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In real applications, one common issue of parameter estimation using ensemble-based

data assimilation methods is the accumulation of sampling errors when a large number

of observations are used to update single-value parameters. In this article, a new

parameter estimation method which assimilates a large number of observations to

estimate the states while assimilates adaptive observations to update the parameters

is introduced. The observations resulting in maximum total variance reduction to the

parameter ensembles are identified to perform parameter estimation. To validate this

new method, the two-scale Lorenz-96 model is used to generate true states, while

a parameterized one-scale Lorenz-96 model is used to perform state and parameter

estimation experiments. The comparison between state estimation and parameter

estimation with fixed or adaptive observations shows the new method can be more

effective in estimating the model parameters and providing more accurate analyses. This

method also shows its potential to be used in the data assimilation with large general

circulation models to better produce reanalyzes.

Keywords: data assimilation, target observation, parameter estimation, ensemble Kalman filter, Lorenz model,

adaptive observation

1. INTRODUCTION

In numerical weather prediction and ocean circulation simulations, parametrizations are used
to simulate missing physics due to a lack of scientific understanding or a lack of computational
powers. It is well acknowledged that many parameters used in the parameterization are derived
from the empirical relations, which are intrinsically uncertain. The uncertainty in some parameters
contributes to model errors, that may have great impacts on the model performance (Tong and
Xue, 2008; Furue et al., 2015).

Parameter estimation (PE) is defined as the process of adjusting and optimizing uncertain
model parameters using observations. Similar to state estimation (SE) which corrects the model
states by observations, PE can be done with data assimilation (DA) methods. In ensemble-based
data assimilation methods for PE, such as the ensemble Kalman filter (EnKF) and local ensemble
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transform Kalman filter (LETKF), the uncertain parameters
are regarded as special state variables and augmented to the
ensemble of background states. To update the augmented
ensemble, DA schemes are employed either simultaneously or
separately. Simultaneous PE techniques update the model states
and parameters concurrently by someDAmethod, while separate
PE techniques update the ensembles of states and parameters
independently in different stages (e.g., Koyama and Watanabe,
2010).

Since most parameters are connected to the observed model
states indirectly, the PE problems are always nonlinear and thus
very difficult in practical. Zhang et al. (2020) reviewed the recent
progress and challenges of PE, particularly with complicated
coupled general circulation models. One major challenge of PE
is that some parameters take globally uniform values and thus
assimilating numerous data to estimate those scalar parameters
would over-adjust their values and bring unexpected errors. To
deal with this issue, Wu et al. (2013) developed the geographic-
dependent parameter optimization (GPO) which allows model
parameters to vary geographically in particular models. For more
general scenarios, Aksoy et al. (2006) proposed amethod that first
transforms the single-value parameter into a two-dimensional
field and then updates the field spatially in the analysis step. After
the PE step, a spatial average (SA) of the entire spatially varying
parameter field is used to recover the globally uniform parameter
value for model integration. To speed up the converge of the
parameter ensemble, Liu et al. (2014a) proposed an adaptive
spatial average (ASA) method which computes the average
parameter in areas with the most significant observation impacts.

It is obvious that the most prominent contradiction in PE
with a high-dimensional model is that the large dimension of
state space requires a large number of observation data and that
the massive quantities of observational data lead to excessive
parameter corrections. The mentioned methods attempt to
extend the dimension of the parameter space, then use posterior
values of the parameters in the extended form (GPO) or the
averaged value over a specific region (ASA). Both methods are
widely used in applications of PEwith coupled general circulation
models, e.g., Liu et al. (2014b); Li et al. (2018); Shen and Tang
(2022). However, it is still a waste of computing resources by
extending the parameter space during the analysis step if it is
possible to reduce the number of observations for the estimation
of parameters.

This work aims to introduce a new PE method which
can assimilate adaptive observations to estimate the uncertain
parameters. The adaptive observations, also known as targeted
observations, result from the target observation methods, which
locate observations to optimally improve the state estimation and
forecast accuracy (Emanuel et al., 1995; Bergot, 2010; Pu and
Kalnay, 2010).

