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Feedstock properties impact the economic feasibility and sustainability of biorefinery

systems. Scientists have developed pyrolysis kinetics, process, and assessment models

that estimate the costs and greenhouse gas (GHG) emissions of various biorefineries.

Previous studies demonstrate that feedstock properties have a significant influence

on product costs and lifecycle emissions. However, feedstock variability remains a

challenge due to a large number of possible feedstock property combinations and

limited public availability of feedstock composition data. Here, we demonstrate the

use of machine learning (ML) models to generate large feedstock sample data from

a smaller sample set for sustainability assessment of biorefinery systems. This study

predicts the impact of feedstock properties on the profitability and sustainability of a

lignocellulosic biomass autothermal pyrolysis (ATP) biorefinery producing sugar, phenolic

oil, and biochar. Generative Adversarial Networks and Kernel Density Estimation machine

learning models are used to generate 3,000 feedstock samples of diverse biochemical

compositions. Techno-economic and lifecycle assessments estimated that the ATP

minimum sugar selling price (MSSP) ranges between $66/metric ton (MT) and $280/MT,

and the greenhouse gas (GHG) range from a net negative GHG emission(s) of −0.56 to

−0.74 kg CO2e/kg lignocellulosic biomass processed. These results show the potential

of ML to enhance sustainability analyses by replacing Monte Carlo-type approaches to

generate large feedstock composition datasets that are representative of empirical data.

Keywords: machine learning, negative emission technology, autothermal pyrolysis, techno-economic analysis

(TEA), lifecycle analysis (LCA)

INTRODUCTION

The emission of CO2 into the atmosphere from the burning of fossil fuels has contributed
to climate change. Atmospheric CO2 concentration reached 419 parts per million in
2021 (Rees and Columbia, 2021). Carbon dioxide removal from the atmosphere has
been proposed to keep global temperature rise within 1.5◦C (IPCC, 2021). Production of
bioenergy with carbon capture and storage (BECCS) is one approach to carbon removal.
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This can be accomplished by growing lignocellulosic crops and
converting them to useful bioproducts while capturing the CO2

emitted (Hickman, 2016; Rees and Columbia, 2021). Production
and land sequestration of biochar via pyrolysis of biomass is
another promising approach to carbon removal (Laird et al.,
2009). The sustainability of biomass pyrolysis systems depends
on feedstock availability and economic and life cycle performance
specific to enterprise location and technology employed (Li et al.,
2019).

According to the Billion-Ton Study, lignocellulosic resources,
comprising mainly agricultural and forest residues, are presently
about 365 million dry tons and are expected to rise to around 826
million dry tons by 2040 (Langholtz et al., 2016). Lignocellulosic
biomass like corn stover (Ganguly et al., 2020), red oak (Elliott
et al., 2015), soy hulls (Oliveira et al., 2015), switchgrass
(Mullen and Boateng, 2008), etc. have been widely studied
for thermochemical processing. Techno-economic assessment
(TEA) of biomass-fed fast pyrolysis systems has demonstrated
their economic and environmental viability. Wright et al. (2010)
reported that naphtha and diesel range fuel could be produced
in a 2,000 metric ton (MT)/day corn stover fed biorefinery
at a minimum fuel selling price (MFSP) of $2.11/gallons. Hu
et al. (2016) investigated the economic feasibility of a red
oak-fed biorefinery producing biofuels and biochemicals. The
study estimated a minimum selling price of $3.09/gallon and
$433.7/MT for biofuels and biochemicals, respectively. It was
observed that the co-production of biochemicals and biofuels
was more profitable than the production of biofuels alone. In
a study by Meyer et al. (2020) on the economics and life cycle
performance of plants pyrolyzing woody and herbaceous biomass
(six pure feedstocks—tulip, pine, corn stover, switchgrass, etc.),
calculated MFSP of between $3.7/gge to $5.1/gge. They also
observed that woody biomass produced more biofuel than
herbaceous feedstock. LCA results of this study observed GHG
reductions of around 72% compared to petroleum-based systems
with the GHG emissions depending mostly on the feedstock type
and other process parameters.

