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Rivers form an essential component of the earth system, with ∼36,000 km3 of riverine

freshwater being dumped into the global oceans every year. The role of rivers in

controlling the sea-surface salinity and ensuing air-sea interactions in the Bay of Bengal

(BoB) is well-known from observational studies; however, attempts to include rivers in

coupled models used for seasonal prediction have been limited. This study reports the

benefits of river routing in coupled models over prescribing observational river discharge

and the impact on the Indian Summer Monsoon (ISM) simulation. Seasonal hindcasts

are carried out using a state-of-the-art global coupled ocean-atmosphere-land-sea

ice model, Climate Forecast System version 2, coupled to a runoff routing model. It

is demonstrated that such a coupling leads to a better representation of the upper

ocean stratification in northern BoB, causes mixed layer warming during July-August,

and imparts a significant inter-annual variability to the mixed layer heat budget. The

rainfall-runoff coupled feedback associated with ISM is captured better, and remote

teleconnections with the equatorial Pacific are enhanced. Improved seasonal mean

temperature and salinity profiles in the northern BoB lead to the formation of a thicker

barrier layer, which is closely tied to the freshwater from rivers. These processes result

in an overall enhancement of the ISM rainfall simulation skill, which stems from scale

interactions between the sub-seasonal and seasonal variability of ISM. A significant

community effort is required to reduce biases in land-surface processes to improve

streamflow simulations, along with better parameterization of mixing of river water with

the ocean.

Keywords: fresh water river discharge, seasonal forecasts, coupled climate models, coupled system feedbacks,

hydrology, monsoons

INTRODUCTION

Rivers discharge ∼36,000 km3 of freshwater into the global oceans (Dai et al., 2009). This riverine
freshwater (RFW) directly impacts ocean salinity and stratification. Changes in ocean density can
affect ocean circulation and currents and, hence, ocean temperature (Lagerloef, 2002; Seidov and
Haupt, 2003; Huang and Mehta, 2010). Changes in sea surface salinity (SSS) directly impact the
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ocean’s mixed layer depth (MLD). This layer interacts with the
atmosphere, and MLD variability can impact the evolution of
the coupled ocean-atmosphere system (Shenoi, 2002; de Boyer
Montégut, 2004; Mignot et al., 2007). Salinity control on the
mixed layer is much more critical for highly stratified ocean
basins such as the Bay of Bengal (BoB) (Shetye et al., 1996),
where RFW can cause sudden dips in SSS, thereby forming
barrier layers and affecting mixed layer temperature (Lukas
and Lindstrom, 1991; Vinayachandran et al., 2002; Rao and
Sivakumar, 2003; Thadathil et al., 2007; Rao et al., 2011). These
changes in upper ocean stratification can interact with vigorous
monsoon intra-seasonal oscillations in the boreal summer and
exhibit a classic example of the variability of the coupled ocean-
atmosphere system. Onmonthly time scales, vertical mixing with
the sub-surface is the main export pathway for freshwater plumes
(Benshila et al., 2014); hence, it can also affect the seasonal mean.

The strong association of RFWwith Indian SummerMonsoon
(ISM) necessitates its representation in models. Many modeling
studies have studied the impact of rivers on ocean salinity
and circulation by prescribing observational river-runoff in
ocean general circulation models (Howden and Murtugudde,
2001; OGCMs, Han et al., 2001; Durand et al., 2011; Jana
et al., 2015; Behara and Vinayachandran, 2016; Srivastava et al.,
2020). These studies report a better representation of salinity
structure in the ocean model and warming of the mixed layer
in response to river forcing in the northern BoB. Chowdary
et al. (2016) reported significant salinity biases in long free
runs of a coupled climate model due to the prescription of
annual mean runoff. They have shown that prescribing local
freshwater flux and seasonally varying river discharges reduces
salinity bias in OGCM simulations. Prescribing runoff might
be a suitable technique for standalone ocean model simulations
but is not ideal in coupled ocean-atmosphere simulations,
as runoff is a dynamically evolving component of the earth
system. Furthermore, such standalone models cannot model the
feedback that the atmosphere would have received in a coupled
ocean-atmosphere system from the dynamically evolving runoff
component. Seo et al. (2009) used a regional coupled model to
study the impact of rivers by restoring SSS toward observations
and reported realistic salinity distribution and warming near
river mouths in the BoB, albeit with a limited impact onmonsoon
rainfall. Vinayachandran et al. (2015) used an earth system
model to study the effects of blocking the rivers in 100-year-
long simulations of an earth system model. They found an
increase in global SSTs of ∼0.5◦C and a 10% increase in Indian
Summer Monsoon Rainfall (ISMR), associated with increased
frequency of La-Nina-type events. Masson et al. (2005) studied
the effect of shallow salinity stratification on monsoon onset
using a coupled model. They found that barrier layers in the
south-eastern Arabian Sea enhance spring time SST warming and
lead to early monsoon onset. The effect of El-Niño and Southern
Oscillation (ENSO) on the Ganga-Brahmaputra river runoff is
well established in the literature (Whitaker et al., 2001; Jian et al.,
2009). Therefore, rivers affect ISMR not only on synoptic to
intra-seasonal time scales but also interact with other modes of
tropical variability, such as the ENSO. These interactions can bear
significant implications for the seasonal predictability of ISMR,

as it arises from these slowly varying boundary forcing events
(Charney and Shukla, 1981).

A routing model is required to implement online river routing
in coupled models. The hydrological modeling community has
been using such routing models for a long time. Generally,
meteorological fluxes from a general circulation model (GCM,
such as CFSv2) are used to drive a macro-scale hydrological
model such as the Variable Infiltration Capacity (VIC) model.
A routing model is used as a post-processor to the hydrological
model, providing streamflow predictions. One such model was
developed by Lohmann et al. (1996, 1998) and has been used
extensively as a post-processor for the VIC model (Nijssen et al.,
2001a). Thismodel belongs to the source to sink (STS) category of
models. In STS models, the distribution and travel time of runoff
between source and sink are parameterized without explicitly
tracking the streamflow between grid cells. STS models have
been used in coupled GCMs and are easier to parameterize for
a wide range of spatial scales (Olivera et al., 2000; Hamman
et al., 2017b). The other category of routing models are cell to
cell (CTC) models, which parameterize the mass flux between
neighboring grid cells, thereby explicitly tracking streamflow.
The Community Earth System Model employs one CTC model
referred to as the River Transport Model (RTM, Branstetter,
2003). CTC models are challenging to parameterize across wide
spatial scales (Sushama et al., 2004). Various other river routing
schemes have been developed in the past two decades. Shaad
(2018) reviewed 18 routing schemes developed in the past two
decades. Some of these models have been coupled to land models
or hydrological models and have been utilized for uncoupled
applications as well (Miller et al., 1994; Lohmann et al., 1996;
Oki and Sud, 1998; Branstetter, 2001, 2003; Bell et al., 2007;
Decharme et al., 2010; Pappenberger et al., 2010; David et al.,
2011; Paiva et al., 2011; Yamazaki et al., 2011; Verzano et al.,
2012; Wen et al., 2012; Lehner and Grill, 2013; Li et al., 2013; Ye
et al., 2013; Getirana et al., 2014;Mizukami et al., 2016; Piccolroaz
et al., 2016). Some of these routing schemes are used to validate
global and regional models based on evaluation of the simulated
discharge. These routing schemes differ in channel routing
methods, resolution, and characterization of the routing network
and have been evaluated for global/regional applications.

