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In this study, we explored impacts of interannual variations of chlorophyll on seasonal

predictions of the tropical Pacific by the SINTEX-F2 dynamical climate prediction system,

which is highly skillful at predicting El Niño/Southern Oscillation (ENSO) and other

tropical climate phenomena. We conducted twin re-forecast experiments; one system

used the observed climatology of chlorophyll to compute the shortwave absorption

in the upper ocean, while the other used the observed chlorophyll with year-to-year

variations. Although the chlorophyll impacts on predictions of the Niño 3.4 index were

limited, improvements are noticed in the predictions of sea surface temperature over

the eastern edge of the Western Pacific Warm Pool. This region corresponds to the

separation between warm, low-salinity waters of the warm Pool and cold, high-salinity

upwelled waters of the Pacific cold tongue in the central-eastern equatorial Pacific. The

improvement was very striking in the 2015 case, when a super El Nino occurred.

Keywords: chlorophyll, seasonal prediction, ENSO prediction, tropical Pacific, climate model

INTRODUCTION

Phytoplankton and chlorophyll (Chla) can affect the absorption of shortwave radiation and thus the
vertical distribution of heat in the upper ocean (Lewis et al., 1983). Some previous works already
showed that seasonal cycle of Chla is important for modifying and reducing the bias of annual mean
and seasonal cycle of shortwave absorption and, especially in the tropics, where the thermocline
depth is shallow, the Chla concentration is large, and the shortwave radiation is strong (Nakamoto
et al., 2001; Sweeney et al., 2005; Löptien et al., 2009).

Some climate models, including the SINTEX-F2 CGCM (Masson et al., 2012), use the
satellite-observed climatology of chlorophyll to compute the shortwave absorption in the
upper ocean. However, interannual variations in Chla are important as some previous works
demonstrated that interannual variations of Chla could dampen El Niño/Southern Oscillation
(ENSO) variability by 10–40% in CGCM experiments and hybrid coupled physics-biogeochemistry
models (Timmermann and Jin, 2002; Jochum et al., 2010; Kang et al., 2017; Tian et al., 2021).
Those studies also presented possible processes; during El Niño, equatorial upwelling and therefore
phytoplankton nutrient supply is reduced and the mixed layer depth is increased, which can reduce
Chla concentrations and associated biological heating (Figure 1). Reduced Chla also could deepen
the mixed layer depth via reduced surface warming and subsurface cooling. Tian et al. (2021)
also showed that interannual Chla anomalies could modulate vertical redistribution of penetrative
shortwave radiation between the mixed layer and subsurface layers and affect ocean stratification
and vertical mixing, which weaken the thermocline and Ekman feedback related to ENSO.
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FIGURE 1 | Schematic image of a possible impact of interannual variation of

chlorophyll on ENSO.

Park et al. (2018) showed that the Chla-induced thermodynamic
response is quicker compared to the wind-induced dynamical
response, and thus can work as a precursor of ENSO using a long-
term global Earth systemmodel simulation incorporatingmarine
biogeochemical processes. A further study of such physical-
biogeochemical feedbacks via Chla may newly find room for
improvement in processes and predictions associated with ENSO
(Lee et al., 2014; Zhang et al., 2018; Tian et al., 2020).

To the best of our knowledge, an exploration of possible
impacts of the interannual variations of Chla on seasonal
predictions by a dynamical prediction system has not yet been
presented, thus it is the focus of this study. We evaluated such a
response by using the SINTEX-F2 prediction system, which has
demonstrated its outstanding performance of predicting ENSO,
Indian Ocean Dipole, and other tropical climate phenomena (see
Section Methods).