Scientists have investigated the impacts of feedstock properties
on the bio-oil yield (Li et al., 2016), which affects the economic
feasibility Ou et al. (2018). Li et al. (2017) reported that biomass
ash content varying between 0.3 and 7.7 wt.% decreased the
biofuel yield from 87.3 to 40.7 gallons/ton and increased the
corresponding MFSP from $2.3/gallons to $4.8/gallons. Ou et al.
(2018) developed a fast pyrolysis process model sensitive to
feedstock characteristics obtained from experimentations. It was
found that increasing the ash content from 1 to 7 % increased
the MFSP from $0.97/liter to $1.06/liter due to lower biofuel
yields. Although these findings show the importance of feedstock
properties on biofuel production, few studies have explored the
economics and environmental performance of pyrolysis applied
to carbon removal.

The versatility of pyrolysis systems allows for the production
of various bioproducts including bioasphalt (Peralta et al., 2012),
sugars (Rover et al., 2014), and levoglucosan (Rover et al., 2019).
Levoglucosan-rich pyrolytic sugars have gained attention due to
their wide range of applications, like the fermentation of pyrolytic
sugars to produce ethanol (Ganguly et al., 2020), biodegradable

plastics, and pharmaceuticals (Junior et al., 2020). Rover et al.
(2019) observed levoglucosan crystal production, along with
phenolic compounds and biochar via autothermal pyrolysis
(ATP) of red oak at a minimum selling price of $1,333/ton, which
is much lesser than the market price. Autothermal pyrolysis
has advantages of process simplification and intensification
compared to conventional fast pyrolysis (Polin et al., 2019). LCA
of an integrated fast pyrolysis-anaerobic digestion-fermentation
plant producing ethanol, phenolic compounds, and power
observed greenhouse gas emission of −16.6 g CO2e/MJ of
ethanol (Ganguly et al., 2020). Other studies evaluated the
simultaneous production of multiple products in integrated
pyrolysis biorefineries (Dang et al., 2016; Hu et al., 2016).

Researchers have mostly employed regression and
interpolation-based models on laboratory experiments to
further predict pyrolysis output (Gronli and Melaaen, 2000;
Neves et al., 2011; Li et al., 2017). Hansen and Mirkouei (2018)
noted that typical mathematical models are not able to capture
the complexities of biomass pyrolysis and bio-oil upgrading and
suggested the adoption of machine intelligence techniques to
overcome these shortcomings. They compared three types of
models: a cyber physical system, an artificial neural network,
and a “k-Nearest Neighbor” model of pyrolysis-based systems.
They found the “k-Nearest Neighbor” model to be the most
promising. The “k-Nearest Neighbor” successfully classified 214
biomass datasets obtained from various published resources
with an accuracy of around 71% (Olatunji et al., 2020). To
the best of our knowledge, machine learning has not been
previously used to generate biochemical properties data sets
for biomass feedstocks. This study introduces a novel approach
to generating the biochemical composition of lignocellulosic
biomass samples and demonstrates its application to economic
and environmental technology assessment with the case
study of a carbon removal pyrolysis system. The objective
of this paper is to elucidate relationships between feedstock
properties and the economic and environmental performance
of an ATP biorefinery that produces sugars, phenolic oil,
and biochar.

METHODOLOGY

This study describes the application of Machine Learning (ML)
models to process modeling, TEA, and LCA assessment of
biomass ATP to produce sugars, phenolic oil, and biochar.
Two ML models are compared for the generation of datasets
containing 3,000 lignocellulosic feedstock samples with unique
cellulose, hemicellulose, and lignin composition. An Aspen
PlusTM chemical process model predicts the mass and energy
balance of a 250 tons per day ATP system. Process simulations
are conducted using Aspen Simulation Workbook to gather
simulation results based on the 3,000 feedstock samples. A
range of minimum sugar selling prices (MSSP), lifecycle GHG
emissions, and carbon removal rates are estimated from the
simulation results. The results are interpreted using regression
and sensitivity analyses to understand the influence of various
parameters on theMSSP and environmental footprint. TheMSSP
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FIGURE 1 | Flow diagram of 250 ton/day lignocellulosic biomass-driven ATP system producing sugar, phenolic oil, and biochar.

values are compared to historical prices to evaluate the economic
feasibility of the ATP to sugars platform.