General circulation models participating in the Coupled
Model Intercomparison Project Phase 5 (CMIP5), (Taylor et al.,
2012) include river routing models. However, the climate
projections of basin-scale freshwater fluxes derived from these
models vary widely, and a significant community effort is
required to improve basin-scale freshwater fluxes (Bring et al.,
2015). Although rivers form a critical earth system component,
many seasonal prediction models do not have an online river
routing scheme. Climate Forecast System version 2 (CFSv2, Saha
et al., 2014), used for operational forecasts at National Centers for
Environmental Prediction (NCEP) and the India Meteorological
Department (IMD), prescribes annual mean river runoff to an
ocean model. It is worth noting that earlier studies (Han et al.,
2001; Howden and Murtugudde, 2001; Vinayachandran et al.,
2015; Behara and Vinayachandran, 2016; Chowdary et al., 2016;
Jahfer et al., 2017) that studied the effect of river discharge on
the ocean and Indian monsoon are sensitivity studies, an ocean
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model only studies or involves long free-runs of a climate model.
To the best of our knowledge, the effects of river routing on
ISMR simulation and prediction have not been studied in an
operational seasonal prediction framework. Thus, the objective
of this study is two-pronged. First, a runoff routing model is
coupled to Climate Forecast System version 2 (CFSv2). Such
coupling ensures that temporally evolving river freshwater flux
is passed on to the ocean model. This represents an improvement
over the current operational model, where climatological mean
annual observational runoff is prescribed to the ocean model.
Second, we intend to investigate the effect of temporally evolving
runoff on ISMR simulation and value addition (if any) to the
seasonal forecast skill. The analysis is focused primarily on the
BoB, since it is thought to be the heart of the Indian monsoon
(Goswami et al., 2016). Changes in upper ocean stratification,
mixed layer characteristics, rainfall-runoff feedback, seasonal
mean biases, and monsoon teleconnections are explored in this
study. The synoptically varying nature of riverine freshwater flux
can impact ISMR simulation on sub-seasonal time scales as well.
This association with synoptic and intra-seasonal variability of
the ocean-atmosphere system is also a major area of interest and
is explored in Srivastava et al. (2022).

The study is organized as follows: Section Model Description,
Data Used, and Methodology presents the model setup and
the routing model and its coupling to CFSv2; Section Results
and Discussion presents the simulation of river discharge by
major river basins across the globe, changes in ocean mean state,
stratification, and mixed layer characteristics, biases, skill, and
teleconnections in the coupled model setup; the summary and
conclusions are presented in Section Conclusions.

MODEL DESCRIPTION, DATA USED, AND
METHODOLOGY

Climate Forecast System Version 2
CFSv2 primarily comprises four sub-models. The Global Forecast
System (Moorthi et al., 2001) is the atmospheric core of the
model and has a spectral resolution of T126, which amounts
to ∼110 km horizontal resolution in the tropics with 64 hybrid
vertical levels. The land model is the Noah land surface model
(Ek et al., 2003) with four soil layers and a snow layer. The ocean
model is Modular Ocean Model version 4 (MOM4) (Griffies
et al., 2004) and a dynamical sea-ice model (Winton, 2000).
MOM4 used a tripolar grid (Murray, 1996) whose resolution
is 0.5◦ × 0.5◦poleward of 30◦and the meridional resolution
increases to 0.25◦in between 10◦S and 10◦N latitudes. MOM4
has 40 vertical levels with a 10-m resolution in the upper 220m.
The Earth System Modeling Framework couples these four sub-
models. CFSv2 is used for operational long-range forecasting
at the National Centers for Environmental Prediction (NCEP),
United States of America, and by the India Meteorological
Department (Rao et al., 2019). The model is known to simulate
the Indian Monsoon and its variability from synoptic to inter-
annual time scales and other global phenomena such as the ENSO
with a reasonable skill (Srivastava et al., 2015, 2017; Ramu et al.,

2016; Pillai et al., 2018; Krishna et al., 2019; Rao et al., 2019). An
annual mean river runoff value is prescribed in the ocean model
of CFSv2, which is constant (one value) and is based on the Large
and Yeager (2004) dataset, and is the same as in Saha et al. (2014).
Figure 1A shows a schematic of the model setup.

The Routing Model and Coupling With
CFSv2
The land surface parameterization scheme used in the Noah
land surface model (Ek et al., 2003) lacks the representation
of water transport in the horizontal direction. Therefore, the
surface runoff fluxes generated by the Noah land model are not
routed to the ocean model. The intention is to route the runoff
fluxes from the land model to the ocean model using a routing
model. A modified version of the Lohmann et al. (1996) STS
model, referred to as RVIC, was developed by the University
of Washington Computational Hydrology Group (Hamman
et al., 2017b). This source-to-sink model parameterizes the
travel time and distribution of runoff between the source and
outlet grid points. The code of the model is publicly available
(doi: 10.5281/zenodo.269614). Hamman et al. (2017b) provided
a detailed description of RVIC. It uses a linearized form of Saint-
Venant equations, which are one-dimensional. A global flow
direction raster forms the basis for the flow path and distance
between each source to sink point. Such raster is developed
from the topographic information taken from Wu et al. (2011,
2012) at a 1/16-degree resolution. They use a dominant river-
tracing algorithm to extract and upscale river networks. The flow
is parameterized as linear and time-invariant impulse response
functions (IRFs, also referred to as unit hydrographs). Since flow
directions are on a much finer grid compared to the land model
resolution, IRFs are upscaled by conservative remapping to the
land model grid. The convolution of the runoff from each grid
cell with IRFs gives the streamflow at each outlet. RVIC was
coupled to CFSv2. Figures 1B,C depict the model schematic and
the coupling strategy of RVIC to CFSv2, respectively. RVIC runs
at an hourly time step. RVIC routes hourly runoff fluxes from
the land model to generate streamflow at land-ocean boundaries.
This streamflow is conservatively remapped to the ocean model
grid and passed on to the ocean model once every 24 hours. This
CFSv2-RVIC coupled run is henceforth referred to as the RIV
run. In the ocean model, freshwater flux changes the salinity of
top grid cells by changing their volume. Transport of freshwater
across ocean surface is enabled by adding it to the volume
conservation equation, thereby conserving water mass (Griffies
et al., 2005).

Figure 2A shows the annual mean runoff flux (shading)
prescribed in the CTL. The red markers indicate the location
of river outlets in the routing model setup of the RIV run.
Other than the major rivers in this region (such as the Ganga,
Brahmaputra, Mahanadi, Godavari, and Krishna), multiple small
river basins exist. Along the coast, some small basins represent
only one or two grid cells (because of the coarse resolution
of the routing model), but they also discharge into the BoB.
Figure 2A shows all the discharge locations. Dumping massive
quantities of freshwater into just one model grid cell can cause
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FIGURE 1 | (A) Illustration depicting the model components of the control (CTL) run. (B) Model components of the sensitivity (RIV) run with the routing model added

and (C) schematic illustrating the coupling of the routing model to atmospheric and ocean model components.

problems because of the formation of strong halocline and
vertical advection noise across the front (Griffies et al., 2004,
2005; Yin et al., 2010; Hamman et al., 2017b). Therefore, the
runoff in the RIV run is spread horizontally and is discharged into
a thick layer [upper 40m, as in Yin et al. (2010)]. The diffusivity
in river mouths is enhanced vertically up to a depth of 40m to
parameterize unresolved scales (Benshila et al., 2014). The gray
halos around the red markers in Figure 2A denote the horizontal
area over which the runoff is spread. Horizontal spreading was
implemented for all river outlets globally between 50◦S and 50◦N,
wherever the river discharge was >10mm day−1, and for all
outlets in the BoB. The prescribed runoff in CTL is pre-spread

horizontally, as shown in Figure 2A, but vertical mixing was
not enhanced. Also shown in Supplementary Figure 1 are
major river basins identified from the DEM and used by the
RVIC model.