METHODS

Twin Re-forecast Experiments With the
SINTEX-F2 Model
The dynamical seasonal prediction system is based on a fully
coupled global ocean–atmosphere circulation model (CGCM)
called the Scale Interaction Experiment-Frontier ver. 2 (SINTEX-
F2) developed under the EU–Japan collaborative framework
(Masson et al., 2012; Sasaki et al., 2013), which has a higher-
resolution relative to the previous version of the SINTEX-
F prediction system (Luo et al., 2003, 2005; Masson et al.,
2005). The SINTEX-F2 also has a dynamical sea-ice model,
while the previous version did not have it and simply restored
the sea-ice concentration to the observed climatology. This
system adopts a relatively simple initialization scheme based
only on the nudging of the sea surface temperature (SST) data
(Doi et al., 2016) and a three-dimensional variational ocean
data assimilation (3DVAR) method by taking three-dimensional
observed ocean temperature and salinity data into account (Doi
et al., 2017). In this study, we used 12-members ensemble system
in consideration of the uncertainties of both initial conditions

andmodel physics (Doi et al., 2019a). The SINTEX-F2 has shown
excellent predictive skills for predictions of ENSO, Indian Ocean
Dipole, and other tropical climate phenomena (Doi et al., 2016,
2017, 2019a,b, 2020a,b; Lu et al., 2021; Pradhan et al., 2021; Xue
et al., 2021). Based on the system, we conducted the twin re-
forecast runs with a 12 (6)-month lead-time from the first day of
each month from January (July) during 2000-2020; one system
(F2) used the observed climatology of chlorophyll to compute
the shortwave absorption in the upper ocean (Lengaigne et al.,
2007), while the other (F2chT) used the observed chlorophyll
including the interannual variations from MODIS-Terra (http://
oceancolor.gsfc.nasa.gov/cgi/l3). The differences in the outputs
between the twin experiments were studies as impacts of
interannual variations of chlorophyll on ENSO predictions.

The prediction anomalies were determined by removing the
model mean climatology at each lead-time using the re-forecast
outputs over the period 2000–2020. To evaluate the prediction
results, we used the NOAA OISSTv2 (Reynolds et al., 2002) for
SST. Themonthly climatologies were also calculated by averaging
themonthly data from 2000 to 2020, and then the anomalies were
derived through deviations from those climatologies.

For the mixed layer heat budget analysis, we used the daily
outputs of on-line computation of the terms of the heat budget
at the time-stepping by the ocean component of the SINTEX-
F2 (NEMO); total rate of change, contributions due to the
sum of latent, shortwave, longwave and sensible heat fluxes, the
zonal, meridional, and vertical advection, the lateral and vertical
diffusion, and the tendency of temperature due to Asselin time
filtering (e.g. Jouanno et al., 2011; Madec and the NEMO Team,
2016). The discretized form of the heat budget equations used
in the model imposes to compute the entrainment term as the
residual of those heat budget terms (Vialard andDelecluse, 1998).

RESULTS

We begin by exploring historical time series of the Niño3.4 Index,
which is defined as SST anomalies averaged over the central-
western tropical Pacific (170◦W−120◦W, 5◦S−5◦N). At a first
glance, the original F2 system seems to be skillful in predicting
most of significant events at least one season ahead, though
the onset stage and the amplitude of the events are not well
predicted (Figure 2A). Contrary to our expectation, we could not
find any significant differences between the F2 and the F2chT.
This may be due to the fact that ENSO is not a dominant
factor for the interannual variations of Chla in the Nino3.4
region. The Nino3.4 region is one of major high-nutrient/low-
chlorophyll (HNLC) regions in the world (Coale et al., 1996),
where the abundance of phytoplankton is low owing to the
unavailability of iron (Behrenfeld et al., 2006). In contrast, a
relatively high concentration of iron is observed in the western
equatorial Pacific (Ryan et al., 2006). Therefore, the regressed
spatial patterns of interannual Chla anomalies on the Nino3.4
index in observations showed that the maximum of the negative
Chla anomalies associated with El Niño is found mainly over
the eastern edge of the Western Pacific Warm Pool, which
corresponds to the separation between warm, low-salinity waters
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FIGURE 2 | (A) Monthly time series of the Niño3.4 Index (◦C) from the observational data (black) and the predictions (12-ensemble mean) issued on January 1st and

July 1st by F2 (blue) and F2chT (red). (B) Same as (A), but for the eastern edge of the Western Pacific Warm Pool (140◦E−160◦E, equator −10◦N).

