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Models in the North American Multi-Model Ensemble (NMME) predict sea surface

temperature (SST) trends in the central and eastern equatorial Pacific Ocean which

are more positive than those observed over the period 1982–2020. These trend errors

are accompanied by linear trends in the squared error of SST forecasts whose sign is

determined by the mean model bias (cold equatorial bias is linked to negative trends

in squared error and vice versa). The reason for this behavior is that the overly positive

trend reduces the bias of models that are too cold and increases the bias of models

that are too warm. The excessive positive SST trends in the models are also linked

with overly positive trends in tropical precipitation anomalies. Larger (smaller) SST trend

errors are associated with lower (higher) skill in predicting precipitation anomalies over

the central Pacific Ocean. Errors in the linear SST trend do not explain a large percentage

of variability in precipitation anomaly errors, but do account for large errors in amplitude.

The predictions toward a too warm and wet tropical Pacific, especially since 2000, are

strongly correlated with an increase in El Niño false alarms. These results may be relevant

for interpreting the behavior of uninitialized CMIP5/6 models, which project SST trends

that resemble the NMME trend errors.

Keywords: sea surface temperature, trends, tropical Pacific, prediction errors, models

1. INTRODUCTION

Seasonal climate predictions of the tropical Pacific Ocean are made against the backdrop of a
warming climate, and it is unclear to what extent they are impacted by trends. Assessments of
prediction skill across the tropical Pacific Ocean tend to highlight the monthly-to-seasonal averages
of anomalies of sea surface temperature (SST) and the El Niño-Southern Oscillation (ENSO) Niño
regions in particular (e.g., Becker et al., 2014; Barnston et al., 2019; Johnson et al., 2019b; Tippett
et al., 2019). Part of the reason for not assessing trends and their impacts in seasonal forecasts is the
relatively short length of the period over which model reforecasts, or hindcasts, are available, which
in turn reflects the availability and quality of historical datasets that are the basis for initialization
and verification. Higher resolution datasets, which can be used to initialize climate models, are
primarily satellite-based and extend back to the early 1980s. As a result many model hindcasts
only extend back so far, particularly those that are used for real-time prediction, like the North
American Multi-Model Ensemble (NMME; Kirtman et al., 2014). This past year, the NMME
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celebrated its tenth year in forecast operations, making monthly-
to-seasonal predictions of SST, surface temperature, and surface
precipitation each month for a forecast horizon of 9–12 months
(Becker et al., 2022). As a result of this longevity in real-time,
another 10 years was added to the record of NMME hindcasts,
making an assessment of long-term linear trends increasingly
viable and relevant. Here, we address the question: Do initialized
climate predictions capture the observed linear trend in the
tropical Pacific over the last ∼40 years (1982–2020)? Further,
to what extent do these trends influence the prediction skill of
monthly-to-seasonal outlooks for ENSO and the tropical Pacific?

Linear trends of predicted SSTs over the span 1982–2014 were
previously explored in Shin and Huang (2019). From a set of five
NMMEmodels, they showed that linear trends were too strongly
positive in predictions, and this generally worsened with forecast
lead time. As a result of errors that were biased positive in the
Niño-3.4 index, they speculated that linear trends may have led
to El Niño false alarms in 2012 and 2014, two El Niño events that
were predicted by the models but then failed to materialize. The
missed 2014/15 El Niño forecast, as well as the borderline El Niño
in 2018 were also cases where the expected atmospheric response
in tropical rainfall and winds ended up being surprisingly anemic
in observations, leading to questions of why the atmosphere
was failing to couple with the ocean (McPhaden, 2015; Johnson
et al., 2019a; Santoso et al., 2019). Due to interest in these
recent high profile cases, we revisit and update the linear trend
estimates provided in Shin and Huang (2019), include newer
NMME models, extend the analysis to precipitation, and apply
skill metrics used in forecast validation studies.

Often long-term SST trends are examined within the context
of future emission scenarios in the CMIP5/6 experiments.
The CMIP5/6 ensemble means project positive trends in SST
and precipitation across much of the equatorial Pacific, with
maximum strength in the central and eastern basin (Yeh
et al., 2012; Fredriksen et al., 2020). While CMIP data are not
investigated as part of this study, the CMIP5/6 SST trend patterns
are broadly similar to the trends found in Shin andHuang (2019).
Further, it’s noteworthy that the historical CMIP5/6 SST trends
can vary from the observations. For instance, Karnauskas et al.
(2009) demonstrated that the SST gradient across the tropical
Pacific has strengthened over the period from 1880 to 2005, so
that the western Pacific is warming at a greater rate than the
eastern Pacific—opposite of the trends simulated in CMIP5/6.
The reduced warming in the eastern Pacific was also supported
in Seager et al. (2019) who showed that during 1958–2017
observed SST trends in Niño-3.4 were much more muted than
the positive trends within CMIP5. The observed strengthening
of the SST gradient is also supported by studies documenting
an acceleration of the overlying Walker circulation over recent
decades (L’Heureux et al., 2013; Sohn et al., 2013; Kociuba and
Power, 2015; Chung et al., 2019).