Many refinements in routingmodels have beenmade in recent
years to include parameterizations for irrigation withdrawal,
reservoir operations, stream temperature, and other physical
processes (Yamazaki et al., 2009, 2014; Li et al., 2013; Mizukami
et al., 2016). Given the complex calibration and parameterization
requirements for global-scale applications, a relatively simple
global application of an STS model is sufficient for our purposes.
The parameterization of other processes such as reservoir
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FIGURE 2 | (A) Climatological annual mean values of river runoff (mm day−1) prescribed in the CTL run (shading). The runoff values are pre-spread over the basin

before passing them to the ocean model. The red markers denote the river discharge points in the RIV run, and the gray halo around them depicts the area over which

the discharge is spread in the ocean model for the RIV run. (B) Climatological annual cycle of river freshwater input (× 104 kg m−2 s−1) into the northern Bay of Bengal

(10◦N-25◦N, 78◦E-98◦E) basin from the Large and Yeager (2009) dataset (black), the annual mean discharge prescribed in the CTL run (red), and the discharge

simulated by the RIV run (blue).
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operations or irrigation withdrawal might be necessary for other
applications where the intention is to predict the streamflow
accurately. As in Hamman et al. (2017b), the primary objective
of this study is to provide a first-order coupling between
land hydrology and the ocean model. Seasonal prediction of
streamflow is a challenging task even for offline simulations of
hydrological models driven by GCM forecasts. Such forecasts are
of value for management decisions on a seasonal or annual time
scale at best (Sikder et al., 2016). Therefore, seasonal prediction
of streamflow is not of interest in this study.

Model Hindcasts, Data Used, and
Methodology
Model hindcasts for 37 years (1981–2017) with an ensemble of
tenmembers are made using February initial conditions obtained
from Climate Forecast System Reanalysis (Saha et al., 2010)
and are integrated for 9 months lead time, i.e., from March
to November. Details about model initialization and runs are
mentioned in Supplementary Section 1. The control (CTL) run
prescribes climatological annual mean river runoffs as shown
in Figure 2B. The sensitivity (RIV) run is carried out using the
CFS-RVIC coupled model.

The RIV simulated river discharge for some major river
basins is compared against observations from the continental
river discharge database produced by Dai and Trenberth (2002),
Dai et al. (2009), Dai (2016) and has been recently updated to
include river-flow gauge data from Global Runoff Data Centre,
United States Geological Survey, Water Service of Canada, and
Brazilian National Water Agency (Dai, 2021). Satellite altimeter-
based discharge estimates for Ganga-Brahmaputra for 1993–2016
are also used (Papa et al., 2010). The model-simulated rainfall is
evaluated against the Global Precipitation Climatology Project
(GPCP) rainfall data [provided by the NOAA/OAR/ESRL PSD,
Boulder, Colorado, United States, from their website at https://
www.esrl.noaa.gov/psd/, Adler et al. (2003)] and the rainfall
dataset obtained from the India Meteorological Department
(IMD) at 1◦ resolution (Rajeevan et al., 2008). The Extended
Reconstructed Sea Surface Temperature (ERSST) dataset (Huang
et al., 2017) is used to verify model-simulated SSTs. Simulated
ocean sub-surface variables are verified using the World Ocean
Atlas dataset (Boyer et al., 2018).

ARGO data floats are a vital source of in situ temperature and
salinity data (among other oceanic parameters) and are widely
used in real-time data assimilation systems. They serve as a
reliable source for model verification. ARGO profiles for 2005–
2017 are obtained from the Coriolis Global Data Acquisition
Center of France. The profiles have been pre-processed and
quality controlled by the ARGO science team. ARGO floats
collect temperature and salinity profiles from the upper 2,000m
of the global ocean in ice-free regions. About 51,361 profiles
are present during boreal summer (May–October) in the study
region of 50◦E−105◦E, 10◦S−26◦N. The profiles in the Arabian
Sea, BoB, and eastern equatorial Indian basin are more abundant
than those of other areas of the Indian Ocean. In the BoB interior,
more than 40 profiles are available for a 1◦ × 1◦ grid box. In
the BoB box, defined over 85◦E−95◦E, 7◦N−21◦N, which is

important for our investigation, there are 5,147 profiles fromMay
to October. At some grids, profile numbers can exceed 70, 80, or
even 90.

To assess the salinity stratification in the BoB, mixed layer
depth (MLD), isothermal layer depth (ILD), and barrier layer
thickness (BLT) are defined mathematically using the method
followed in MOM4 (Griffies et al., 2004). In the ocean model,
MLD is defined using a stability criterion. Suppose a fluid parcel
is displaced downward from the surface to a depth h without
changing its temperature and salinity but feeling the in situ
pressure. Let the density of this parcel be defined as:

ρdisplaced = ρ
[

Ssurface, 2surface, Ph
]

,

where S, Θ , and P are the salinity, potential temperature, and
pressure. The real in situ density can be defined as:

ρlocal = ρ [Sh, 2h, Ph] .

If the density of this displaced parcel is sufficiently far from the in
situ density, then this mixing or displacement is not favored and
implies that the parcel is below the mixed layer in the stratified
interior ocean. The difference in these two densities is converted
into a buoyancy criterion as defined below:

δB = −

[

g
(

ρdisplaced − ρlocal
)

ρlocal

]

.

The depth at which δB exceeds a critical buoyancy difference of
0.0003m s−2 (Conkright et al., 2002) is calculated. MLD is then
defined by interpolating between this depth and the shallower
level. Isothermal layer depth (ILD) is defined as the depth with
a temperature decrease of1T= 0.5◦C from surface temperature.
BLT is calculated as the difference between ILD and MLD, i.e.,
BLT = ILD–MLD. For cases where ILD is less than MLD, BLT is
set to zero.

RESULTS AND DISCUSSION

Simulation of River Discharge
Before assessing model simulations, it is vital to verify the
simulated annual cycle of river discharge by the RIV run,
especially for the major rivers discharging in the Bay of
Bengal (Ganga, Brahmaputra, and Irrawady). It must be noted
that the accuracy of routed flow is largely governed by
the performance of the model that produces the distributed
runoff fields (GFS-Noah in this case) and not by the routing
model itself (Mizukami et al., 2016). Calibration of routing
model parameters can alter the timing and magnitude of peak
flow (Mizukami et al., 2016; Hamman et al., 2017b). The
distributed runoff fluxes generated by the land model can have
large errors, thereby making direct comparison with observed
streamflow less meaningful. As pointed out by Falloon et al.
(2011), hydrologists and meteorologists have a widely different
perception of what constitutes a valid river discharge simulation.
For instance, correct simulation of the timing of peak flow is
vital for hydrologists, whereas proper simulation of annual mean

Frontiers in Climate | www.frontiersin.org 6 June 2022 | Volume 4 | Article 902586

https://www.esrl.noaa.gov/psd/
https://www.esrl.noaa.gov/psd/
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://www.frontiersin.org/journals/climate#articles


Srivastava et al. Rivers and Indian Summer Monsoon

discharge volume might be sufficient to study the interaction of
RFW with ocean circulation. The intention here is to gauge the
performance of RIV simulation in terms of the shape of monthly
mean hydrographs and mean discharge volume. As mentioned
earlier, seasonal prediction of streamflow is not of interest in
this study.