Process Modeling
Figure 1 shows the flow diagram of the 250 ton/day
lignocellulosic biomass-fed ATP system producing sugar,
phenolic oil, and biochar. Table 1 shows the name of each
block numbered in the flow diagram (Figure 1). Biomass,
firstly undergoes chopping, drying and grinding to increase
biomass to bio-oil conversion efficiency. The biomass is also
pretreated by employing FeSO4 because of its ability to facilitate
the depolymerization of lignin, thus helping in increasing
sugar production (Rollag et al., 2020). FeSO4 leaves with the
biochar, which is separated from the pyrolytic vapor stream
via a gas cyclone, after thermochemical decomposition of the
biomass in the ATP reactor. After separation of solid biochar,
the pyrolytic vapors are condensed to recover so-called heavy
ends, consisting of sugars and phenolic compounds, while the
remaining stream, referred to as “tail gas” and consisting of light
oxygenated compounds, moisture, and non-condensable gases
(NCG), are burned for the purpose of providing process heat for
biomass drying. Liquid-liquid extraction is used to separate the
heavy ends into a sugar-rich aqueous stream of water-soluble
compounds known as the sugar solution and a water-insoluble
stream of mostly phenolic compounds referred to as phenolic
oil. A simulated moving bed (SMB) is used to remove phenolic
monomers that contaminate the sugar solution. The biochar
represents a carbon sequestration product to be applied to

TABLE 1 | Autothermal pyrolysis flow diagram sections, block numbers, and

names.

Section Block number Block name

Pretreatment 1 Chopper

2 Dryer

3 Grinder

ATP 4 Autothermal pyrolysis reactor

Recovery 5 Cyclone separator

6 Heavy end recovery

Sugar recovery 7 Liquid-liquid extraction

8 Simulated moving bed unit

9 Separator

10 Furnace

croplands where it also serves as a soil amendement (Laird et al.,
2009). The phenolic oil is sold for production of bioasphalt
(Peralta et al., 2012). Aspen PlusTM was employed to model the
system’s major unit operations, particularly the ATP reactor and
the sugar recovery block.

The product yields from ATP were predicted using a Kriging
ML model, which is particularly useful in predicting temporally
and spatially co-related data. Kriging is a method of statistical
interpolation modeled by a Gaussian process based on prior co-
variances (Kriging Model, 2017). This interpolation gives more
weight to nearby sample locations with the aim of reducing the
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TABLE 2 | Kriging machine learning model biochemical composition input and

pyrolysis product output (Caudle et al., 2020).

Biochemical

composition

Pyrolysis products and (intermediates)

Cellulose,

Hemicellulose,

Lignin C,

Lignin H,

Lignin O

Char, FE2MACR, FFA, HMWL, GLYOX, C2H4,

CH3CHO, ACAC, HAA, C2H5OH, ACROL,

ALD3, C3H6O2, FURF, XYLAN, LVG, PHENOL,

HMFU, ANISOLE, COUMARYL, CH2O,

HCOOH, CH4, CH3OH, CO, CO2, H2, H2O

(CELLA, HCEA1, HCEA2, LIG, LIGCC, LIGOH,

ITANN)

expected error for a given point (Esri, 2021). Olafasakin et al.
(2021) developed a Kriging-based reduced-order model built on
Ranzi et al.’s kinetic model (Ranzi et al., 2008, 2017) to predict
pyrolysis yields. For this study, we considered the more recent
Caudle et al. (2020) kinetic model as our basis. The model by
Caudle et al. (2020), which is also based on Ranzi’s kinetic model,
takes biomass biochemical composition (cellulose, hemicellulose,
and lignin) and predicts the yields of 35 pyrolysis products,
intermediate compounds, and unconverted biomass, including
levoglucosan, phenols, biochar, and others, as shown in Table 2.

