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The utility of a forecast depends on its skill as demonstrated by past performance.

For most forecasts errors rapidly become large compared to uncertainties in the

observation-based state of the system and, for this reason, it is usually deemed

adequate to assess predictions against a single verification dataset. Eleven reanalyses

and station-based analyses of annual mean surface air temperature are compared as

are basic skill measures obtained when using them to verify decadal prediction hindcasts

from the Canadian Centre for Climate Modelling and Analysis forecasting system. There

are differences between reanalysis and station-based analyses which translate also into

differences in basic skill scores. In an average sense, using station-based verification data

results in somewhat better correlation skill. The spread between the locally best andworst

scores is obtained for individual forecast ensemble members and for ensemble mean

forecasts compared to individual analyses. The comparison of ensemble mean forecasts

against different analyses can result in apparent skill differences, and using a “favorable”

analysis for verification can improve apparent forecast skill. These differences may be

more pertinent for longer time averages and should be considered when verifying decadal

predictions and when comparing the skill of decadal prediction systems as part of a

model intercomparison project. Either a particular analysis could be recommended by

the decadal prediction community, if such could be agreed on, or the ensemble average

of a subset of recent analyses could be used, assuming that ensemble averaging will act

to average out errors.

Keywords: verification data, reanalyses, decadal predictions, prediction skill, surface air temperature, CanESM5

1. INTRODUCTION

Current weather and climate predictions ranging from hours to decades are usually based on
ensembles of model-based forecasts. Verifying the skill of the forecasts has always been a critical but
non-trivial task. The implicit assumption is that the error in a forecast is so much larger than the
error of the verifying analysis that the latter does not appreciably contaminate the skill measure. A
forecast can take various forms which, in the most straightforward case, is a deterministic forecast
of a variable such as temperature at a particular time in the future. As the forecast range passes
beyond the range for which an instantaneous deterministic forecast is appropriate, the forecast
typically becomes that of a time average of the quantity.

Decadal prediction, alternatively near-term climate prediction, refers to the prediction of the
climate system on timescales of a year to one (or more) decades. The predictions may be generated
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by statistical methods based on the past behavior of the climate
system but are most frequently made with coupled climate
models (Kirtman et al., 2013; Kushnir et al., 2019). For a model-
based prediction an observation-based estimate of the state of
the climate system serves to initialize the model. The model is
integrated forward in time with specified external forcings (e.g.,
greenhouse gas concentrations, solar, and volcanic variations) to
generate the forecast. The initial conditions are an attempt to
specify the state of the climate system but will not be everywhere
exact. This uncertainty in initial conditions implies uncertainty in
the subsequent predictions and forecast systems typically probe
this uncertainty by performingmultiple integrations with slightly
differing initial conditions. The resulting “cone” of forecasts
is a representation of this uncertainty. Forecast results may
be characterized statistically in terms of probability measures
or deterministically by averaging the forecasts and providing
quantitative values.

A decadal prediction experiment is part of the fifth Coupled
Model Intercomparison Project (CMIP5, Taylor et al., 2012)
and is a prominent component (Boer et al., 2016) of the
current sixth version of this activity (CMIP6, Eyring et al.,
2016). The World Climate Research Programme (WCRP)
Grand Challenge on near-term climate prediction encourages
research into decadal prediction with the goal of fostering
applications (e.g., Kushnir et al., 2019). Decadal prediction largely
concentrates on predicting the basic variables of temperature
and precipitation. On annual and multi-annual timescales the
predicted variables are typically the anomalies from climatology
of annual and/or multi-annual means (e.g., Boer et al., 2013;
Smith et al., 2013). The WMO Lead Centre for Annual-to-
Decadal Climate Prediction (https://hadleyserver.metoffice.gov.
uk/wmolc/) “collects and provides hindcasts, forecasts and
verification data from a number of Global Producing Centres
and other Contributing Centres worldwide” and provides useful
links concerning decadal prediction. The “Global Annual to
Decadal Climate Update,” available from the WMO website,
provides decadal predictions of basic variables and of a range of
climatically important indices (Hermanson et al., 2022).