Figure 3 compares the monthly hydrographs simulated by
RIV runwith the satellite altimeter-derived runoff product for the
period 1993-2016 (Papa et al., 2010) and the Dai (2004, D2021)
database (for a common time period of January 1993-December
2016 for the Ganga-Brahmaputra and Irrawady rivers). Also
shown in Figures 3C,D are the climatological monthly mean
hydrographs, with the error bars representing the inter-annual
standard deviation of the monthly hydrograph. The correlation
between the observed and simulated hydrograph time series (r),
relative root-mean-square error (RRMS), and percentage bias
(PBIAS) is commonly used statistics to evaluate hydrological
simulation (Lohmann et al., 1996; Nijssen et al., 2001a; Nohara
et al., 2006; Falloon et al., 2011; Hamman et al., 2017b; Pan
et al., 2021). Table 1 presents the statistics for major river
basins. The high correlation for the Ganga-Brahmaputra (GB)
and the Irrawady implies a good correspondence between the
observed and modeled monthly hydrographs. The RRMS for
Ganga is comparable to the values obtained by Nohara et al.
(2006), who employed the TRIP routing model forced by the
ensemble mean precipitation of CMIP5 models. The RRMS for
the Ganga-Brahmaputra discharge compared against the Papa
et al. (2010) dataset is lower than the RRMS values for the
individual river basins (when compared against D2021 dataset).
The PBIAS for Brahmaputra is significantly lower than that in
Nijssen et al. (2001a), where runoff fluxes were generated by
forcing a macro-scale hydrological model with meteorological
forcing obtained from a reanalysis product. The RRMSE value
for Ganga-Brahmputra and Irrawady is 40–50%, with a small
PBIAS (−9 to −18%), and is comparable to that found in other
global-scale studies. Figure 3C indicates a significant phase lag
between the simulated Ganga-Brahmaputra discharge and the
Papa et al. (2010) observations. This is partly because the basin
averaged rainfall (shown in Supplementary Figure 2) also has
a similar phase lag. It also makes us wonder whether reservoir
water management can cause the observed discharge to peak later
in the monsoon season. In the absence of the representation of
man-made intervention, RIV simulationmay cause the discharge
to peak earlier. This cannot be verified with the current model
setup and might be possible with advanced routing models
that include parameterization of reservoirs. Studies have shown
that the snowmelt contribution to the Ganga-Brahmaputra
discharge is significant during spring (Bookhagen and Burbank,
2010; Siderius et al., 2013). The higher discharge values during
March-April-May (Figure 3C) likely indicate a bias in snowmelt
processes in the land model. The negative PBIAS value (−9%)
for the Ganga and Brahmaputra rivers is due to the dry bias
of rainfall in CFS over these basins (Supplementary Figure 2).
The simulated climatological monthly hydrograph for Irrawady
is better in terms of phase; however, the simulated discharge
is lesser from August to November. The correct simulation
of the magnitude and phase of the hydrographs are governed

by the annual cycle of rainfall over the Irrawady river basin
(Supplementary Figure 2). The major basins of interest, the
Ganga-Brahmaputra basin (GB basin) and Irrawaddy, simulate
a high correlation with observations. It should be noted that
the observational river discharge data might be sparse and
might not always be accurate. This is especially true for river
basins such as Ganga-Brahmaputra that are shared by different
countries. Nevertheless, the RIVmodel simulates a realistic shape
of monthly mean hydrographs for the major basins discharging
in the BoB, but with some phase lag. The phase lag and PBIAS
are partly driven by similar biases in rainfall produced by the
atmospheric model and by the routing model.

The climatological monthly hydrographs identical to
Figures 3C,D but for the major rivers globally are shown in
Supplementary Figure 3, and the statistics are listed in Table 1.
Since the model simulation is for 9 months each year (March–
November), the relevant 9-month observations are considered
for comparison. The correlation values exceed 0.5 for many
rivers such as the Congo, Danube, Mackenzie, Mississippi,
Yenesei, Lena, Mekong, Yellow, Amur, Changjiang, Severnaya
Dvina, Pechora, and Ob. For some other rivers such as Amazon
and Columbia, correlation values are high (0.48). This indicates
that the model captures the seasonality to some extent. The
correlation is less for Parana and Yellow and is negative for
Senegal and Yukon. The climatological monthly hydrographs
indicate that the seasonality and amplitude are not well-captured
for these rivers. The RRMS values for these rivers range from
∼46 to 897%, comparable to other global-scale simulations
(Nijssen et al., 2001b; Nohara et al., 2006; Falloon et al., 2011;
Hamman et al., 2017b). For many rivers, PBIAS and phase errors
are determined by the annual precipitation cycle over the basin
(such as Amazon, Congo, Mississippi, Senegal, Changjiang and
Severnaya Dvina; Supplementary Figure 2), while for other
rivers, the magnitude and phase errors seem complex and not
directly related to the annual cycle of precipitation (such as
Mackenzie, Yenesei, Parana, Lena, Mekong, Yellow, Amur, and
Yukon). The errors in phase and shape of the hydrograph can be
corrected to some extent by calibrating the flow and diffusivity
parameters of the routing model (Hamman et al., 2017a). The
errors arising out of discrepancies in simulated runoff from
CFSv2 will require better understanding and representation of
basin-scale processes (such as soil moisture, floodplain processes,
and snowmelt; Falloon et al., 2011). Improvements in the routing
model (such as higher resolution, spatially varying velocity
and diffusivity parameters, parameterization of reservoirs and
irrigation) can improve the overall hydrological simulation and
are suggested for future research.

Figure 2B shows the annual cycle of RFW input into the
northern BoB basin (10N◦–25◦N; 78◦E-98◦E). The monthly
mean runoff into the BoB from the Large and Yeager (2009)
dataset (black curve) shows that the runoff starts building
up in June, which coincides with the arrival of monsoon in
India. Peak discharge occurs in the August and September
months, after which it gradually decreases. The annual mean
climatological runoff prescribed in the CTL run is a constant
value (red line) and is higher than the observational discharge
estimates during pre- and post-monsoon months. RIV simulates
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FIGURE 3 | Monthly mean hydrographs in observations and RIV simulations during the period 1993–2016 for (A) Ganga + Brahmaputra and (B) Irrawady. The

climatological annual cycle of the hydrographs depicted in (A,B) for (C) Ganga + Brahmputra and (D) Irrawady. Also shown as vertical error bars is the inter-annual

standard deviation of the monthly mean hydrographs for the period 1993–2016.

a marked seasonal variation in runoff similar to observational
estimates, although there is a visible time lag and an under-
estimation from August to November. Such seasonal variation
in river discharge forcing can directly impact the upper
ocean mean state and stratification and is discussed in the
next section.

Impact on the Ocean Mean State and
Upper Ocean Stratification
The Upper Ocean Structure
Figure 4 shows the monthly mean ocean salinity profile
(shading) and the temperature profile (contours) from
observations (in situ ARGO data) and model simulations
in the northern BoB (14◦N-22◦N; 85◦E-95◦E; NBoB). Also
shown is the MLD (blue curve) and the isothermal layer depth
(ILD; red curve). The dotted curves in Figure 4 represent the
MLD and ILD from the World Ocean Atlas (WOA) dataset.
The ARGO data indicate that the upper 20m of the northern
BoB (NBoB) is relatively fresh (salinity < ∼33 PSU) from
March to November (Figure 4A). Salinity starts reducing in
the upper ocean in mid June onward and reaches its minima
in October. Such a seasonal cycle in salinity stems from the
seasonality of freshwater forcing, which is particularly strong
during monsoon and post-monsoon seasons and has been
extensively reported (Shetye et al., 1996; Han et al., 2001; Rao