The sign of trends still remains a matter of debate because
the observational data going back further in time is of reduced
quality (Deser et al., 2010) and is not entirely consistent among
different datasets (Solomon and Newman, 2012; Coats and
Karnauskas, 2017). Therefore, mismatches between models and
observations could reflect sparse observational inputs that exist

across the tropical Pacific prior to the last half of the twentieth
century (Power et al., 2021). Also, the divergence between the
observational trends and CMIP may also reflect differences
due to internal variability (Bordbar et al., 2019; Chung et al.,
2019). Others have noted that recent decades could reflect a
negative state of the Interdecadal Pacific Oscillation (Watanabe
et al., 2021; Wu et al., 2021) or warming of the Atlantic Ocean
(McGregor et al., 2018), which would be associated with an
increased occurrence of La Niña and negative trends in SSTs and
rainfall across the tropical Pacific. Further, while the majority of
models and the mean of CMIP5/6 project an El Niño-like trend,
not all participating models do (e.g., Kohyama and Hartmann,
2017).

In contrast to the initialized predictions from the NMME,
CMIP models are mostly uninitialized free runs and therefore
are not constrained to match the observed evolution—rather this
set of models and their related experiments are primarily used
to estimate the forced response to anthropogenic climate change.
Shin and Huang (2019) investigated whether greenhouse gases
(GHG) could be contributing to SST trends in NMME models
and compared their results to one model, CCSM3, which has
fixed GHG concentrations from the year 1990, unlike the other
NMME models which have varying GHGs. The CCSM3 model
has a comparable bias in the linear trend with other NMME
models, leading them to infer that the overly positive trends in
tropical Pacific SSTs are not a result of changes in GHG. If GHGs
are not behind why the models overdo SST trends then what
are the sources of trend errors in the NMME models? Perhaps
it is also possible that these sources of errors partially apply to
CMIP models.

While a closer inspection of NMME trends will not resolve
the debate over the sign of future trends across the tropical
Pacific, the NMME provides a valuable testing ground for the
performance of initialized climate models in a warming world.
If the NMME trend errors continue then it may suggest higher
uncertainty in the CMIP projections than is fully appreciated.
Errors that arise due to errors in the linear trend may have
implications for the prediction of ENSO and other tropical Pacific
anomalies. In the sections that follow, we take a look again at
SST trend errors and also examine to what extent they map onto
errors in forecast skill of SST and precipitation anomalies. We
focus on total SST, not anomalies, because overlying precipitation
anomalies in the tropical Pacific respond to total SSTs. Finally,
we take a closer look at El Niño false alarms to see if the
hypothesis of Shin and Huang (2019) can be supported using the
reforecast data.

2. DATA

We examine the ensemble means from eight NMMEmodels that
span the 1982–2020 time period (Kirtman et al., 2014). This set
includes three models from NOAA Geophysical Fluid Dynamics
Lab (GFDL), GFDL-CM2p5-FLOR-A, GFDL-CM2p5-FLOR-B,
and GFDL-CM2p1-aer04, two models from Environment and
Climate Change Canada, CanCM4i and GEM-NEMO, the
National Centers for Environmental Prediction (NCEP) CFSv2
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model, the National Aeronautics and Space Administration
(NASA) GOESS2S model, and the CCSM4 model run at the
University of Miami RSMAS. Reforecast and real-time data is
merged together to maximize the dataset length. The GOESS2S
model has the shortest forecast time horizon which goes out to
9 months (leads 0.5–8.5), CFSv2 is run out to 10 months (leads
0.5–9.5), and all other models extend to 12 months lead time
(leads 0.5–11.5). All of the models in this study include time
varying greenhouse gas concentrations (Becker 2022, personal
communication). Real-time forecast runs are typically initialized
within the first week of the month. While a multi-model average
is often formed using participating NMMEmodels, here we keep
the models separate to explore the relationships among models
and their different biases and behavior. Anomalies are formed
by removing the calendar month climatology based on the full
1982–2020 period.

Two of the NMME models, the CFSv2 and CCSM4 have a
discontinuity in 1999 because of a shift in the data assimilation.
The initial conditions for both models are taken from the NCEP
Climate Forecast System reanalysis (CFSR), which experienced
a jump when ATOVS satellite data were assimilated into the
stream of data (Xue et al., 2011; Kumar et al., 2012). When
forecast anomalies are created, this is often corrected by using
two separate climatological periods (e.g., Barnston et al., 2019).
In this study we do not correct the discontinuity in the interest of
using the native model versions submitted to the NMME, but it
is common practice to correct for this in operational prediction
(e.g., Xue et al., 2013). As will be shown, these two models stand
out for their immediate errors beginning at short lead times,
indicating that the discontinuity is aliased into total SST and
precipitation anomaly trend errors.