Predictionsmust be accompanied bymeasures of skill in order
to be credible and useful, particularly for real-world applications.
Assessing skill is a technical matter (e.g., Jolliffe and Stephenson,
2012; Goddard et al., 2013; Sospedra-Alfonso and Boer, 2020)
that aims to quantify thematch between predictions and verifying
data over a sequence of forecasts. The prediction data is based on
retrospective forecasts (or hindcasts) of past cases. For statistical
stability it is important that the hindcast sequence be as long as
possible. Correlation, mean square error and mean square skill
score are basic skill measures which, although not without fault,
are straightforward, familiar, and commonly used.

The information used to initialize coupled forecasting models
and to verify the forecasts are often based on reanalyses. The
“Reanalyses.org Home Page” at (https://reanalyses.org/) is one
locus of information on reanalyses. As noted there, a reanalysis
combines observations (from many sources) with a numerical
model that simulates one or more aspects of the Earth system
to generate a synthesized estimate of the state of the system.
Results are typically available on global grids several times a

day and climate values are obtained by averaging. Despite being
observation-based, the results from different systems are not
identical since reanalysis methods and their implementation, as
well as the observations on which the reanalyses are based, are
not uniform across time and analysis systems. Just as climate
model simulation and prediction results are intercompared in
CMIP, reanalyses are now being intercompared for similar
reasons. As well as Reanalyses.org, the SPARC Reanalysis
Intercomparison Project (S-RIP at https://s-rip.ees.hokudai.ac.
jp/) provides information and links. Fujiwara et al. (2017) give
an introduction to S-RIP and an overview of the analysis systems
considered. Martineau et al. (2018) produce a zonal-mean data
set on pressure levels to facilitate reanalysis intercomparison.

Station-based climate analyses are an alternative source of
verification data for decadal predictions of basic variables like
temperature and precipitation. The approach in this case is to
provide gridded products derived from quality controlled station
data of the variables.

The statistics relating reanalyses, station-based analyses, and
forecasts depend on the averaging period considered. The kinds
of local structures that are dominant for short range forecasts
are averaged out when longer time scales are considered.
The consequences of using different sources of verifying data
to calculate prediction skill for longer time averages is not
immediately obvious and this is investigated here for forecasts
of annual mean temperature. Annual means are basic to decadal
climate prediction and surface air temperature and precipitation
are basic physical variables that have direct application for
climate services (WMO, 2016). We concentrate on temperature
since it is considered to be both better observed and better
forecast than precipitation.

It is expected that model-based predictions will differ more
from observation-based verifying analyses than the analyses will
differ among themselves. Nevertheless, differences in analyses
can have consequences for the assessment of decadal prediction
skill (e.g., Boer et al., 2019a). We quantify these differences for
decadal predictions of annual mean temperature made with the
latest version of the Canadian Centre for Climate Modelling
and Analysis (CCCma) decadal forecasting system (Sospedra-
Alfonso et al., 2021).

2. DATA

The observation-based surface air temperature data used in this
analysis were made available on a latitude longitude grid as an
outgrowth of the SPARC Reanalysis Intercomparison Protect (S-
RIP) (Fujiwara et al., 2017; Martineau et al., 2018). A subset
of seven of the reanalyses systems listed in those papers is
considered here as indicated in Table 1. Corresponding station-
based data also listed in Table 1 are obtained from the indicated
sources. These and the reanalyses data total eleven observation-
based products that are examined in what follows.

The forecast data used are from the CCCma decadal
forecasting system’s participation in the Decadal Climate
Prediction Project’s (DCPP, Boer et al., 2016) contribution to
CMIP6. The 40-member forecast ensemble is produced with
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TABLE 1 | Reanalyses and station-based surface air temperature data.

Designator Centre/Organization References Availability

Reanalyses

ERA-Interim ECMWF Dee et al., 2011 1979–2018

ERA5 ECMWF Hersbach et al., 2020 1979–2020

NCEP-NCAR NOAA/NCEP and NCAR Kalnay et al., 1996 1948–2020

NCEP-DOE NOAA/NCEP and DOE Kanamitsu et al., 2002 1979–2020

CFSR-CFSv2 NOAA/NCEP Saha et al., 2010 1979–2020

JRA-55 JMA Kobayashi et al., 2015 1958–2020

MERRA-2 NASA GMAO Gelaro et al., 2017 1980–2020

Station-based

GISS NASA GISS Lenssen et al., 2019 1880–2020

HadCRUT5 Hadley Centre/CRU Morice et al., 2021 1850–2020

NOAA NOAA Zhang et al., 2019;