of the warm Pool and cold, high-salinity upwelled waters of
the Pacific cold tongue in the central-eastern equatorial Pacific
(Zhang et al., 2018). Actually, based on a horizontal map of the
differences in the prediction skills of SST in June–August between
the twin experiments (Figure 3), we found the statistically
significant skill improvement in the eastern edge of the Western
Pacific Warm Pool (140◦E−160◦E, equator −10◦N) above the
95% confidence levels on a paired t-test. In addition, we can
find the skill degradation in the northern central tropical Pacific
region. The SINTEX-F2 model has an underestimation bias of
ENSO amplitude (Figure 2A). The bias may be enhanced via the
damping effect of interannual variations of Chla. Although we
should be careful of this skill degradation, the drop in skill is
not so large relative to the skill improvements in other regions.
Therefore, we have not discussed much about this minor skill
degradation and focused more on the skill improvement part in
this study.

Comparing the observed and predicted time series of the
SST averaged in the target region, we found that the difference
between the F2 and F2chT was striking in June 2015, which
was statistically significant above the 90% confidence levels
on a paired t-test (Figures 2B, 4A,B). The observation shows
development of negative SST anomaly in June 2015, which was
associated with occurrence of a super El Niño (Chen et al., 2017).
Different from the observed anomalies, the ensemble mean
prediction by the F2 system shows development of positive SST

anomaly from January 1st, 2015, which reached the maximum
in June 2015. That unrealistic development of the positive SST
anomaly was toned down by the F2chT system.

The F2chT still could not capture well the development of the
negative SST anomaly as seen in the observation. The observed
cooling process in the target region is mainly due to the air-
sea coupling dynamical development processes of the 2015 super
El Niño (Chen et al., 2017; Ineson et al., 2018). However, the
positive SST anomaly in the Nino3.4 region, an important aspect
of the occurrence of the 2015 super El Niño, was not predicted
well (Figure 2A). The deficiency might be due to the so-called
spring prediction barrier of ENSO events (Latif et al., 1998;
Ren et al., 2016; Behera et al., 2021). Actually, the SINTEX-F2
model captured the occurrence of the 2015 super El Niño after
May 2015, although the amplitude was underestimated in the
ensemble mean (Doi et al., 2019a). A strong westerly wind burst
activity in 2015 may be important for successful prediction of the
2015 tropical Pacific condition (Ineson et al., 2018). However,
the SINTEX-F2 as well as many climate models in the world
have significant biases in their representation of the westerly
wind burst activity (Tan et al., 2020). We need further efforts to
improve the intraseasonal variability in the model (Baba, 2021),
which is beyond the scope of this study.

The differences between the two re-forecast experiments
disappeared when the model was initialized on July 1st,
2015 (Figure 3B). The SINTETX-F2 ensemble mean has an
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FIGURE 3 | (A) Correlation skills for prediction of SST anomalies in June–August average issued on January 1st by the 2000–2020 re-forecast experiments by the F2

system. Values lower than the persistence (lag auto-correlation of observation) are shown by hatching. (B) Same as (A), but for the F2chT system. (C) (B) minus (A).

The values which are statistically significant beyond the 95% confidence levels on the paired t-test are shown in color shades. The target region (140◦E−160◦E,

equator −10◦N) is shown by a black box.

FIGURE 4 | (A) Monthly time series of the SST in 140◦E−160◦E, equator −10◦N (◦C) from the observational data (black) and the predictions issued on January 1st,

2015 by F2 (12-ensemble mean: blue, individual members: right blue) and F2chT (12-ensemble mean: red, individual members: orange). (B) A horizontal map of

differences in the ensemble mean predictions of SST anomalies (◦C) in June 2015 (F2chT minus F2). Black dots indicate the statistically significant difference in the

ensemble means between F2 and F2chT beyond the 90% confidence levels on paired t-test. (C) Same as (B), but for precipitation (mm/day−1 ).
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FIGURE 5 | (A) The mixed-layer heat budget analysis (◦C/day) averaged in 140◦E–160◦E, equator −10◦N of the ensemble mean predictions by F2 after 30-days

running mean of the daily outputs. Total rate of change, contributions from the surface heat flux, zonal advection, meridional advection, vertical advection, vertical

diffusion, lateral diffusion, entrainment, and Asselin time filtering are shown by black, red, green, blue, light blue, purple, magenta, orange, and gray lines, respectively.