For this study, we gathered feedstock dataset from the
publicly available phyllis2 database (ECN, 2012) and samples
provided by Idaho National Laboratory. This dataset consists of
400 samples containing the biochemical composition (cellulose,
hemicellulose, and lignin) as measured in laboratory settings.
We followed the commonly used 80–20 split for training and
testing the dataset, respectively. The training data was used to
train the Kriging model with the target of predicting the pyrolysis
yields. The Kriging model product predictions were compared to
Caudle et al. (2020) kinetic model results for validation. A unique
approach employed in this study is the combined prediction
of all 35 possible outputs. Usually, for predicting biochemical
product outputs, to the best of our knowledge, the yields of each
product are predicted one at a time from the input cellulose,
hemicellulose, and lignin content (Debiagi et al., 2018; Dussan
et al., 2019; Gorensek et al., 2019). Zhong et al. (2019) used a
Kriging-based model in a single-stage hydrocracking process of
an oil refinery. They used the primary input parameters of four
kinds of raw materials to predict the mass yields of the output
products like kerosene, diesel, light naphtha, heavy naphtha,
light end, and tail oil. For our study, we have predicted all 35
output products from the kinetic model at once to capture the
correlations better, if any, between the output yield products. A
comparison of the Kriging model to Caudle et al. (2020) kinetic
model results achieved an accuracy of 99%. The predicted yield
data were imported into ASW, coupled with the pyrolysis yield
reactor unit operation block within the Aspen PlusTM model.
ASW obtained a set of sugar, biochar, and phenolic oil output
flow rates for each feedstock sample. These output flow rates were
employed for economic and environmental analysis. For this
analysis, we assumed that ash content of biomass is not a major
factor (specifically due to the use of FeSO4 pretreatment).We also
assumed that the reactor operates at a uniform temperature and

TABLE 3 | Financial assumptions for a 250 tons/day ATP biorefinery facility

producing sugar, phenolic oil, and biochar.

Key parameters Financial assumptions

Equity 40%

Project lifetime 10 years

Working capital 15% of fixed capital investment

Construction period 1 year

IRR 10%

Interest rate of financing 8% annually

Depreciation period 7 years, 200 DDB

Revenue and cost during starting year Revenue: 50%, Fixed:100%, Variable: 75%

Salvage 0

all biomass particles have relatively similar mechanical properties
which do not affect the final output yield.

Techno-Economic Analysis (TEA)
A techno-economic analysis is performed to estimate the
commercial viability of the pyrolytic sugars. TEA was used to
quantify the minimum sugar selling price (MSSP) of a 250
tons/day lignocellulosic biomass ATP system. The economic
performance of this study was analyzed based on a multiyear
Discounted Cash Flow Rate of Return (DCFROR) method
developed by the National Renewable Energy Laboratory
(NREL). The financial assumptions of this study are from
Rover et al. (2019). Table 3 points out all the essential financial
assumptions used to evaluate the MSSP of the plant, and all
monetary assumptions are on a 2015$ basis. The installation
factors for the project were taken from Peters and Peters (1959).
The internal rate of return (IRR) and project lifetime were 10%
and 10 years, respectively. Capital costs include equipment costs
and installation costs, and operating costs include raw material,
labor, overhead, maintenance costs, and others.