Many target observation approaches exist for adaptive
observing purposes and can generally be divided into two
categories (Wu et al., 2020). The first kind of approach aims to
locate observations where the solutions of a dynamical system
exhibit instability. The most common techniques in this category
include the singular vector (SV) (Palmer et al., 1998), breeding
vector (BV) (Toth and Kalnay, 1997), conditional nonlinear

optimal perturbation (CNOP) (Mu et al., 2003), and nonlinear
forcing singular vector (NFSV) (Duan and Zhou, 2013) methods.

The second kind of approach incorporates data assimilation
(DA) methods (such as ensemble transform techniques)
(Bishop and Toth, 1998) to determine where to target
an additional observation (Torn and Hakim, 2008). These
methods independently simulate an observation at each possible
observational location and perform a DA analysis for each
observation. Each independent DA analysis has a corresponding
state error covariance, and the particular observation resulting
in the smallest state error covariance is chosen as the location of
the targeted observation. These methods are frequently used in
real applications because they do not need a complicated adjoint
model and are easy to implement (Whitaker et al., 2008).

Although target observationmethods were originally designed
for SE, they have recently been applied for PE. For example,
Bellsky et al. (2014) performed target observation methods for
PE using a separate scheme, in which LETKF is used for state
variables and EnKF is used for parameters. They indicate that
using the LETKF and EnKF with observations targeted at the
locations of greatest ensemble variance is skillful at reducing
analysis error for the Lorenz-96 model. However, they assimilate
the same observations with different schemes for state and
parameter ensembles, which is not helpful to cope with the
problem of excessive parameter corrections.

In this work, a new PE method which assimilates the full
set of observations for state variables and assimilates targeted
observations for parameters is introduced. The target observation
method is developed with the ensemble adjustment Kalman filter
(EAKF) to identify the locations of the adaptive observations.
The total variance reduction (TVR) is defined to measure the
influence of each observation to the parameters, which is chosen
to update the model parameters. The derived formulas have very
strong connection with the criterion for selecting good values in
the widely-used ASAmethod. The twin experiments using a two-
scale Lorenz-96 model and a parameterized Lorenz-96 model are
conducted to validate the new PE method.

The remainder of this article is organized as follows. The
PE method combined with targeted observation is described in
Section 2. The models and experimental designs are introduced
in the first part of Section 3, and Sections 3.2 show the results with
some discussion. In Section 4, our conclusions are finally drawn.

2. METHODS

In this work, the serial version of EAKF is used to perform joint
state and parameter estimation. The EAKF is first introduced by
Anderson (2001) as a deterministic ensemble filtering method.
Later, a local least squares framework has been derived leading
to a two-step ensemble filtering update procedure that can
assimilate the observations sequentially (Anderson, 2003). EAKF
has been successfully implemented in many large geophysical
application, since it greatly reduces computational requirements,
and lead to good assimilations with a relatively small ensemble
(Anderson, 2009a). The serial EAKF uses each observation to
update the state variable entries and parameters one after another,
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such that the estimation of state variables and parameters can
be separated.

In the following, x denotes the state vector, θ denotes the
uncertain parameters as a vector, yo denotes a single scalar
observation with variance R, and h is denotes the measurement
operator. The ensembles of x and θ are updated with a
two-step procedure, which first computes the observational
increments according to the disparities of model projection and
observation, then regression the observational increments to the
state/parameter space. The augmented method for PE implies
that the measurement operator h project both x and θ to the
observational space, i.e.,

y
p
n = h(x

p
n; θ

p
n ), n = 1, ...,N, (1)

where the superscript p indicates the prior value, n is the index of
the ensemble member, and N is the ensemble size.

The scheme for updating the state vector x refers to Anderson
(2003), and the corresponding adaptive inflation method refers
to Anderson (2009b). This work focus on the update of the
parameter ensemble {θn, n = 1, 2, . . . ,N}.