and Sivakumar, 2003; Sengupta et al., 2006; Akhil et al., 2014;
Chaitanya et al., 2014). The NBoB salinity is also less in the
months of March-April. The CTL run has relatively low salinity
values from March to November because of constant riverine
freshwater flux (Figure 4B). Two centers of relatively lower
salinities are evident in the CTL run, with the first occurring in
March-April and the second occurring during the monsoon and
post-monsoon months. However, the separation between the
two salinity minima during June-July, as seen in the ARGO data,
is not evident in the CTL run. RIV simulates a better salinity
profile, which is comparable to observations. The minimum
in salinity occurs during March-April-May, and subsequently
August onward, with a clear separation between the two minima.
In observations, the freshwater plume is restricted to the upper
20–25m (Weller et al., 2016), while it is distributed over the
upper 40m in CFSv2. This can be due to the following reasons:
CFSv2 over-estimates the mixing in the upper ocean (Chowdary
et al., 2016), and the 10-m vertical resolution in the upper ocean
is not sufficient to resolve the fine-scale salinity structure in the
NBoB. The thickness of the column over which river water is
discharged is another cause of concern and can cause biased
salinity structure in the upper ocean. The upper ocean cold bias
in CFSv2 is apparent in both runs. The 28◦C isotherm hovers
around a depth of ∼45m from May onward in observations,
while in the model, it hovers around a depth of∼30m.
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TABLE 1 | The correlation coefficient (r), relative root mean square error (RRMSE),

and percentage bias (PBIAS) for the major river basins. N denotes the number of

monthly observations conducted to compute the statistics.

River basin r RRMSE PBIAS N#

Amazon 0.48 66.12 −18.88 333

Congo 0.67 65.93 16.46 270

Danube 0.67 55.17 41.69 261

Mackenzie 0.75 180 137.4 322

Mississippi 0.73 77.09 57.12 332

Senegal −0.61 269.7 71.23 153

Yenesei 0.78 188.8 116.2 315

Ganga 0.79 64.71 11.29 144

Brahmaputra 0.26 84.18 10.53 180

Irrawady 0.76 102.7 69.58 72

Parana 0.13 134.6 64.59 318

Lena 0.88 162 97.39 279

Mekong 0.9 46.32 8.016 225

Yellow 0.19 897.7 510.4 189

Amur 0.55 71.27 −51.29 234

Changjiang 0.5 63.43 −1.53 216

Columbia 0.48 880.1 831.6 333

Yukon −0.44 107.3 −8.67 333

Severnaya Dvina 0.52 330.8 250.4 301

Pechora 0.62 79.14 −8.18 306

Ob 0.78 65.2 −48 315

Ganga+Brahmaputra* 0.71 50.34 −9.53 216

Irrawady* 0.81 41.77 −18.37 216

The statistics are computed against the Dai et al. (2009) database.
*Statistics are computed with respect to the Papa et al. (2010) dataset.

RRMSE = 1/n

√

∑n
i=1 (Qs,i −Qs,o )

2/Qo, where Qs,i and Qs,o is the simulated and

observed discharges for the month i. PBIAS =

[(

Qs −Qo

)

/Qo

]

X 100%. The overbar

denotes the mean over all months.

Simulation of Mixed Layer, Barrier Layer, and

Isothermal Layer
Freshwater forcing in the ocean directly impacts MLD and can
result in the formation of barrier layers. Therefore, the impact
of RFW forcing on seasonal mean (June through September;
JJAS) MLD, ILD, and barrier layer thickness (BLT) is evaluated
in the CTL and RIV runs. The JJAS mean MLD, ILD, and BLT
from the ARGO data, CTL, and RIV are shown in Figures 5A–I,
top, middle, and bottom panels, respectively. The contours
in Figures 5A–I denote the depths calculated from the WOA
dataset. The differences (RIV-CTL) in MLD, ILD, and BLT
are shown in the rightmost panel (Figures 5J–L). Due to the
freshwater inflow from rain and rivers during the summer
monsoon season, the MLD is very thin (∼15–20m) in the
northern BoB. Due to the shallow mixed layers, thick barrier
layers are seen in this region (Vinayachandran et al., 2002;
Montégut C de et al., 2007; Thadathil et al., 2007). The barrier
layers are comparatively thinner in the northwestern BoB because
of excess evaporation (Sprintall and Tomczak, 1992; Pokhrel
et al., 2012) and are thicker in the eastern BoB (>25m, Figure 5).
River runoff during the summer monsoon maintains the barrier

layers along the northwestern BoB (Vinayachandran et al., 2002;
Sengupta et al., 2006; Behara and Vinayachandran, 2016). This
east-west difference in the BLT is clearly seen in observations
(Figure 5G) and has been reported earlier (Thadathil et al.,
2007; Rahaman et al., 2020). In agreement with observations, the
model-simulated MLD is shallow in the NBoB (<24m in the
head BoB) and is relatively deep in the central bay (∼30–40m).
The spatial patterns of the model-simulated MLD are consistent
with observations. RIV simulates deeper MLD (∼1.5–2m) and
ILD (∼2–4m) compared to the CTL run in the northern BoB.
This is expected, since the vertical mixing was enhanced in the
upper ocean in the RIV run in the vicinity of river mouths.
Thicker isothermal layers in RIV indicate better simulation of
seasonal (JJAS) mean temperature profiles. The variation of
temperature with depth in the upper 35m of the northern BoB is
−0.01◦C m−1 in observations, while the same for CTL and RIV
is −0.04 ◦C m−1 and −0.02 ◦C m−1 respectively. Barrier layers
are very thick in the eastern BoB (>20m along the Myanmar
coast, Figure 5G) while being relatively thinner along the coastal
regions in the northwestern BoB in observations. The seasonal
variability of the BLT is closely tied to the interaction of surface
monsoon circulation with low salinity water and the associated
Kelvin and Rossby wave activity (Thadathil et al., 2007). The
RIV run simulates thicker barrier layers along the eastern coast
of India, the head BoB, and along the Myanmar coast than the
CTL run. The barrier layers are thinner along the north-western
BoB and thicker along the Myanmar coast, thus making the
east-west difference in BLT more prominent. Although the east-
west gradient in BLT is not simulated well in CFSv2 compared
to observations, the RIV run represents this gradient to some
extent. This likely points toward better interaction of the surface
circulation with the upper ocean in the RIV run. The seasonal
cycle of MLD (blue curve in Figure 4) follows a shallow-deep-
shallow evolution. MLD is shallower during March-April-May,
deepens during the monsoon months, and shallows in the post-
monsoon period. Both the CTL and RIV runs capture this well.
In the NBoB, the barrier layers (BLs) are quite thick in March.
The April, May, and June months exhibit the thinnest BLs.
They start to thicken in July onward, which coincides with the
monsoon months. BLs as thick as 20m are seen from August to
November. The barrier layer thickness and its variation in the
northern BoB in CFSv2 is small as compared to observations
(Figures 4A–C). Nevertheless, RIV simulates thicker BLs than
the CTL run in the NBoB (Figure 5L). Rahaman et al. (2020) have
shown that the MOM class of ocean models underestimates the
BLT in comparison to the NEMO class of ocean models, which
is thought to arise because of differences in the boundary layer
parameterizations. Interestingly, increased horizontal resolution
of the ocean model reduces this bias. CFSv2 is known to
simulate thinner barrier layers compared to observations (Zhu
and Kumar, 2019). Despite this limitation, the RIV run captures
the east-west BLT gradients in the BoB better than the CTL
run. Zhu et al. (2020) have shown that increasing the vertical
resolution of the ocean model to 1m near the ocean surface
improves the salinity and barrier layer structure. Improvements
to boundary layer parameterizations of the ocean model might
improve barrier layer simulations and remains an area of active
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FIGURE 4 | Monthly averaged salinity profiles (psu, shading) and temperature (contours, ◦C) for the North Bay of Bengal from (A) ARGO observations, (B) CTL run

and (C) RIV run. Also depicted are the mixed layer depth (in meters, blue curve) and the isothermal layer depth (in m, red) curves. The broken blue and red curves in

(A) denote the mixed layer depth (MLD) and isothermal layer depth (ILD), respectively, from the World Ocean Atlas (WOA) data, while the solid blue and red curves

depict the MLD and ILD, respectively, from the ARGO data.

research. Improvements in boundary layer parameterizations in
the ocean model might improve barrier layer simulations and
remain an area of active research.