Forecast verification of SSTs is against monthly OISSTv2 from
Reynolds et al. (2002) because of its higher spatial resolution,
which better matches datasets used to initialize models in
NMME. Verification of precipitation anomalies is based on
the CPC Merged Analysis of Precipitation (CMAP)(Xie and
Arkin, 1997). Data are re-gridded to 1◦ × 1◦ to match NMME
forecast fields.

3. RESULTS

3.1. Total SST Trend Errors and Biases
Across all calendar months, the observed linear trend pattern
(expressed as the change in degrees Celsius over the 1982–2020
period) is characterized by a positive SST trend in the western
tropical Pacific Ocean, with minimal or weak trends in the
equatorial central and eastern Pacific Ocean (Figure 1). North of
the equator, in the eastern Pacific, positive SST trends prevail,
while negative trends are observed south of the equator near
Peru and Chile. Figure 2 shows the error in the linear trend over
all months between 1982 and 2020 for each forecast lead time
(to summarize, 0.5-, 4.5-, and 8.5-month leads are displayed as
separate panels). The NMME is composed of initialized models,
which can drift from the observed initial conditions with lead
time. For each forecast lead time, the linear trend is therefore
computed over 468 months (12 months × 39 years). From
Figure 2, there are significant positive errors in the central and

FIGURE 1 | Linear trend of monthly sea surface temperature from January

1982 to December 2020. Units are in degrees Celsius change over January

1982 to December 2020. The thin gray lines indicate the equator and the

International Date Line. Data is based on OISSTv2.

eastern Pacific SST trend, especially at longer lead times, more
clearly emerging in all models by the 4.5-month lead time. There
are two exceptions, CCSM4 and CFSv2, whose positive trend
errors notably arise in the earliest lead times, which reflects the
jump in the initialization error that occurs in 1999. Thus, while
the observed SST trend during this 39-year period is toward a
stronger zonal gradient across the equatorial Pacific Ocean, the
forecast models have largely been the reverse of the observed
change, forecasting a flatter SST gradient, indicated by an overly
positive trend in the central and eastern Pacific.

These errors in the total SST trend also result in trends in
SST error over time, or as shown in Figure 3, trends in squared
error. On the equator, the amplitude of the trend in the squared
error tends to grow, in sync with the same forecast leads as
the emergence of SST trend errors (compare with Figure 2).
However, interestingly, the sign of the trend in squared error
is not necessarily the same direction as the error in the SST
trend. For instance, CM2p1-aer04 has a negative trend in squared
error (Figure 3), while showing a clear positive error in the trend
(Figure 2). This contrasts with the other two GFDL-provided
models (FLORA-A06 and FLOR-B01), which have substantial
positive trends in squared error. A change in sign can even occur
within a single model. CFSv2 and CCSM4 show a negative trend
in squared error in the eastern equatorial Pacific in the 0.5-month
and 4.5-month leads, which flips to a positive trend by the 8.5-
month lead time. So, despite the uniformly positive errors in the
SST trend, what accounts for the varying sign of the trend in
squared error?

This apparent conundrum is resolved when the mean SST
bias is examined for each model and lead times (Figure 4).
The mean bias is simply the average forecast pattern minus
the average observed pattern. Some NMME models, especially
those shown in the panels of the top row, have a positive
(warm) mean bias, again becoming more prominent at longer
forecast lead times. Other NMME models, sorted into the panels
of the bottom row, have a clear negative (cold) mean bias
on the equator that also becomes more distinctive after the
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FIGURE 2 | For each model in the NMME, linear trend error (forecasted coefficient minus observed coefficient) in monthly sea surface temperatures from January

1982 to December 2020. The bold number in each panel shows the forecast lead time (0.5-, 4.5-, and 8.5-month leads). Units are in the degrees Celsius change over

January 1982 to December 2020. The thin gray lines indicate the equator and the International Date Line.

4.5-month lead. The warm-biased models are associated with
positive trends in squared error over time, and cold-biased
models are related to negative trends in squared error over time.
For CCSM4 and CFSv2, the mean bias gradually shifts from cold
to warm with lead time (Figure 4) and, as such, the trend in the
squared error reverses from predominantly negative to positive
(Figure 3).

Forecast error is defined as the difference between the forecast
and the observations, so in time a positive trend will shift a warm-
biasedmodel farther away from the observed state. Conversely, in
time a positive trend will shift a cold-biased model increasingly
nearer the observations. Thus, for forecast errors over time,
cold-biased models will compensate for erroneously positive SST
trends, but the same SST trend error will worsen forecast errors
in warm-biased models.