As the same as state estimation, the observational increment
can be computed as

yun − yu = (
σ u
y

σ
p
y

)(y
p
n − yp), n = 1, ...,N, (2)

where the posterior ensemble mean

yu = (σ u
y )

2[
yp

(σ
p
y )2

+
yo

R
]. (3)

and posterior ensemble variance

(σ u
y )

2 =
(σ

p
y )

2R

(σ
p
y )2 + R

(4)

are explicitly derived from the prior.
The EAKF linearly regresses the prior ensemble sample of

each parameter on the observation variable to compute the
update increments for each parameter ensemble member from
the corresponding observational variable increments. The nth
posterior parameter ensemblemember for the parameter indexed
bym, denoted θum,n, can be updated by

θum,n = θ
p
m,n +

6θm ,y

(σ
p
y )2

(yun − y
p
n). (5)

where6θm ,y is the covariance between θ
p
m and yp. It is noteworthy

that a localization factor ρ is always multiplied to the second term
on the right-hand-side for state estimation to apply covariance
localization. However, since we assume that the parameters are
globally uniform, localization is not necessary for each θ . If we
substitute the relation 6θm ,y = rθm ,yσ

p
θm

∗ σ
p
y into Equation (5),

where rθm,y is the correlation coefficient between θm and the prior
projection yp, the equation can be simplified to

θum,n = θ
p
m,n + ρ ∗ rθ ,y

σ
p
θ

σ
p
y

(yun − y
p
n), (6)

Using Equation (6), it is easy to calculate the posterior error
variance of each parameter. We first compute the mean value of
θum,n for n = 1, 2, . . . ,N and then subtract it from Equation (6):

(θum,n − θum) == (θ
p
m,n − θ

p
m)+ rθm,y

σ
p
θm

σ
p
y

(
σ u
y

σ
p
y

− 1)(y
p
n − yp), (7)

in which Equation (2) is substituted.
Squaring both sides of Equation (7) and averaging them, it can

be derived that

(σ u
θm
)2 = (σ

p
θm
)2{1+ r2θm ,y[(

σ u
y

σ
p
y

)2 − 1]}. (8)

Upon substituting Equation (4), Equation (8) can be rewritten as

(σ
p
θm
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θm
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)2r2θm,y
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2

(σ
p
y )2 + R

.

(9)
Equation (9) evaluates the reduction in the variance of

the parameter θm when an observation with variance R is
assimilated. This implies that the variance reduction (VR) of
the variable parameter is proportional to its prior variance, the
square of its correlation coefficient with the observed variable,
and the regression coefficient of the posterior variance in the
observational space.

Liu et al. (2014a) indicates that the value of � = r2θm,y
(σ

p
y )

2

(σ
p
y )2+R

can be a criterion for selecting good values from the posterior
of the extended parameter ensemble, since Equation (9) can
be written as (σ u

θm
)2 = (σ

p
θm
)2(1 − �). In their PE method,

the parameter θm is firstly extended to a vector with spatial
dependence, then updated locally using all observations (with
covariance localization), and finally averaged over areas in which
� is larger than a prescribe threshold.

The current method first assimilates the entire observation
dataset to update the model state, then assimilate adaptive
observation to update the parameters. For this purpose, the
total variance reduction (TVR) from one observation to all the
undetermined parameters is defined as

TVR(yo) =
M

∑

m=1

[(σ
p
θm
)2 − (σ u

θm
)2] =

(σ
p
y )

2

(σ
p
y )2 + R

M
∑

m=1

(σ
p
θm
)2r2θm ,y,

(10)
that can be used to measure the impact of one observation to
all those parameters. The observational site with the largest TVR
is expected to maximally reduce the uncertainties in parameters
such that this site can be identified as the location of an adaptive
observation (Huan and Marzouk, 2013; Gharamti et al., 2015).
This procedure, which is very effective in practice, can be
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applied repeatedly to find more other observational sites once
the identified adaptive observation is assimilated (Sakov andOke,
2008). Assimilating a sufficient number of observations could be
most effective to update the parameters while not introduce the
problem of excessive corrections.