Impact on Mixed Layer Characteristics
It is evident from the above discussion that RIV and CTL
exhibit significantly different upper ocean characteristics in the
seasonal mean sense. To understand the impact of river water on
mixed layer processes and upper stratification, salinity and heat
budgeting is performed and is discussed below.

The Mixed Layer Salinity Budget
The temporal evolution of mixed layer salinity is governed
by freshwater (evaporation, precipitation, and river runoff),
advection, entrainment, and mixing, and it has been studied
extensively in the Indian Ocean (Rao and Sivakumar, 2003; Akhil
et al., 2014; Moon and Song, 2014; Nyadjro and Subrahmanyam,
2014; Da-Allada et al., 2015; Schiller and Oke, 2015; Wilson and
Riser, 2016; Zhang et al., 2016; Köhler et al., 2018). Following
Schiller and Oke (2015), the salinity budget in the mixed layer
is defined as follows:

dS

dt
= (E− P − R)

S

h
− u . ∇S

− H (we)
(S− Sbml)

h
+ Residual, (1)

where S is the mixed layer averaged salinity, E is evaporation,
P is precipitation, R is river runoff, u is the horizontal velocity
vector averaged over the mixed layer.H (we) is the Heaviside step
function [H (we) = we if we > 0; H (we) = 0 if we < 0],

and we is the entrainment velocity defined as we = w +
dh
dt
;

where w is the vertical velocity at the base of the mixed layer. dS
dt

denotes the salinity tendency (ST), the terms on the right-hand
side of equation (1) denote the contributions from freshwater
flux (FWF), advection (ADV), entrainment (ENT), and residual.
It is known that the minimum ST between June and September is
driven by FWF, with a secondary contribution fromADV, and the
positive contribution comes from the vertical processes (Akhil
et al., 2014). The freshening effect during the summer months
is attenuated by vertical diffusion and eddy processes (Köhler
et al., 2018). The terms of the budget shown in equation (1) are
computed from the daily mean outputs of the model. Multi-year
monthly means of these terms are averaged over the northern
BoB (15◦-23◦ N, 80◦-95◦E) for CTL and RIV simulations and
are shown in Figure 6. ST is positive during March-April-May

and is negative from June to October for both CTL and RIV.

In agreement with earlier studies, the FWF term governs the

freshening of ST during summer months, followed by ADV. The

magnitude of ENT is much smaller compared to FWF and ADV

and attenuates the freshening effect of the FWF term during

June-September. In CFSv2, the annual cycle of the sum of FWF,
ADV, and ENT (Figure 6E) closely resembles ST (with the sum
becoming negative during June). FWF, ADV, and ENT alone
are not sufficient to explain ST. A significant residual exists
in the budget during July-August-September, which attenuates
the freshening effect, in agreement with Köhler et al. (2018).
The constant river runoff prescribed in the CTL run makes the
FWF forcing stronger during March-April-May and October-
November. FWF terms for The RIV and CTL runs are almost
similar in magnitude from June to September despite higher
river runoff in the RIV run. This is because the FWF term has
the MLD in the denominator, and the RIV-simulated MLD is
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FIGURE 5 | The JJAS mean MLD (in m, shading) for (A) ARGO, (B) CTL run and (C) RIV run. (D–F) and (G–I) Same as (A–C) but for ILD and BLT, respectively. The

contours in (A–I) denote the parameters (MLD, ILD, and BLT) calculated from the WOA dataset. The JJAS mean RIV–CTL differences in (J) MLD, (K) ILD, and (L) BLT.

Differences significant at 90% confidence level are stippled in (J–L).

deeper, making the overall term comparable in magnitude. ADV
is stronger during pre-monsoon months in the CTL run. The
sum of the terms (FWF+ADV+ENT) shows major differences

between RIV and CTL during March–April (due to stronger

ADV contribution in CTL) and toward the end of the monsoon
season (August–September–October) owing to differences in

FWF. The Residual term is stronger in RIV in summer monsoon
months, indicating greater contribution from enhanced vertical

diffusivity at river mouths and other unresolved processes.

Realistic representation of the seasonal cycle of RFW in the RIV

run causes significant differences in the evolution of ST during
pre-monsoon and monsoon months, which better represents the

upper ocean salinity structure in the northern BoB (Figure 4).

As pointed out by Köhler et al. (2018), the representation of
shear horizontal diffusion and eddy processes are vital to close

the salinity budget. Some unresolved processes are accounted

for in the RIV run (by enhancing vertical diffusivity at river

mouths). Increased resolution of the ocean model and improved
parameterization of mixing of river water with the ocean might

further improve the simulation and should be considered in

future studies.

The Mixed Layer Heat Budget
The SST variability in the mixed layer can be ascertained using
the mixed layer heat budget (MLHB) equation. The mixed layer

averaged temperature tendency (TT) ∂[T]
∂t (where [ ] denotes

vertical averaging up to the MLD) can be written as described
in Li et al. (2017b):

∂[T]

∂t
= SHF + ADV + ENT + R, (2)

where SHF is the surface heat flux forcing, ADV is the horizontal
advection term; ENT is the vertical entrainment from the base
of the mixed layer, and R is the residual. The methodology to
compute these terms is the same as that in Li et al. (2017a); hence,
it is not repeated here. The MLHB terms are computed from
the daily mean outputs of CFSv2, and the monthly means of the
MLHB terms are analyzed in this study.

It is known from earlier studies that the SHF term primarily
drives the seasonal cycle of SST in the BoB, and that oceanic
processes play a secondary role (De Boyer Montégut et al., 2007;
Montégut C de et al., 2007; Behara and Vinayachandran, 2016).
It has also been shown that on intra-seasonal time scales, the
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FIGURE 6 | Climatological seasonal cycle of the mixed layer salinity budget terms (psu month−1) averaged over the northern Bay of Bengal (15 ◦N-23 ◦N; 80 ◦E-95
◦E) for the CTL (black) and RIV (blue) runs. (A) Salinity tendency (ST), (B) freshwater forcing (FWF), (C) advection (ADV) term, (D) entrainment (ENT, ×10) term, (E) sum

of FWF, ADV, and ENT, (F) residual term (ST-FWF-ADV-ENT). Also shown as vertical bars are the monthly standard deviations of the terms over the simulation period

(1981–2017).

SHF term plays a dominant role in controlling the SST variability
with the entrainment term playing a secondary role (Vialard
et al., 2012; Li et al., 2017b). The SST tendency is similar to
the temperature tendency term of the mixed layer (Girishkumar
et al., 2017). In agreement with earlier studies, we note that the
SHF term is the dominant term that controls SST variability
on seasonal time scales (figure not shown). The advection and
entrainment terms are an order of magnitude smaller than
the SHF term. Recent in situ observational measurements of
advection and entrainment indicate a greater contribution of
these terms toward SST variability, but are, however, poorly
resolved with models (Vijith et al., 2020). SST can change
because of river water inflow in two ways. Shoaling of MLD
because of freshening can increase SST, since the same amount
of SHF forcing heats a lesser volume of water. On the other
hand, shoaling of MLD can cause greater penetrative shortwave
radiation, thereby cooling the mixed layer.