Also, it appears to be the case that models that have a
cold mean bias (bottom row of Figure 4) tend to also have
weaker trend errors along the equator (bottom row of Figure 2).
Likewise, models that have a warm mean bias (top row of
Figure 4) tend to also have stronger trend errors (top row of
Figure 2). The SST trend error also is more confined to the

equator for cold-biased models compared to the warm-biased
models, which more prominently extend south of the equator,
reaching coastal Peru and Chile. This implies there is some
relation between the amplitude of the trend error and the mean
bias of the model, which will become more evident in the
following section.

3.2. MSESS of Precipitation Anomalies and
Its Relationship to SST Trend Errors
While the SST trend error and the trend in SST errors over
time is concerning, it is common practice to remove the lead-
dependent model mean climatology from forecasts to form an
anomaly. It is these SST anomalies and their associated Niño
region indices, that are the primary basis for monitoring and
predicting ENSO. With the removal of the model climatology,
the model’s mean bias is removed throughout the seasonal cycle,
as is part of the trend (when monthly starts are ignored as in this
study), so the interpretation of errors in SST anomalies over the
1982–2020 record becomes considerably less straightforward.
SST anomalies aside, total SSTs remains important for the
formation of tropical convection and precipitation anomalies
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FIGURE 3 | As in Figure 2 except showing the linear trend in the squared error of monthly sea surface temperatures from January 1982 to December 2020. Units are

in degrees Celsius squared.

(e.g., He et al., 2018). These tropical Pacific precipitation
anomalies are also tracked in association with ENSO because
the displacement of tropical heating gives rise to global
teleconnections, which ultimately result in climatic impacts in
far flung regions. Thus, understanding these total SST trend
errors on tropical precipitation anomalies is rather consequential.

To examine the influence of SST trend errors on precipitation
anomalies, we start with an examination of the Mean Squared
Error skill score (MSESS) for precipitation anomalies. Relative
to other common metrics [e.g., mean squared error (MSE), root
mean squared error (RMSE)] that evaluate the quality of the
amplitude fit between the forecast anomaly f and the observation
anomaly o, MSESS has the advantage of comparing the forecast
MSE to the MSE of a climatological forecast, equivalently to the
observed variance. Specifically,

MSESS = 1−
MSEfcst

MSEclim
,

where MSEfcst is average over forecasts of (f − o)2 and MSEclim is
the average of o2, which is the observed variance since o is the
observation anomaly. Tropical precipitation variance depends

strongly on the region, with the western equatorial Pacific, near
Indonesia, having higher variance than the eastern equatorial
Pacific Ocean. Consequently, precipitation MSE (not shown) is
largest in the western equatorial Pacific Ocean where it is easier
for large forecast deviations to occur relative to the eastern Pacific
where such swings are typically smaller. If theMSE of the forecast
is less than variance of the observations, MSESS is positive, and
the forecast is better than a climatological forecast. Otherwise,
MSESS is negative, and the forecast is worse than a climatological
forecast.

For short lead times, the predictions of precipitation
anomalies are most skillful across the equatorial Pacific Ocean
(Figure 5). However, at the 4.5-month lead, roughly the time
when SST trend errors start to become prominent in the models
(Figure 2), negative regions ofMSESS are expanding, particularly
in the eastern Pacific Ocean, at the expense of positive MSESS
values, which are smaller and more restricted to the central
Pacific. By the 8.5-month lead, positive values of MSESS are even
more minimal. Interestingly, at this longer lead time, MSESS
values appear to be slightly more positive on the equator for
models in the bottom row of Figure 5 compared to models in
the top row. Recall, these models in the bottom row of Figure 5
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FIGURE 4 | As in Figure 2 except showing the mean bias (forecast mean minus observed mean) in monthly sea surface temperatures over January 1982 to

December 2020. Units are in degrees Celsius.

are the one that demonstrate weaker SST trend errors and a cold
mean bias. Therefore, the MSESS of precipitation anomalies also
reflects errors in the total SST fields.

To simplify the presentation of results and further explore
the relation of errors in precipitation anomalies with the total
SST trend errors, we form indices (spatial averages) that are
representative of the strongest correlations between total SSTs
and precipitation anomalies. At each grid point, precipitation
anomalies are correlated to the total SST, which results in
the map shown in Figure 6 (left panel). The region with
the largest correlations lies roughly in the central equatorial
Pacific, so a precipitation anomaly index is formed by averaging
precipitation anomalies bounded by 5◦N-5◦S, 170◦E-140◦W.
This selected region also aligns well with the area that contains
more skillful forecasts as measured by the MSESS (Figure 5).
The region also matches the Central Pacific OLR index domain
selected in L’Heureux et al. (2015), which was chosen because
of strong coupling with SST anomalies. A SST index is then
developed and is based on the correlation between the Central
Pacific precipitation anomaly index and total SSTs at each grid
point (Figure 6, right panel). The resulting total SST index is
selected to include an area of maximum correlations (5◦N-5◦S,

180◦-130◦W) that is slightly shifted to the east of the precipitation
anomaly index, which is consistent with previously documented
relationships between SST and precipitation over the tropical
Pacific Ocean (e.g., Gill and Rasmusson, 1983; Wang, 2000).