In the following section, this newly developed PE method is
validated with a parameterized Lorenz-96 model.

3. NUMERICAL EXPERIMENTS

3.1. Twin Experiment Settings
In the DA community, the Lorenz-96 model is a simple model
that is frequently used as a testbed for DA methods. The two-
scale Lorenz-96 model is an extension of the original Lorenz-96
model that was originally introduced to simulate mid-latitude
weather phenomena and to study the influences of multiple
spatiotemporal scales on the predictability of atmospheric flows.
The two-scale Lorenz-96 model consists of large-scale variables

{Xk}Kk=1
coupled to J ∗ K small-scale variables {Zj,k}(J,K)(j,k)=(1,1)

,

whose evolution is governed by

dXk

dt
= −Xk−1(Xk−2 − Xk+1)− Xk + F −

hc

b

J
∑

j=1

Zj,k, (11)

dZj,k

dt
= cbZj+1,k(Zj−1,k − Zj+2,k)− cZj,k +

hc

b
Xk, (12)

where both Xk and Zj,k are assumed to be periodic, that is,
Xk+K = Xk and Zj,k+K = Zj,k, Zj+J,k = Zj,k+1.

Similar to Wilks (2005), the coupled model is used to define
the “truth,” i.e., the quantities to be predicted. Here, K = 8 and
J = 16, so there are JK = 128 Z variables in total for the truth
run. The scaling constants h, c, and b are taken to be 1, 10, and 10,
respectively, and F is a forcing term taken to be 8 in the following.
The coupled model is integrated with a step size of δt = 0.005
model time units (TUs), which is equal to 36 min in reality. The
integration starts from random initial values and runs for 144,000
steps (≈10 years) to allow fluctuations in the system to develop
sufficiently. Likewise, the duration of the truth run is 100 TUs (or
20,000 model steps).

In the experiments, the X variables in Equation (11) are
regarded as “resolved,” whereas the Z variables governed
by Equation (12) are regarded as “unresolved.” Hence, a
parameterization scheme is required to mimic the effect of the
last coupling term in Equation (11). The parameterized Lorenz-
96 model can be written as

dX∗
k

dt
= −X∗

k−1

(

X∗
k−2 − X∗

k+1

)

− X∗
k + F − gU

(

X∗
k

)

(13)

for each k, and gU is the parameterization function. For
simplicity, we assume that gU is a quadratic polynomial with
three uncertain coefficients, i.e.,

gU
(

X∗
k

)

= b0 + b1X
∗
k + b2(X

∗
k )

2. (14)

These coefficients could be regarded as the parameters of
the parameterization function whose uncertainties result in

model errors. According to Wilks (2005), the reference values
of these parameters can be estimated with polynomial fitting.
As shown in Figure 1A, the polynomial function with reference
coefficients B = [b0, b1, b2] can be calculated by polynomial
fitting using the true X and Z values. Therefore, the reference
parameters are 0.1232, 1.0401, and -0.0879. However, these true
values cannot be obtained without true Z data, so we adopt
the initial estimates of these parameters for the experiments,
namely, B0 = [0.1, 1,−0.1], which are slightly different from the
reference values.

In addition, the model step size for the parameterized Lorenz-
96 model is 1t = 0.05 TUs (or 6 h), which means that the
temporal resolution of the control run is also lower than that of
the truth run. As demonstrated in Figure 1B, compared to the
truncated Lorenz-96 model, which uses no parameterization, the
B0-parameterized Lorenz-96 model can effectively simulate the X
variables of the two-scale model, especially for the first 20 TUs. As
a result, B0 is used during the SE experiment, and it is also used
to generate the parameter ensemble in PE.

The observation for each variable is generated every 4 model
steps with random observational errors drawn from the Gaussian
distribution N(0; 0.5) such that R = 0.25 for each observation,
and the duration of the DA experiment is 100 TUs (or 2,000
parameterized model steps). To better simulate the situation
in practical ensemble data assimilation, a 30-member ensemble
generated by the normal distribution N(x∗0 ,

√
2) is used to

perform both SE and PE, where x∗0 represents the perturbed
initial condition or the first observation. The parameterized
Lorenz-96 model contains only 8 model variables, we assume
that all 8-variables are observed to estimate the states, but only
2 observations are used to estimate the parameters.