The difference between multi-year (1981–2017) monthly
means computed from the daily MLHB terms for RIV and CTL
(◦Cmonth−1) is shown in Figure 7. Behara and Vinayachandran
(2016) have shown that during the monsoon season, the
contribution of the SHF term toward heating the mixed layer
dominates, and that there is a net gain in heat by the shallow
mixed layer. The maximum river inflow in the BoB due to online
river routing in the RIV run occurs during July-August. Also,
the temperature tendency term shows a warming tendency of
∼0.1–0.2◦C month−1 during July and August. The signature
of mixed layer warming is evident along the eastern coast of
India during June and spreads southward during August, which
must be because of the spreading of river water along the
eastern coast of India. Such warming of the mixed layer is also
noticed south of the discharge location of Irrawady during July-
August. MLD is deeper in the RIV run than in the CTL run
during June–August (Supplementary Figure 4A). Therefore, the

SHF term is smaller in RIV than in CTL. Because of deeper
MLD in RIV, the net loss of penetrative shortwave radiation
from the mixed layer is less (Supplementary Figure 4B), hence
causing the mixed layer temperature tendency to be greater
during July–August. Toward the end of the monsoon season in
September, the warming signal diminishes as the contribution
from loss of penetrative shortwave radiation increases in RIV,
which cools the mixed layer, as was noted by Behara and
Vinayachandran (2016). The ADV term is responsible for the
distribution of the mixed layer temperature by currents. The
ADV term is stronger in the RIV run along the eastern coast of
India and is responsible for spreading low-salinity warm water.
The magnitude of the entrainment term shown in Figure 7d

(scaled by a factor of 10) is relatively small compared to the
other terms, indicating that its contribution to MLHB is small.
The MLHB residual (figure not shown) is significant along the
eastern coast of India and the southeastern BoB during July–
October. This implies that other diffusive processes that are
not accounted for in MLHB are also important and cannot be
ignored in this region. The inclusion of temporally varying river
runoff lends a seasonally varying character to the mixed layer
heat budget.

The interannual variability (IAV) of the MLD is rather small
[∼2–4 times smaller than the seasonal cycle, Keerthi et al.
(2013)]. By conducting ocean model experiments, Valsala et al.
(2018) have shown that a significant portion of MLD variability
is controlled by surface momentum, heat, and freshwater fluxes,
which are mostly controlled by the ENSO. They have also shown
that the ENSO control on MLD in the BoB is maximum in the
central BoB, and that the amplitude of IAV (defined as inter-
annual standard deviation) of BLT is rather small. In agreement
with earlier studies, the northern BoB averaged MLD has a
small IAV (∼1.6m in ARGO data) and is much smaller in
CFSv2 (∼0.8m). The IAV in upper ocean stratification due
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FIGURE 7 | Difference (RIV-CTL) between the mixed layer heat budget terms (◦C month−1 ) for panel (a) temperature tendency, (b) surface heat flux, (c) advection, (d)

entrainment at the base of the mixed layer.

to freshwater (rain and rivers) is not explored much in the
literature. The RIV-CTL differences in the IAV of seasonal (JJAS)
mean MLD and BLT are shown in Supplementary Figure 5.
Statistically significant variability of about 0.2–0.3m is seen in
the northern, north-western, and eastern BoB, consistent with
the locations of maximum river discharge. The IAV of BLT, on
the other hand, shows a much smaller amplitude (statistically
insignificant), understandably because of the smaller amplitude
of themean itself. The impact of this change in IAV on theMLHB
is explored further.

Figure 8 shows the RIV-CTL difference in the IAV of the

monthly mean heat budget terms. The temperature tendency

term shows stronger IAV over the CTL run (∼0.1–0.15◦C

month−1) in the northern and northwestern BoB and in the

Andaman Sea during June-July-August. These regions coincide
with the discharge locations of major rivers, the Ganga,
Brahmaputra, and Irrawady. The signal further spreads along the
eastern coast of India during September. Irrawaddy’s discharge
also mixes with the saltier water in the Southern Bay, thereby
diminishing the IAV of the TT term in August. The IAV of the

SHF term partly governs TT term variability. During September,
most of the river discharge simulated by these major rivers
reduces, and the associated variability diminishes in the RIV
run. The variability in the central BoB is smaller in RIV than
CTL in July. This might indicate the weaker influence of remote
forcing events such as the ENSO on the MLHB variability,
which is dominant in the central BoB (Valsala et al., 2018),
but requires further investigation. Thus, the temporally varying
river discharge influences the IAV of mixed layer temperature
tendency significantly.

Link Between Runoff and Rainfall in the
Bay of Bengal
Figure 9 shows the lag correlations of rainfall with river
discharge, where monthly mean rainfall time-series lags/leads
to discharge, and the lag frequency is in months. Since the
runoff in the land model is primarily rainfall-driven, we expect
good correspondence between the two parameters at lag 0. A
statistically significant positive correlation between discharge
and rainfall is seen in India’s northern plains and central
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FIGURE 8 | Difference (RIV-CTL) in the inter-annual standard deviation (◦C month−1 ) of (A) the temperature tendency term and (B) the SHF term. Significant variability

is observed in the RIV run compared to the CTL run. The hatched regions denote the area where variances are significantly different at 90% confidence level by F-test.

FIGURE 9 | Lag correlation of monthly rainfall with Ganga-Brahmaputra discharge for (A) observations and (B) RIV model simulation. Rainfall time-series leads/lags to

discharge with a monthly lag frequency. Correlation values significant at 90% confidence level are stippled.

and northeastern India in observations. RIV also captures
this relationship between rainfall and discharge, although
the correlations are somewhat stronger. This indicates rapid
conversion of rainfall over landmass to runoff in CFSv2. The
runoff generated by rainfall events occurring over land takes
some time to reach the ocean depending on the distance of the
rivermouth from the rainfall location. Observational studies have
proven this aspect (Rao et al., 2011). Studies have also shown that
the arrival of an RFW plume can affect the subsequent air-sea
interactions (Vinayachandran et al., 2002), thereby having the
potential to modulate the subsequent rainfall events (Goswami
et al., 2016). A strong positive correlation between rainfall
and runoff is observed at a lag of 2 months in observations
(Figure 9A). This indicates that rainfall events that occurred
2 months earlier have some relationship with river discharge.
Positive correlation at lead +1 implies that the discharge that
occurred 1 month prior can affect rainfall events over the

landmass. RIV also captures these positive correlations at lag
−2, lag −1, and lag 0. They extend up to a lead of 1 month,
albeit stronger than observations. This feedback between rainfall
and runoff at different lags is an important component of the
coupled ocean-atmosphere-hydrological system, which the CTL
run cannot capture. This is well-represented in the RIV run.

Systematic Biases, Model Skill, and
Teleconnections
Since the ultimate goal is to study the implications of RFW on
ISMR simulation, the seasonal (JJAS) mean biases and associated
teleconnections are discussed in this section. Figure 10 shows the
seasonal mean biases in rainfall and SST. The spatial patterns of
the biases remain mostly unchanged, which implies that online
river routing has a limited impact on seasonal mean systematic
biases. There is slight cooling of SSTs in the tropical Indian
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FIGURE 10 | June-September (JJAS) mean SST (◦C) in (A) observations (ERSST), and JJAS mean biases in model-simulated SST (◦C) for (B) CTL run, (C) RIV run,

and (D) RIV-CTL. (E–H) Same as (A–D) but for rainfall (mm day−1, observational rainfall from GPCP). Differences significant at 90% confidence level are stippled in

(D,H). Biases are calculated for the period 1981–2017.

TABLE 2 | The table lists the mean and standard deviation of All-India Summer Monsoon rainfall (AISMR) averaged over land region (column 1–2), the model skill defined

as the anomaly correlation coefficient between the observed and simulated parameter, for AISMR (column 3 & 4), Nino 3.4 index (column 5) and the Indian Ocean Dipole’s

east (IODE) pole index (column 6), and the teleconnections between AISMR and Nino 3.4 index (column 7) and AISMR and IODE index (column 8).

