumed limitations of smallholder farmers on

the one hand, and on the other hand efforts to build

farmers’ capacity to access, understand and use the climate

information that best aligns with their decisions. We have

taken the latter approach, seeking to support farmers to

understand and use information in the Flexible Forecast

format. Although we have not yet had opportunity to

rigorously assess the effectiveness of our participatory process

relative to other formats and communication strategies, the

available evidence supports the expectation that farmers

can take advantage of the rich information available in

the Flexible Forecast presentation, with modest training

and support.
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