(B) Same as (A), but for F2chT. (C) (B) minus (A).

amplitude underestimation bias of the ENSO development for
both experiments (Figure 3). We need further analysis from a
viewpoint of probabilistic prediction as well as deterministic
prediction for the rare and extreme case dynamics by conducting
large ensemble members’ re-forecast experiments (Doi et al.,
2019a).

We could also see slight improvement in the target region
for the latter half of 2009, which is related to an El Niño event.
However, for other ENSO events (El Niño; 2002/03, 2006/07, La
Niña; 1999/2000, 2007/08, 2010/11 2020/2021), we could not find
any significant differences. The improvement of the skill over the
target region shown in Figure 3C is mostly due to the 2015 super
El Niño event.

The time series of the mixed-layer heat budget analysis
shows that the contribution from the surface heat flux was
dominant to the difference between the F2chT and the F2 during
March 15, 2015–April 30, 2015 (Figure 5C), when the balance
between the warming by the meridional advection and the
entrainment and the cooling by the vertical diffusion played
an important role on the heat budget in the target region by
the F2 and F2chT (Figures 5A,B). Then, the cooling by the
meridional advection and the vertical diffusion was dominant
in May 2015 for the difference between the F2chT and the F2.
Although the interpretation of the mixed-layer heat budget was
too difficult to exactly specify the reason for the differences in
the simulations, we focused on the early stage during March 15,
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FIGURE 6 | Differences in the mixed-layer heat budget analysis (◦C/30days) averaged in March 15, 2015–April 30, 2015 of the ensemble mean predictions (F2chT

minus F2) (A) Total rate of change. Black dots indicate the statistically significant difference in the ensemble means between F2 and F2chT beyond the 90%

confidence levels on paired t-test. (B–H) Contributions from the surface heat flux, zonal advection, meridional advection, vertical advection, entrainment, vertical

diffusion, and lateral diffusion, respectively.

2015–April 30, 2015. A horizontal distribution of the mixed-
layer heat budget averaged in March 15, 2015–April 30, 2015
shows contributions of several key processes; the zonal and
meridional advections, vertical diffusion, as well as surface heat
flux (Figure 6). For the surface heat flux contribution in April

2015 over the target region, the latent heat loss associated with
the enhanced trade wind was dominant (Figures 7A–D). The
enhanced trade wind seems to be related to the colder SST in the
east of the target region (Figure 7E), where the mixed layer depth
was also increased (Figure 7F). The deeper mixed layer depth at
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FIGURE 7 | (A) Differences in the net surface heat flux anomalies (W/m2) averaged in April 2015 of the ensemble mean predictions (F2chT minus F2). Black dots

indicate the statistically significant difference in the ensemble means between F2 and F2chT beyond the 90% confidence levels on paired t-test. (B) Same as (A), but

for the shortwave radiation (W/m2). (C) Same as (A), but for the latent heat loss (W/m2). (D) Same as (A), but for the 10m wind (m/s, vector) and speed (m/s, shade).

(E) Same as (A), but for the SST (◦C). (F) Same as (A), the mixed-layer depth (m). (G) Differences in the Chla (mg/m3 ) in F2chT minus F2.

that region could also be due to the reduced Chla (Figure 7G)
via reduced surface warming and subsurface cooling. This is
partly consistent with the damping process of El Niño via Chla
discussed by the previous work (Jochum et al., 2010). The deeper
mixed layer depth may propagate westward and extend to the
target region as Rossby waves. Moreover, the difference in the
SST prediction between the F2 and the F2chT could contribute
to a difference in the rainfall prediction (Figure 4C). Therefore,
considering the interannual variation of Chla is important for
predicting not only the oceanic conditions but also atmospheric
conditions via air-sea coupling in the tropical Pacific.