Some characteristics of these two indices are plotted for
each NMME model and presented in the scatterplots shown in
Figure 7. The x-axis displays the total SST trend index error
(forecast trend minus observed trend) in degrees Celsius over
the full period. The y-axis shows the MSESS of the Central
Pacific precipitation anomaly index in the left panels and the
RMSE in the right panels. The scatterplots shown in the two
panels are similar, except for their orientation—larger RMSE
values indicate less skill, while larger MSESS values indicate
more skill. In the top panels of Figure 7, connecting lines are
drawn between consecutive lead times for each model—dots
oriented toward regions of less skill are associated with longer
lead forecasts. In the bottom panels of Figure 7, the least-
squares linear fit of precipitation skill and total SSST trend error
between models is fit separately for each forecast lead time.
In all of these panels, the strong relation between the total
SST trend index error and the MSESS/RMSE in central Pacific
precipitation anomalies really stands out. Larger, positive SST
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FIGURE 5 | As in Figure 2 except showing the mean squared error skill score (MSESS) in precipitation anomalies from January 1982 to December 2020. Warm (cool)

colors indicate forecast skill greater (less) than climatology. Values are unitless and range from minus infinity to one.

FIGURE 6 | (Left) At each grid point, the correlation between total sea surface temperature and precipitation anomalies. (Right) The correlation between the Central

Pacific precipitation anomaly index and total sea surface temperature at each grid point. The black contour shows the 95% level of significance using the effective

degrees of freedom as estimated in Bretherton et al. (1999).

trend index errors are associated with lower skill in predicting
the precipitation anomaly index. Interestingly, precipitation
MSESS continues to increase for negative SST trend errors,
which is suggestive of too wet precipitation forecasts even
in the absence of positive SST trend errors. The correlation

coefficient between these two quantities, over all models and
lead times, is ∼0.8 or ∼64% explained variance (Figure 7,
top panels).

CFSv2 and CCSM4 are notably different from other models
as they begin with larger SST trend index errors at shorter
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FIGURE 7 | (Top Left) Scatterplot of mean squared error skill score (MSESS) of the central Pacific precipitation anomaly index on the y-axis and the error in the linear

trend of the sea surface temperature index on the x-axis. (Top Right) Same as the left panel except showing the root mean squared error (RMSE) of the central

Pacific precipitation anomaly index on the y-axis. (Bottom) Same as the top panels except also showing the least-squares fit for each forecast lead time. All forecast

leads and NMME models are shown. The lines connect the forecast lead times, with smaller errors generally associated with shorter lead times. MSESS is unitless

and is positive for forecasts whose MSE is less than the observed variance. RMSE is in units of millimeters/day. The SST trend index error is in units of degrees Celsius

change over January 1982 to December 2020.

lead times and remain relatively constant. The initialization
discontinuity in these two models also impacts the error in the
precipitation anomalies, which generally increases with lead time.
In this sense, these two models are more sensitive to the errors
induced by the artificial jump in their initialization than they
are to other processes that may arise in SST trend index errors.
Excluding these two NMME models, the relationship between
precipitation anomaly skill and SST trend error is larger (∼0.9
or ∼81% explained variance). The bottom panels of Figure 7
show that the slope steepens and correlations slightly increase
with longer lead times. Despite this dependence on forecast
lead time, even shorter lead times show substantial correlations

between MSESS/RMSE of precipitation anomalies and SST trend
error. Thus, these relations are not solely due to the drop in
skill that occurs as the forecast increasingly departs from its
initial condition.

3.3. Precipitation Anomaly Errors Explained
by Linear Trend and Detrended SST Errors
We now consider the question of how much, over time, do the
linear and detrended components of SST error explain errors
in precipitation. Naturally, errors in SSTs do not completely
explain errors in precipitation anomalies in the tropical Pacific.
To assess how much precipitation error is explained by the
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FIGURE 8 | (Top) Correlation between the 2-predictor regression and the

error in the central Pacific precipitation anomaly index. The predictors are the

(Continued)

FIGURE 8 | error in the detrended total SST index and the error in the

least-squares linear fit through the SST index. The y-axis is expressed in terms

of the percent of explained variance. (Middle) Correlation between the error in

the detrended total SST index and error in the central Pacific precipitation

anomaly index. (Bottom) Same as the middle panel except using the error in

the least-squares linear fit through the SST index. All forecast leads and

NMME models are shown. The SST trend index error is in units of degrees

Celsius change over January 1982 to December 2020.

two components of SST, we construct a 2-predictor multivariate
linear regression:

y = ax1 + bx2 + c

In this regression, the predictors are the error in the time series
of detrended SSTs (x1) and the error in a time series of the
least-squares linear fit (trend) through SSTs (x2). The predictand
y is the error in precipitation anomalies. The predictors and
predictand are based on indices defined earlier in Figure 6, so
that results from all models and lead times can be compactly
summarized. The regression is re-computed separately for each
forecast lead time and model.