The price of lignocellulosic biomass was assumed an average
price of $41/ton Rover et al. (2019) based on the projected costs
to of biomass collection at a 250 ton/day scale. The prices of
phenolic oil and biochar are assumed as $300/ton (Wang et al.,
2020), and $80/ton (Dai et al., 2020), respectively. The market
price for FeSO4 ranges between $520-$650/ton (obtained from
Crown Technology, Inc. August 29th, 2019), and we assumed
a price of $550/ton. It was assumed that 99% of the methanol
was recycled for reutilization in the SMB unit (Li et al., 2018),
incurring a cost of $500/ton (Rover et al., 2019). The FeSO4

pretreatment input rate was considered 4.5 wt.% (kg/kg of
lignocellulosic biomass). Experiments show that effective FeSO4

input rates range between 1 and 9 wt.% depending on the
feedstock properties (Rollag et al., 2020). The process model
supplied the performance and operating parameters employed
for sizing and equipment selection purposes. Table 4 tabulates
the material and energy expenditure for the system and the
revenue earned from selling the byproducts.
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TABLE 4 | Material/Energy costs and revenues earned for a 250 ton/day ATP

biorefinery facility producing sugar, phenolic oil, and biochar.

Materials/energy Price ($/ton or $/kWh)

Lignocellulosic biomass 41

Methanol 500

Solids Handling 8

Ferrous sulfate 550

Process water 0.2

Electricity ($/kWh) 0.067

Phenolic oil (revenue) 300

Biochar (revenue) 80

TABLE 5 | Greenhouse gas emission factors of key material and energy flows of

the autothermal pyrolysis to sugar, phenolic oil, and biochar biorefinery.

Input/output Emission factor (kg

CO2/kg or KWh)

Reference

Lignocellulosic biomass 0.027 GREET

Electricity 0.48 GREET

Phenolic Oil −2.66 CO2 removal Analysis*

Biochar −1.63 CO2 removal Analysis*

*Calculation provided in Supplementary Material.

Life Cycle Analysis (LCA)
Life cycle analysis (LCA) is a common and well-established
technique for estimating the environmental impacts throughout
a product’s life cycle. This study employs a cradle-to-grave
analysis based on the Greenhouse Gases, Regulated Emissions,
and Energy Use in Transport (GREET) model developed by
Argonne National Laboratory to evaluate the GHG emissions for
lignocellulosic biomass ATP to sugar, phenolic oil, and biochar.

All the 3,000 samples of lignocellulosic biomass were assumed
to be available within a 20-mile radius from the ATP-sugar
plant. The emission factor for all the lignocellulosic biomass
considers GHG emissions from feedstock production, harvesting,
delivery to the plant gate, and includes direct and indirect land-
use emissions. Electricity emission factors are based on the US
National Grid mixture. Biochar was assumed to be used for soil
amendment purposes with a carbon retention capability of 70%
for 100 years (Söderqvist, 2019). We accounted for the 4.5 wt.%
of FeSO4 and applied the FeSO4 free basis of biochar yield to the
biochar emission factor. Phenolic oil was assumed as feedstock
for bioasphalt production to be used in the highway industry.
For the phenolic oil upgraded to bioasphalt, we assumed a carbon
retention capability of 100% after 100 years (Zhou et al., 2020).

The functional unit for this study was 1 kg of lignocellulosic
biomass input. Table 5 depicts the parameters responsible for
material/energy input, i.e., lignocellulosic biomass and electricity,
and the key outputs, i.e., biochar and phenolic oil.

Machine Learning (ML) Analysis
We developed a machine learning (ML) analysis to quantify the
impact of feedstock variability on the MSSP and GHG emissions.

Previous studies employed Monte Carlo analysis to show that
pyrolysis profitability and sustainability are highly sensitive to the
feedstock composition (Li et al., 2017; Meyer et al., 2020). Our
ML approach improves the Monte Carlo approach by generating
feedstock composition samples that closely reflect experimental
datasets. The biochemical-based feedstock dataset used to predict
the pyrolysis yield data were generated using ML Generative
Adversarial Network (GAN) and Kernel Density Estimation
(KDE) models. These ML models have been proven to effectively
replicate a wide range of datasets for a variety of applications
(Aggarwal et al., 2021) but, to our knowledge, have not been
applied to feedstock sample generation.