3.2. Results
We first perform state estimation only (SEO) experiment, in
which the fixed parameters B0 = [0.1, 1,−0.1] are used in the
integration of each ensemble member. The EAKF with adaptive
inflation scheme (Anderson, 2009b) is employed to perform
SE. Localization is a frequently-used approach in ensemble-
based data assimilation methods, since it can suppress long-
distance correlations due to insufficient ensemble members
(Hunt et al., 2007). In this experiment, the covariance localization
method using the Gaspri-Cohn function (Gaspari and Cohn,
1999) is applied with different cut-off parameters. Table 1

compares the root-mean-squared-errors (RMSE) and root-
mean-squared-spreads (RMSS) over the state variables of the SE
experiments using the same initial ensemble against different cut-
off parameters. The mean RMSE and RMSS over the last 75 TUs
(1,500 model steps) are computed to measure the performance of
each experiment.

With the cut-off half length c smaller than 0.5, the observation
of each variable can only affect itself for this model. However,
since it produces the most accurate state estimation, we use this
strategy (c = 0.5 ) in the SEO experiment and the state estimation
stages of the PE experiment.

Two PE experiments are conducted. In each PE experiment,
the initial parameter vector B0 = [0.1, 1,−0.1] is perturbed with
random Gaussian errors with standard deviation [0.2,0.4,0.2]
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FIGURE 1 | (A) Scatter plot of the effect of unresolved Z variables as a function of the resolved X variables, together with the regression functions constituting the

parameterization. (B) Control run of the parameterized Lorenz-96 model (red solid line) and the truncated Lorenz-96 model (blue dotted line) for variable x1.

TABLE 1 | The mean RMSE and RMSS against the localization cut-off parameter.

Cut-off half length <0.5 1 2 4 8 16 32

Mean RMSE 0.331 0.383 0.402 0.441 0.48 0.453 0.47

Mean RMSS 0.173 0.153 0.143 0.135 0.134 0.136 0.134

TABLE 2 | Settings of three experiments.

Abbreviation Exp-SEO Exp-PEf Exp-PEa

Description Only SE SE before 500th step SE before 500th step

SE+PE after 500th step SE+PE after 500th step

Parameter values Constant An ensemble update with fixed observation An ensemble update with adaptive observation

State inflation Adaptive

State localization With localization cut-off half length c = 0.5

Parameter inflation None 1.02

to generate a parameter ensemble with 30 members. Each
parameter ensemble member is accompanied with a state
ensemble member in the model integration. Zhang et al.
(2012) emphasizes that a pure SE procedure is crucially
important before PE can be activated to effectively update
the parameters. In the PE experiments, we first perform
pure SE for 25 TUs, then apply PE with 2 observations
after each SE step. For Exp-PEf, the observations of x2
and x6 are used to update the parameter ensemble. By
contrast, Exp- PEa uses the adaptive observations with

maximal TVR to the parameters. As mentioned, no
localization strategy is applied to parameters, because they
are assumed to be global. And inflation with constant
factor 1.02 is used to the parameter ensemble to prevent
the degeneracy of the parameter ensemble (Shen and Tang,
2022).

The details of the three experiments are listed in Table 2.
Figure 2 shows the errors of the ensemble mean of the data
assimilation results against the true values, as the function
of model variables and model steps. In Figures 2B,C, the PE
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procedure starts after 25 TUs. Since the parameter ensemble
with initially large variance is used in those PE experiments, the
errors and spreads of the state ensembles in Figures 2B,C are

FIGURE 2 | The errors of the assimilated ensemble mean against the true

values for Exp-SEO (A), Exp-PEf (B), and Exp-PEa (C).