The F2chT predictions show larger ensemble spread relative
to the F2 prediction (Figure 4A). Interestingly, 9 out of 12
members of the F2chT show cooling tendency, while 3 ensemble
members show warming tendency. It might be interesting to
compare the difference between the warmest 3 ensemble means
of the F2chT and the F2 ensemble mean with that of the other
9 ensemble means of the F2chT and the F2 ensemble mean
(Figure 8). Although the other 9 ensemble means are similar
to the F2chT ensemble mean, the warmest 3 ensemble means
are almost a mirror image of the F2chT ensemble mean; the
time series of the mixed-layer heat budget analysis shows that
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FIGURE 8 | (A) Same as Figure 4B, but for the 3 warmest members mean of F2chT minus F2 ensemble mean. (C) Same as Figure 5C, but for the 3 warmest

members mean of F2chT minus F2 ensemble mean. (E,G,K,J) Same as Figures 7A,C,D,F, but for the 3 warmest members mean of F2chT minus F2 ensemble

mean averaged in Feburuary–March 2015. (B,D,F,H,J,L) Same as (A,C,E,G,I,K), but for the other 9 members mean of F2chT minus F2 ensemble mean.

Frontiers in Climate | www.frontiersin.org 8 April 2022 | Volume 4 | Article 868594

https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://www.frontiersin.org/journals/climate#articles


Doi and Behera Chlorophyll Anomaly and Seasonal Predictions

FIGURE 9 | (A,B) Same as Figures 7F,G, but for January–February 2015.

the contribution from the surface heat flux was dominant to
the difference between the warmest 3 ensemble means and the
other 9 ensemble means during February 1, 2015–March 31, 2015
(Figures 8C,D). The latent heat loss, associated with the weaker
trade winds, was the dominant contributor to the net surface
heat loss during February–March 2015 over the target region
(Figures 8E,G,I). The mixed layer depth was also decreased
(Figure 8K). Those larger uncertainties among the ensemble
members of the F2chT may be due to the shallower mixed-layer
depth during January–February 2015 (Figure 9A), which could
be due to the increased Chla (Figure 9B) via enhanced surface
warming and subsurface cooling.

CONCLUSIONS

In order to present a skill assessment from a view point
of impacts of interannual variations of Chla on seasonal
predictions, we conducted twin re-forecast experiments with
the SINTEX-F2 dynamical seasonal prediction system: one
system used the observed climatology of Chla to compute the
shortwave absorption in the upper ocean, while the other used
the observed Chla with year-to-year (interannual) variations.
Although the interannual Chla impacts on predictions of SST in
the central-eastern equatorial Pacific were limited, improvements
in predictions of SST were found over the eastern edge of
the Western Pacific Warm Pool, in particular for the 2015
super El Niño year. The results showed that considering the
interannual variation of Chla in a dynamical seasonal prediction
system is potentially important for improvement of seasonal
climate predictions.

Several mixed-layer processes are found to play a role in
the improvements in the SST predictions. Those seem partly
related to the damping process of El Niño via Chla. However, the
exact contributions of those processes are complicated to be fully
understood at this stage.

Several factors could affect the results. For example, although
this study used the satellite-observational data of surface Chla
concentration, the maximum Chla concentration is actually
observed at the subsurface ocean in the tropical Pacific
(Le Borgne et al., 2002; Lee et al., 2014; Yasunaka et al.,
2021). Developing a sustainable ocean observing system with
Biogeochemical (BGC) Argo (Bittig et al., 2019) will shed

light on 3-dimentional variations of Chla, which could not be
observed only by the satellites. Along with the development
of the observational system, a new scheme to compute the
shortwave absorption in the upper ocean based on the vertical
profile of Chla should be developed. For example, Manizza
(2005) uses the entire vertical profile of Chla to compute
the induced biological heating at each vertical level. Such a
parameterization might enhance the impact of Chla in the
tropical Pacific (Park et al., 2014). In addition, a seasonal
prediction system based on a global Earth system model to
resolve physical-biogeochemical feedbacks via Chla may open
a new door to discovery of predictability of variations in the
marine system associated with the ENSO, including ocean
warming, acidification, deoxygenation, biological production,
and biodiversity (e.g. Park et al., 2019). On the other hand,
we should be careful of possible skill degradation by those
approaches. For example, Lim et al. (2018) demonstrated that
an overestimation bias of mean Chla state in the tropics in
their earth system model enhanced cold SST bias in the tropical
Pacific. Further studies in such research streams are necessary.
The tropical Pacific may serve as an optimal test-bed for those
studies, because the interannual dynamical variations associated
with the ENSO are already predictable with high accuracy relative
to other basins.
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