MEAN (1) SD (2) ISMR (GPCP) (3) ISMR (IMD) (4) Nino 3.4 (5) IODE (6) ISMR vs. Nino 3.4 (7) ISMR vs. IODE (8)

GPCP 6.9 0.62 – – – – −0.54 −0.13

IMD 7.5 0.64 – – – – −0.49 −0.11

CTL 4.0 0.42 0.28 0.35 0.51 0.61 −0.54 0.34

RIV 3.7 0.45 0.41 0.47 0.55 0.61 −0.66 0.37

Ocean and the BoB, along with slight warming in the tropical
Pacific and cooling in the extra-tropical Pacific. Specification of
temporally evolving RFW in RIV causes the equatorial Pacific
to be warmer than the CTL run. Vinayachandran et al. (2015)
have shown that shutting of river discharge in a coupled model

causes cooling of SSTs in the equatorial central Pacific and
causes the frequent occurrence of La Nina-type cooling events.
Their model experiment (blocking river discharge globally) can
be thought of as the extreme case of CTL run in this study
(prescribing constant climatological runoff). In the absence
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FIGURE 11 | June-September (JJAS) mean anomaly correlation coefficient between GPCP and model simulations for (A) CTL run and (B) RIV run. (C) and (D) same

as (A) and (B) but zoomed over India. Correlations significant at 90% confidence level are stippled.

of temporally varying river discharge, the equatorial central
Pacific is colder than the RIV run. The pattern of rainfall
bias also remains similar, although the dry bias over Indian
landmass increases slightly in RIV (Figure 10H). This behavior
has also been observed in earlier modeling studies where
models with less cold bias in the central equatorial Pacific
(equatorial Pacific is warmer in RIV than in CTL) can lead to
stronger dry bias over India (Krishna et al., 2019; Pillai et al.,
2021).

The IAV of RFW into the BoB is strongly tied to slowly
varyingmodes of tropical variability such as the ENSO (Whitaker
et al., 2001; Jian et al., 2009). The teleconnection of the ENSO
with ISMR is predominantly strong in CFSv2 (George et al.,
2015). Therefore, we expect a strong impact of the ENSO on
simulated river discharge in the RIV run by modulation of
rainfall. Furthermore, Vinayachandran et al. (2015) found an
increased frequency of La Nina-type events in the presence of
river discharge compared to zero discharge case in an earth
system model. Supplementary Figure 6 shows the correlation
of total runoff to the BoB with global SSTs in the RIV
run. The runoff in May is strongly and positively correlated
with basin-wide warm Indian Ocean SSTs, and a robust El-
Nino type signal is evident in the tropical Pacific. June-
July does not exhibit any significant global teleconnections.
Warm SSTs in the western Arabian Sea and the BoB aid
the runoff in July. From August onward, La Nina’s influence
becomes apparent. La Nina is known to cause abundant rainfall
over the Indian subcontinent, which ultimately affects river
discharge. The association between ENSO and RFW agrees
with the observations (Figure not shown), indicating that
the RIV run captures the remote teleconnections with the
ENSO well.

Table 2 lists some parameters vital to quantify the
performance of the model. The model-simulated mean
ISMR and its standard deviation are quite similar. The skill
for ISMR (defined as the anomaly correlation coefficient,
ACC) increases from 0.28 in the CTL run to 0.41 in the
RIV run, where GPCP is the reference, and it amounts to
an improvement of skill of ∼46%. When evaluated against
the IMD dataset, the improvement is about 34%. Such a
skill improvement is a welcoming result. The predictability
in coupled dynamical models comes from slowly varying
modes of variability such as the ENSO. The Nino 3.4 index
simulation skill is slightly higher for the RIV run, while the
Indian Ocean Dipole (IOD) east pole SST index skill is the
same. The teleconnections of AISMR with the ENSO strengthen
in RIV. Figure 11 shows the spatial ACC for rainfall. In the
CTL run, positive correlations are restricted to the southern
and southwestern parts of India (Figure 11C). However, in the
RIV run, positive correlations extend northward to cover the
western, western-central, northern, central, and northeastern
parts of the country. From a global perspective, enhanced
positive correlations are evident along the Myanmar coast,
Maritime continent, IOD east pole region, parts of central
Australia, and parts of South America. Supplementary Figure 7

shows the standardized AISMR anomalies from observations
and model hindcasts. RIV simulation could correctly simulate
the sign of the AISMR anomaly in 1984, 1987, 1993, and
2011. Furthermore, the magnitude of the simulated anomaly
came closer to observations in 1983, 1986, 2001, 2003, 2004,
2007, 2009, 2012, and 2016. However, there are some years
where CTL fared better than RIV. The overall improvement in
skill points toward improvement in the variability simulated
by RIV.
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CONCLUSIONS

Ocean salinity plays an important role in governing ocean
circulation and can impact the SST and convection in highly
stratified ocean basins such as the Bay of Bengal (BoB). Although
the importance of riverine freshwater (RFW) is well understood,
its effect on seasonal ISMR simulation and predictability has not
been studied. In this study, a river routing model is coupled
to a general circulation model, Climate Forecast System version
2 (CFSv2), which provides temporally evolving RFW to the
ocean model. The implications of such coupling on ISMR
simulation and its predictability are explored. Two sensitivity
runs with CFSv2 are made. The CTL run has a prescribed
climatological mean runoff. The RIV run, on the other hand, has
a dynamically evolving discharge, which is produced by routing
the land model’s runoff to the ocean. The major findings are
summarized below:

1. Online river routing in the RIV run causes a realistic
simulation of the seasonal cycle of RFW input in the BoB. This
causes improvements in upper ocean temperature and salinity
compared to the CTL run.

2. Despite simulating deeper mixed layers, stronger warming
of the mixed layer is noted during July-August, which is
attributed to the simulation of thicker barrier layers in the
RIV run. Apart from the seasonal variations, greater inter-
annual variability in the mixed layer temperature tendency
is noted in the RIV run, particularly in the vicinity of river
discharge locations.

3. The salinity tendency in the mixed layer is dominated by
freshwater input, which causes freshening of the mixed
layer. Vertical diffusion and other eddy processes significantly
attenuate the freshening signal and are better resolved by the
RIV run by virtue of enhanced vertical mixing in the vicinity
of river mouths.

4. The rainfall-runoff feedback is captured in the RIV run, along
with remote teleconnections associated with the ENSO.

5. Srivastava et al. (2022) studied the interaction of RFW with
the monsoon system on synoptic to intra-seasonal time scales.
They found a better representation of convection and air-sea
interaction in the RIV run. The scale interactions between the
synoptic, intra-seasonal, and inter-annual modes of variability
of ISMR lead to higher AISMR simulation skill in the RIV
model setup. Hence, it is demonstrated that improvement in a
particular model component propagates across various modes
of variability of ISMR via the scale interactions among them.

This study has important implications for operational
forecasting. It is demonstrated that rudimentary implementation
of a routing model coupled with a state-of-the-art forecast
system could improve ISMR simulation skill. Improvements in
the routing model by involving other complexities in modeling
river discharge and increasing the horizontal resolution to resolve
the topography better, including reservoirs and dams, etc. can
enhance the skill of the model further. Better parameterization
of mixing of river water with the ocean, finer horizontal and
vertical resolution, and changes in the vertical mixing scheme
in the ocean model can improve the representation of upper
ocean stratification. Most of the errors in the streamflow

simulation are driven by biases from the land and atmospheric
model, and significant community effort is required to address
the biases.
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