The top panel of Figure 8 shows, on the vertical axis, the
fraction of explained variance (in percent) of the 2-predictor
regression. The horizontal axis displays the SST trend index error
(as shown in Figure 7). The fraction of precipitation anomaly
error variance explained by 2-predictor regression ranges from
close to none to upwards of ∼65%, with higher explained
variance for models and lead times with larger SST trend index
errors. Other than CFSv2 and CCSM4, shorter forecast lead
times do not have a strong correlation between errors in SSTs
and precipitation anomalies, but longer lead times have more of
an association.

The fraction of precipitation anomaly error variance explained
by the individual predictors (trend and detrended SST) are
shown in the same format in the remaining panels of Figure 8.
The detrended component of SST error accounts for most of
the explained variance in precipitation errors (middle panel)
relative to the trend component of SST errors (bottom panel;
note the change in the y-axis). By construction, the explained
variances shown in the lower two panels sum to the explained
variance in the top panel since the individual predictors are
uncorrelated. The trend component explains upwards of ∼20%
of the variability in precipitation error (and vice versa), while
the detrended component accounts for up to ∼50% of the
variability. Thus, linear SST trend errors explain relatively little
of the monthly variability of errors in precipitation anomalies.
This suggests that SST trend errors are mostly problematic when
predicting precipitation anomaly errors because of resulting
deviations in amplitude (shown in Figure 7)—not due to issues
with the phasing between SSTs and precipitation. Some models,
such as GFDL-CM2p1-aer04 and NASA-GEOSS2S, have very
little association between the errors in the SST trend component
and precipitation anomalies at all lead times (Figure 8, bottom).
However, the remaining models have stronger correlations,
especially at longer lead times. The CCSM4, FLOR-A, FLOR-B,
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FIGURE 9 | (Top) Scatterplot of error in the linear trend of Central Pacific

precipitation anomaly index on the y-axis and the error in the linear trend of the

total sea surface temperature index on the x-axis. The lines connect the

forecast lead times, with smaller errors generally associated with shorter lead

times. (Bottom) Same as the top panel except also showing the least-squares

fit for each forecast lead time. All forecast leads and NMME models are

shown.The index errors are in units of degrees Celsius (SST) and

millimeters/day (precip) change over January 1982 to December 2020.

and CFSv2 models have the largest explained variances, which is
also interesting in the context that these four models also tend to
have a warmer mean bias than the other models (Figure 4).

The models and lead times that have larger explained variance
between the SST trend errors and precipitation anomaly errors,
are also the same models and lead times that have a clear
relationship between trends in precipitation anomaly errors and
trends in SSTs (Figure 9). In contrast to previous figures, Figure 9
displays the linear trends in precipitation anomaly errors on the

y-axis. The overall similarity between the scatterplots in Figure 9

and the bottom panel of Figure 8 demonstrate the correlations
in Figure 8 (bottom panel) arise in tandem with trends in errors
of precipitation anomalies. In other words, linear SST errors
can only be useful as a predictor for anomalous precipitation
errors insofar as the latter also has linear trends. The least-
squares linear regression, Figure 9 (bottom panel) shows that
these relationships also endure as a function of forecast lead time
and do not only exist by model.

3.4. Relating Recent El Niño False Alarms
With Errors in Trends of SST and
Precipitation
To this point, we have shown that models and lead times with
larger errors in SST trends are also linked to larger errors in
precipitation anomalies. This is the case for forecast metrics
evaluating amplitude errors and the quality of the fit between
time series. For the latter metric, however, the linear trend SST
component only explains up to ∼20% of monthly variability
in precipitation errors, and often much less. Regardless, models
with larger errors in SST trends are also linked with larger
errors in precipitation trends, which likely stems from the
strongly coupled ocean-atmosphere system found across the
tropical Pacific Ocean. Though the correlation of errors is not
large for monthly variability, it appears there are substantial
amplitude biases in precipitation anomalies. RMSE of central
Pacific precipitation anomalies (Figure 7, right panels) which
range from 1 mm/day (shortest lead) to 2–3 mm/day (longest
leads), which is a large portion of typical daily mean precipitation
in this region (3–5 mm/day). We’ve shown that the direction
of these SST and precipitation errors are toward increasingly
warmer SSTs and wetter precipitation anomalies.