GAN is a deep learning-based generative modeling technique.
Generative modeling is a procedure where a model learns from
patterns in input data to produce data samples that are similar
to the original input data. Unlike most generative models,
GANs consist of two separate models; a generative model G
that captures the input data distribution and a discriminative
model D that aims to predict whether the data came from the
initial training data or the G model. This approach corresponds
to a minimax two-player game. The aim of a GAN model is
for G to learn the training data distribution to maximize the
probability of D confusing the generated sample for an original
data input. GANs are usually modeled as supervised learning
problems. This adversarial modeling framework consists of two
models, both of which are usually multilayer perceptrons—
layers of neural networks. A neural network is a collection of
functions that respond to a given output based on a set of
rules (Cross et al., 1995). Mathematically, the generator G is
a differentiable function G

(

z; θg
)

represented by a multilayer
perceptron with parameters θg . The discriminator D is also a
multilayer perceptron D (x; θd) that produces a single scalar. D
is trained with the intention of improving its ability to correctly
classify samples from the training data and the data from G. G,
on the other hand, is trained to minimize log(1 − D(G(z))). The
tasks of D and G can be expressed using the following equation:

minGmaxDV (D,G) = Ex∼pdata (x)
[

log D (x)
]

+ Ez∼pz (z)
[

log (1− D (G (z)))
]

(1)

During the early learning phase, D can make predictions with
high confidence as the initially generated samples are quite
different from the training data. With gradual training, G learns
to generate samples that are more in line with the training
data. After a sufficient learning period, G and D will reach
a point where their performance cannot be improved. This
usually happens when the discriminator is unable to differentiate
between the two distributions (Goodfellow et al., 2020). GAN
and its variants have been used for image texture synthesis to
improve the resolution of an image, text to image synthesis, image
generation or translation, video generation, etc. (Ghosh et al.,
2020). To the best of our knowledge, GANs have not been used
to generate a biomass feedstock dataset.

Kernel Density Estimation (KDE) is an alternative to GAN
that employs a statistical approach for estimating the probability
density function of a random variate. KDE is a data smoothing
problem aiming to create a smooth curve over the given finite
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FIGURE 2 | Feedstock lignin/cellulose vs. hemicellulose/cellulose ratios [adapted from INL and Phyllis 2 (ECN, 2012). database].

data points, unlike the more discrete data representations of
histograms (Weglarczyk, 2018). For a given set of data points,
KDE builds up an estimate of the underlying data distribution
of the dataset. Mathematically, the kernel density estimator can
be given by:

f (x) =
1

n

n
∑

i=1

Kh (x− xi) =
1

nh

n
∑

i=1

K(
x− xi

h
) (2)

where K is the kernel function used for estimation, xi represents
the samples drawn from a distribution with unknown density f .
h is a parameter called bandwidth that controls the smoothness
of the resulting curve (Scott, 2018). For estimating the kernel
density, the data points are divided into bins of specified
intervals. The number of data points inside a particular bin
represents the probability of an unseen data lying in that interval.
The higher the number of data points in an interval, the higher
the probability of a data point lying in that interval. Thus, KDE
is useful for generating synthetic data with a distribution similar
to a given dataset. KDE finds uses in a variety of fields like
signal processing-based applications (Baranowski et al., 2012),
population density estimation (Müller and Petersen, 2016), and
climate prediction (Weglarczyk, 2018). The KDE was trained and
tested in a similar fashion to the GAN, and the outputs of both
models were visually compared (see Supplementary Material).

The GAN and KDE models were trained using data from
the Phyllis 2 and Idaho National Laboratory (INL) databases.
Phyllis 2, developed by the Energy Research Center of Netherland
(ECN), is a database of biomass compositions based on plant
physiology mixture and other practical considerations [(ECN,
2012)]. We collected data corresponding to lignocellulosic
biomass feedstock from this dataset and grouped them into
different kinds of biomass samples based on their cellulose,
hemicellulose, and lignin content. These samples included

biomass composition data of untreated wood, treated wood,
straw (stalk/cob/ear), grass/plant, organic residue/product, and
husk/shell/pit. In addition, we also received 14 commercial
feedstock samples type of pine, juniper, and poplar from Idaho
National Laboratory (INL). By combining these two datasets,
we had a total of 518 real sample data of lignocellulosic
biomass consisting of their cellulose, hemicellulose, and lignin
content. The models were constrained to yield cellulose and
hemicellulose contents ranging between 0 and 1. The lignin
content was calculated by difference to generate a total
biochemical composition of 1.