FIGURE 3 | The inflation factors derived from a spatially and temporally

varying adaptive inflation method for experiments Exp-SEO (A), Exp-PEf (B),

and Exp-PEa (C).

much larger than Figure 2A for the first 25 TUs. The RMSE
and RMSS are computed and their mean values over the period
(0 < t < 25TUs) are also displayed in Figure 2 to quantify
this conclusion. The spatially and temporally varying adaptive
covariance inflation method (Anderson, 2009b) is adopted in
all experiments, such that the inflation factors vary with time
and spatial locations. Figure 3 shows the corresponding inflation
factors for each experiment. It can be seen from Figures 3B,C

that the inflation factors are very small for the PE experiments in
the initial SE stage, since the state ensemble spread grows rapidly
due to the variety of parameters.

When t > 25TUs, the errors and spreads decrease gradually in
PE experiments. This is because of the effect of PE, which reduces
the uncertainty in the parameter ensembles. The parameters
are adjusted according to two observations, thus the model
errors during integration can be much smaller than the SEO
experiment. The errors of the two PE experiments are much
smaller than that of the SEO experiment, as Figure 2 shown.
It is even more significant when t > 50TUs, a stage that
parameter estimation reaches a “steady state”. In addition,
since the model errors due to uncertain parameters are greatly
reduced, the adaptive inflation factors can also be very small in
Figures 3B,C.

In Figures 2B,C, the difference between Exp-PEf and Exp-PEa
can be seen in the interval between 25TUs and 50TUs. Using the
adaptive observation, the uncertainty of the parameter decreases
more rapidly, such that PE reaches the “steady state” earlier
than the case using fixed observations. However, although PEf is
less effective than PEa, they eventually estimate the parameters
to the same level, thus the accuracies of state variables are
very similar.

We further investigate the specific locations of the adaptive
observations in Figure 4. In the proposed method, when the
state estimation is finished with full observations, the TVR
defined by Equation (10) is computed for each observational site.
Then the one with the largest TVR is chosen as the location
of the first adaptive observation. The adaptive observation is
immediately assimilated to update the parameters θm, and the
corresponding standard deviations σθm are also update. The

FIGURE 4 | Locations of the adaptive observations for PE with the true states of the resolved X variables (A) and unresolved Z variables (B).
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FIGURE 5 | The parameter ensemble spreads for parameters b0 (A), b1 (B), b2 (C) with fixed or adaptive observations for PE.

FIGURE 6 | Scatter plot of the effects of unresolved variables as a function of the resolved variable using true values (A) and the parameterization function values

against the PE analysis with Exp-PEf (B) and Exp-PEa (C).

procedure is then repeated to identify and assimilate the second
adaptive observation. The observational sites from 25TUs are
plotted for 125 DA cycles (or 25 TUs). Figure 4 also shows
the true values of the X and Z variables, and it is very clear
that most adaptive observations are in areas with relatively
large X variables. According to the model equations, the Z
variable tends to propagate in the direction opposite to the
direction that the X variable propagates. Because of the coupling
in Equation (12), the Z variables are restricted in areas with
large X values and rapidly disappear as they leave these areas
(Lorenz, 1996). This implies that the Z variables are most
active in areas containing large X variables. The uncertainty of
the parameterization is apparently greatest in these areas, such
that the observed variables therein could reduce most of the
parameter uncertainties. These experiments clearly demonstrate
that the new target observation method can effectively identify
these observational sites.

TABLE 3 | The mean RMSE and RMSS using PE with different number of

adaptive observations.