What are the consequences of these increasing amplitude
errors over time? One possible impact is on the occurrence of
false alarms in El Niño prediction. These are El Niño events
which are predicted by the models, but end up failing to occur
in reality. Tippett et al. (2020) identified several El Niño false
alarms while analyzing model “excessive momentum,” in which
the observed Niño-3.4 SST index tendency during the spring
is too strongly correlated with the forecast tendency of ENSO
into the fall. In other words, positive springtime changes in the
observed Niño-3.4 index often beget a positive forecast trajectory
in the Niño-3.4 index. Tippett et al. (2020) showed that out of
all springtime busts during 1982–2018, four of nine occurred
in the last decade (2011, 2013, 2014, and 2017) and they were
all El Niño false alarms–a concerning development for seasonal
climate forecasting if it continues.

Excessive model momentum cannot be directly attributed to
trend errors because it is computed as the difference of 1 month
with following months, which eliminates the presence of trends.
However, perhaps the uptick in the frequency of El Niño false
alarms may have some roots in the linear SST and precipitation
errors uncovered so far. In principle, model errors that tend to
be warmer and wetter may be associated with more El Niño-like
conditions and errors over time. To explore the idea that errors
in trends could result in an increased number of El Niño false
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FIGURE 10 | AR(2) Ensemble Mean Model Simulation of the Niño3.4 SST index (blue line) shown with no linear trend (Top) and with a linear trend that matches the

trend in FLOR-A for lead = 8.5 (Bottom). The gray line, or observational proxy, is a single member from the 100-member simulation. Pink dots show the occurrence

of El Niño False Alarms or cases when the Niño3.4 index prediction is in excess of 0.45◦C, but the observations are less than this threshold. The simulation is in units

of degrees Celsius.

alarms, we generate a 100-member ensemble AR(2) model that
mimics the characteristics of the observed Niño-3.4 SST index
(Figure 10). The AR(2) model is:

Xt = φ1Xt−1 + φ2Xt−2 + ǫ ,

where X is the Niño-3.4 SST index and its subscript indicates
the time in months, the AR parameters φ1 and φ2 are estimated
by ordinary least squares using observed values of the Niño-
3.4 index, and ǫ is white noise with variance equal to the error
variance. The synthetic forecast signal is then computed using the
derived AR(2) parameters. Members are then generated using a
joint normal model as described in, for instance, Tippett et al.
(2019). As in “perfect model,” we extract one member and call
it the observations and then average the remaining members
(ensemble mean). The resulting time series in Figure 10 (top
panel) shows there are El Niño false alarms that arise due to
unpredictable, intrinsic uncertainty in the forecast system. These
false alarms are noted by the pink dots and the False Alarm Ratio
(FAR) is computed as:

FAR = M/N ,

where M is the number of months when the ensemble mean
forecast exceeded the +0.45◦C El Niño threshold and the
observations did not. N is the total number of months. The
FAR is also referred to as the probability of false alarm

(Barnes et al., 2009). The false alarms occur throughout the time
series, but tend to be clustered due to the persistence of the
Niño-3.4 index. The introduction of a positive linear trend in the
model simulation (here using the SST error found in FLOR-A
at 8.5-month lead) increases the overall false alarm ratio in this
particular example, but the most dramatic change is the shift of
false alarms from the earlier part of the period to the later part
(Figure 10, bottom panel).

This result therefore raises the possibility that increased
frequency of El Niño false alarms may be tied to linear trend
errors across the tropical Pacific. To explore whether we have
seen similar shifts in NMME forecasts, Figure 11 shows the same
scatterplots as in previous figures except showing false alarms for
the full 1982–2020 record in the top panel, the post-2000 record
in the middle panel, and the pre-2000 record in the bottom panel.
The scatterplots show that there is a strong positive relation
between El Niño FAR and the error in SST trends over the entire
record, and that the error is almost exclusively found in forecasts
made after 2000. If CCSM4 and CFSv2 are removed due to their
unique initialization problems, the correlations in the scatterplot
increase from r = 0.61 to r = 0.81 over the entire record
(Figure 11, top panel) and increase from r = 0.82 to r = 0.93
in the post-2000 record (Figure 11, middle panel). These high
correlations in the latter half of the record strongly suggests that
El Niño false alarms have becomemore frequent due to linear SST
trend errors. Prior to 2000, SST trend errors have little impact
(Figure 11, bottom panel) compared to recent record, which is
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FIGURE 11 | (Top) For the entire 1982–2020 period, scatterplot of the El Niño

False Alarm Ratio in NMME (using a +0.5C threshold in the Niño-3.4 SST

(Continued)

FIGURE 11 | index) on the y-axis, along with the error in the linear trend of the

total sea surface temperature index on the x-axis. (Middle) Same as top panel

except for false alarms during 2000–2020. (Bottom) Same as top panel

except for false alarms during 1982–1999. All forecast leads and NMME

models are shown. The SST trend index error is in units of degrees Celsius

change over January 1982 to December 2020.

characterized by significant amplitude errors resulting in a too
warm (and too wet) tropical Pacific Ocean.