We have considered both GAN and KDE for generating
biomass feedstock composition for our study. Our
computational experiments showed that the synthetic
data produced by GAN better resembles the real data
samples. We generated 3,000 GAN synthetic samples for
the final dataset.

RESULTS AND DISCUSSION

The GAN ML model generated 3,000 samples of feedstock
biochemical data. Figures 2, 3 show the similarity of the
GAN ML samples to the original input data set through
Van Krevelen-type diagrams. These diagrams describe the
relationship between each sample’s hemicellulose/cellulose
(HC) and lignin/cellulose (LC) mass ratios. These diagrams
facilitate visual inspection of the data to support the
statistical metrics.

Figure 2 includes the 400 input data’s biomass type
classification: untreated wood, grass/plant, straw, husk/shell/pit,
organic residue, treated wood, and INL samples. As shown, there
are a few clusters, including most grass plants having LC ratios of
<0.75 and most untreated wood having HC ratios of <1. There
are several outliers in the top right corner with high HC and LC
ratios due to the samples’ low cellulose content.
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FIGURE 3 | Feedstock lignin/cellulose to hemicellulose/cellulose ratios of the Generative Adversarial Network (GAN) sample data.

Figure 3 shows a Van Krevelen-type diagram of the 3,000
GAN-generated data samples, compared to Figure 2. The HC
and LC values of the GAN data are closer to the input data than
the KDE data. GAN generated fewer outliers and more samples
around the clusters in the original data. Henceforth, the result
section focuses on the GAN results. KDE results are included in
Supplementary Material.

We predicted biomass pyrolysis yields for the 3,000ML
samples using the Kriging-MLmodel of the ATP system. Figure 4
shows the ATP product yield relationships to cellulose content.
We observe that sugar, phenolic oil, and biochar yields have an
approximately linear relationship with cellulose content. Sugar
and phenolic oil yields increased with cellulose content, but
biochar yield decreased. This finding agrees with experimental
observations where cellulose pyrolysis produces more pyrolysis
oil than lignin, which favors biochar production. Cellulose
decomposes at a temperature between 315 and 400◦C, which is
lower than pyrolytic temperature (typically 500◦C), and quickly
converts to pyrolytic vapors (Yang et al., 2007; Lee et al.,
2013).

As shown in Figure 5, sugar and phenolic oil yields exhibit an
exponential decay with increasing hemicellulose/cellulose (top)
and lignin/cellulose ratios (bottom) while biochar yields increase
in a logarithmic manner. The machine learning yield-based
trends were similar to those reported in other studies (Zhou et al.,
2018; Tomczyk et al., 2020). Unlike the hemicellulose/cellulose
ratio, the biochar yield had an increasing pattern at a high
lignin/cellulose ratio. Higher lignin content in a feedstock
induces char production (Demirbas, 2004; Shariff et al., 2016;
Tomczyk et al., 2020). These results do not account for ash
content, reaction temperature changes, differences in particle
mechanical properties, and others that might affect ATP yield.

Figure 6 shows the MSSP obtained from evaluating the 3,000
plus sample data gathered from the GAN feedstock database. The

FIGURE 4 | Sugar, biochar, and phenolic oil autothermal pyrolysis yield vs.

cellulose content.

ATP system incurs a total fixed capital investment of $16MM.
We compared the generated values of MSSP with the historical
price of sugar obtained from the U.S. Department of Agriculture.
The blue dashed line is the current price of sugar which is
around $369/MT (Hunt, 2021), and the red dashed-dot line
represents the average sugar price over the last 5 years. The result
showed that the MSSP generated using the GAN model was
expected to be lower than the historical sugar price over the last
5 years.