Number of adaptive observations 2 3 4 8

Mean RMSE 0.19 0.185 0.171 0.169

Mean RMSS 0.154 0.134 0.109 0.104

Figure 5 shows the ensemble spread of each parameter during
the PE experiments. For both PEf and PEa, the spreads maintain
constant until the parameter estimation is activated in 25TUs.
The comparison between PEf and PEa indicates that adaptive
observation can more effectively reduce the parameter ensemble
spread, such that the uncertainty of each parameter with PEa is
much smaller than that with PEf. That partly explains why the
errors and spreads are smaller for the period 25TUs < t < 50TUs
in Figure 2C than that in Figure 2B.
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Similar to Figures 1B, 6A shows the effects of unresolved
variables as a function of the resolved variable. As Wilks (2005)
revealed, the effects of unresolved processes are inherently
uncertain, and they are effectively random from the perspective
of knowing only the large-scale variables. This implies that the
parameterization using a polynomial is not able to mimic the
effect of Z variables due to the chaotic nature of the Lorenz-96
model in Equation (12). Therefore, there are no “optimal”
parameters in the form of constant values for this model.
Figures 6B,C plot the parameterization functions defined by
Equation (14) as functions of estimated states X and estimated
parameters B with PEf and PEa, respectively.

The differences between Exp-PEf and Exp-PEa are shown
for different periods. In the initial stage of PE (25TUs < t <

50TUs), Exp-PEa reduces the parameter uncertaintymore rapidly
than Exp-PEf such that the values with large parameterization
errors are reduced. At t > 50TUs, Exp-PEa results in smaller
parameter ensemble spreads (indicated in Figure 5) such that
the corresponding parameterized values have a smaller variation
range. Furthermore, the parameterization errors for very small X
values are significantly reduced.

The comparison between Exp-PEf and Exp-PEa shows
that the adaptive observations derived from the new target
observation method can speed up the PE process and provide
more reliable parameters and more accurate analyses.

We further investigate the impact of the number of adaptive
observations on the parameter estimation results. The PE
experiments are performed with 2–4 adaptive observations,
respectively, and the mean RMSE and RMSS over the last 75
TUs are shown in Table 3. If we use all 8 observations in PE,
the results can not significantly outperform that with 4 adaptive
observations. It strongly indicates that not so many observations
are necessary to estimate the global parameter, not tomention the
possible overcorrection problem for large models.

4. CONCLUSIONS

In this article, a new method is developed to use different dataset
to perform state estimation and parameter estimation in the
ensemble-based data assimilation. This method aims to cope with
a major challenge of parameter estimation when it applies to real
models. It is well-acknowledged that the parameter estimation
for general circulation models is typically performed with joint
state and parameter estimation. The issue is that the parameters
usually take globally uniform values, and the assimilation of
an enormous number of observations (which is necessary for
state estimation) may cause the accumulation of sampling errors,
thus adjust the parameters incorrectly. This work uses a serial
DA methods to perform joint SE and PE, which permits the
use of different dataset in SE and PE stages. The idea of target
observation is adopted to update the model parameters with
some crucial observations. From the algorithm of EAKF, we have
defined the total variance reduction from one observation to all
the parameters, which can be used to measure the impact of one
potential observation to the parameter ensemble. By selecting the
observation with maximum TVR, the uncertainty of parameters
can be reduced most considerably.

The twin experiments with a two-scale Lorenz-96 model
shows the advantages of the newly developed method over PE
with fixed observations. On one hand, parameter estimation
can reduce the model errors due to the uncertainty in
parameterization, thus provides analyses with smaller errors. On
the other hand, adaptive observations are the most effective
observations that could be assimilated to reduce parameter
ensemble spread, which accelerates the PE procedure to
find better parameters. In addition, the locations of adaptive
observations are not only derived statistically, but also reflect
some of the model dynamics, as Figure 4 indicates.

In this work, the proposed PE method is applied with
a very simple toy model with a basic parameterization
scheme. The form of parameterization scheme may
have impact on PE results. However, the advantage of
using adaptive observations over using fixed observation
can also be guaranteed even though more parameters
are involved.

Moreover, this work is motivated by our recent study, i.e.,
Shen and Tang (2022), in which the parameter estimation is
performed with the Community Earth System Model (CESM).
Excessive parameter correction due to very small parameter
space is an urgent problem. In that work, the ASA method by
Liu et al. (2014a) is used. However, we think the proposed PE
method which picks a few adaptive observations for PE, could
be another possible solution. The potential advantage of the
proposed method over ASA is that it does not change the global-
uniform nature of the parameters, and it also saves a lot of
computational efforts. In our next work, we will perform this PE
strategy in that model.
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