4. DISCUSSION

Over the span 1982–2020, the NMME models demonstrate
significant positive errors in the linear trend of tropical Pacific
SST that becomes more pronounced with lead time (Figure 2),
confirming the result of Shin and Huang (2019) who used
a subset of models. We further show that there is also a
corresponding trend in squared errors in SSTs (Figure 3), and
the sign of the trend in error is a function of the mean bias
of the model and lead time (Figure 4). Models with a warm
mean bias show increasing errors over time because the positive
linear trend errors diverge more strongly from observations. The
opposite is true for models with a cold mean bias, which show
decreasing errors over time because the positive trend helps
close the gap with the observations. Models and lead times with
more severe SST trend errors are also associated with larger
errors and lower skill in equatorial Central Pacific precipitation
anomalies (Figures 5, 7, 8). However, the trend SST component
only describes a small percentage of variability in precipitation
errors (Figure 8), meaning that the linear trend is not particularly
useful to predict the month-to-month variability in precipitation
errors. However, the RMSE (Figure 7), or errors in the amplitude,
is quite large as a percent of typical climatology. It is these errors
in amplitude that ultimately arise in an increased frequency of El
Niño false alarms, which has become more evident in the latter
half of the∼40 year record (Figure 11).

Detrending removes errors associated with the linear trend.
Figure 12 (left panel) shows the MSESS for the previously
defined total SST index (top row) and precipitation anomaly
index (bottom row) for all models and lead times. The middle
panel of Figure 12 shows the scores for detrended indices and
the right panel reveals the difference in MSESS between the
two leftmost panels. A sign test is applied to the difference
and shading is only shown where differences are statistically
significant at the 95% level. From this figure, we can see that
linearly detrending the data improves the prediction skill for
a subset of models, namely only those models that have clear
warm biases and more pronounced trend errors as identified in
Section 3.1. While not shown here, the El Niño false alarm ratio
also decreases for detrended data, though it is not eliminated.
Though linearly detrending the data provides an increase in
skill retrospectively, there are additional challenges with applying
the linear trend corrections to models in real time. Mainly,
as van Oldenborgh et al. (2021) discussed in their study on
defining ENSO indices in a warming climate, the warming
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FIGURE 12 | (Top) Heat map of Mean Squared Error Skill Score (MSESS) for the total SST index, including the (left panel) SST trend (middle panel) and for linearly

detrended SSTs and (right panel) difference between the left and right panels. (Bottom) Same as the top row except for the central Pacific precipitation anomaly

index. Shading is only shown where differences are statistically significant at the 95% level. MSESS is unitless and is positive for forecasts whose MSE is less than the

observed variance.

trend has accelerated in the last 50 years, so trends estimated
on past data may not hold for future data. Identifying trends
is therefore a challenge when trying to make predictions for
the future.

Why do these linear SST errors arise? One can only speculate
based on the results presented here, but while differences in
the 40 year linear trend between the observations and CMIP5/6
models can be attributed to internal variability masking the
forced trend (Olonscheck et al., 2020), such a reason cannot
be applied to NMME models. Thus, one possibility is that
errors associated with model physics may result in linear trend
errors in SSTs and precipitation anomalies. Indeed this reason
has been explored by others searching for a reason for the
divergence between trend in observations and CMIP models.
For example, it has been observed that the models project too
much upper-tropospheric warming (Po-Chedley and Fu, 2012;
Mitchell et al., 2020). As Sohn et al. (2016) point out, too
much upper-level warming would act to weaken the overturning
Walker circulation (also weakening the SST gradient). They
demonstrate that models with a weaker Walker circulation are
also models with static stability that is too strong and speculate
that issues with convective parameterizations may be the root

of this disparity (e.g., Tomassini, 2020). Others have discussed
potential errors in ocean physics as well, contributing to an
amplified surface heat flux feedback that may result in too much
warming in the cold tongue region of the eastern Pacific (e.g.,
Seager et al., 2019).

There are several other avenues to be explored in the future.
One path is to examine the seasonality of linear trends and
their errors since they may be worse during certain seasons.
For example, ENSO prediction already suffers from low skill for
spring starts, and trend errors might further hinder skill during
this period. Another path is to investigate errors associated with
La Niña. While problems with the linear trend in SSTs can lead
to El Niño false alarms, it is conceivable that La Niña events are
similarly underestimated and under-predicted. van Oldenborgh
et al. (2021) noted that linear trend removals are not adequate
for ENSO monitoring and that positive trends in SSTs have been
masking recent La Niña events, which have stronger amplitude
and impacts than originally assumed. Finally, because total SSTs
have a strong relationship with overlying tropical precipitation
anomalies, what are the consequences for subsequent ENSO
teleconnections and global impacts? Predictions of the tropical
Pacific are a primary basis for seasonal predictions outside of the
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tropics and such trend errors may have knock-on impacts that
should be investigated.
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