Figure 7 shows the probability density of GHG emissions
obtained from the GAN values expressed in kg CO2e/kg of
lignocellulosic biomass. The GHG emissions varied between
−0.56 and −0.74 kg CO2e/kg lignocellulosic biomass. It
was observed that all the values obtained show negative
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FIGURE 5 | Sugar, phenolic oil, and biochar autothermal pyrolysis product

yield trends vs. hemicellulose/cellulose ratios (Top) and lignin/cellulose ratios

(Bottom).

FIGURE 6 | Boxplot comparison of the historical sugar prices (Left) and

Generative Adversarial Network (GAN) Minimum Sugar Selling Price (MSSP)

estimates (Right).

FIGURE 7 | Probability density of greenhouse gas emissions from a

lignocellulosic autothermal pyrolysis system producing sugar, phenolic oil, and

biochar. Negative emissions represent net carbon removal of atmospheric

CO2.

emissions. Based on the global market demand for sugars
(Statistica, n.d.), phenolic oil (asphalt) (Freedonia Group,
World Asphalt (Bitumen), 2020), and biochar (Grand
View Rearch, 2019), ATP systems could achieve a potential
removal of 0.0006 to 0.8 billion-tons CO2 per year if these
markets are completely saturated by ATP products. This
supports the classification of lignocellulosic biomass ATP plant
producing sugar, phenolic oil, and biochar as a carbon-negative
system.

There are several techno-economic and lifecycle assessment
assumptions that could vary significantly depending on the
location of the facility. For example, electricity costs and
emissions vary based on the predominant resource available.
Switching from the US grid mixture to wind power generation
could lower costs from $185 to $183/MT of sugar and
emissions from −0.65 to −0.67 kg CO2e/kg corn stover. A
detailed analysis of regional factors is beyond the scope of
this study.

CONCLUSIONS

This study investigated the impact of feedstock variability
on a 250 ton/day lignocellulosic biomass-driven autothermal
pyrolysis biorefinery producing sugar, phenolic oil, and biochar.
This study utilized GAN and KDE models for generating
biochemical feedstock data samples based on real samples
obtained from Phyllis 2 and INL. We compared the GAN
and KDE biochemical composition to the real samples. GAN-
generated samples showed a closer agreement with the input
data. Pyrolysis yield predictions based on the GAN samples
showed a linear relationship between the biomass cellulose
content and the sugar and phenolic oil yields. Biochar yield
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showed a logarithmic relationship with an increase in the
lignin content of biomass feedstock. The MSSP and GHG
emissions from the GAN generated model varied between
$66/MT and $280/MT and −0.56 kg CO2e/kg and −0.74 kg
CO2e/kg lignocellulosic biomass used for the ATP system,
respectively. These findings suggest that lignocellulosic biomass
autothermal pyrolysis produces pyrolytic sugars, phenolic
oil, and biochar is an economic and sustainable carbon-
negative system.

However, this study does not explicitly consider the
underlying uncertainty in the experimental data. We also
assume that ash content does not play a major factor
in the output yields, and the pyrolytic reactor operates
at a uniform temperature. Additionally, we also assume
that all particles have relatively similar characteristics and
do not consider the impact of particle variability on the
output yield.

Future studies will investigate the impact of facility location
on costs and emissions due to regional factors like local
feedstock, fuel, and electricity resources. We are also interested
in comparing the ATP carbon-negative platform to alternative
carbon capture and sequestration systems. The machine
learning techniques from this study could be applied to other
systems to evaluate their potential for improving sustainability
assessments. ML could also be used to directly predict the
sugar, phenolic oil, and biochar output from the 35 pyrolysis
intermediate products instead of using Aspen Plus. Machine
learning models could also be applied to look into how
other experimental factors like reactor temperature changes
mechanical particle properties affect the product yield and, in
turn affect the economical and environmental aspects of the
considered system.
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