Huang et al., 2020

1880–2020

Berkeley Berkeley Earth Rohde and Hausfather,

2020

1850–2020

Access to these datasets is given in the section “Data Availability Statement.” For MERRA-

2, the assimilation (asm) product is used as it exhibits a greater internal consistency

than the analysis (ana) product (https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/docs/

ANAvsASM.pdf).

version 5 of the Canadian Earth System Model (CanESM5)
which is integrated for ten years from realistic initial conditions
once a year from 1961 to the present using prescribed external
forcing (Sospedra-Alfonso and Boer, 2020; Sospedra-Alfonso
et al., 2021).

The analysis data are represented as Xk = Xk(λ,ϕ, t)
and are functions of longitude, latitude and time where k
denotes the data sets listed in Table 1. In the face of differing
lengths of record across the analyses, a common intercomparison
period consisting of the 39 years from 1980 to 2018 is used.
The corresponding forecast data from CCCma hindcasts is
represented as Yk = Yk(λ,ϕ, t) where here the subscript denotes
the ensemble member of the forecast. There are 40 ensemble
members for each forecast and 11 sources of verifying data.

The CCCma decadal forecasts and the observation-based data
are regridded to a common 2.5◦ resolution. Second order climate
statistics involve anomalies from the time mean and these are
taken as the basic variables in what follows. We treat both an
ensemble of forecasts and an ensemble of observations.

TheXk and Yk are anomalies from their timemeans so average
to zero over the analysis period. Since the quantities are functions
of time, space, and ensemble number, the statistics considered
depend on combinations of spatial, temporal and ensemble
averaging. Ensemble averaging is indicated by subscript “A” or
curly brackets, i.e., XA = {Xk}. All quantities are understood to
be functions of time, unless time averaged, and functions of the
ensemble index unless ensemble averaged. The analyses can be
represented in various ways as

Xk = XA + X∗
k = αkt + X′

k = αAt + X′′
k = αAt + α∗k t + X′

k (1)

where deviations from the ensemble mean are indicated by an
asterisk. In (1), αkt is the linear trend fitted to Xk, X

′
k
the variation

FIGURE 1 | Globally averaged observation-based (A) anomalies of annual

mean temperature Xk from the 1980 to 2018 average; (B) deviations

X∗
k = Xk − XA of individual analyses from the ensemble mean XA; and (C)

deviations X ′′
k = Xk − αAt around the ensemble mean linear trend. The thick

dashed curves in the top and bottom panels correspond to the ensemble

average XA and the thick black dashed line in the top panel is the ensemble

mean linear trend αAt for the period.

about that trend, αAt the ensemble mean trend, X′′
k
the variation

about the ensemble mean trend, and α∗
k
t the deviation of the

individual trend from the ensemble mean trend.

3. GLOBALLY AVERAGED ANNUAL MEAN
TEMPERATURE

Let Xk in (1) represent the globally averaged annual mean
temperature anomaly. Figure 1A displays the evolution of Xk for
the different analyses together with the ensemble mean XA and
the ensemble mean linear trend αAt for the 1980–2018 period.
While the overall features are the same in all analyses, as would
be expected, there are also differences in detail. The deviations X∗

k
of the individual analyses from the ensemble meanXA are plotted
in Figure 1B.

Frontiers in Climate | www.frontiersin.org 3 March 2022 | Volume 4 | Article 836817

https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/docs/ANAvsASM.pdf
https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/docs/ANAvsASM.pdf
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://www.frontiersin.org/journals/climate#articles


Boer et al. Verification Data and Decadal Prediction Skill

FIGURE 2 | (A) Linear trends αk and (B) standard deviations

√

〈

σ 2
Xk

〉

of globally averaged annual mean temperature from the reanalyses (black) and station-based

analyses (gray). The red bar is (A) the trend αA of the ensemble mean and (B) the standard deviation

√

〈{

σ 2
Xk

}〉

of the ensemble average of the variances.

The increase in globally averaged annual mean temperature
is a notable feature of Figure 1A. Individual linear trends αk are
a simple metric of this and are plotted in Figure 2A together
with the ensemble mean trend αA. Reanalysis results are in black
and station-based results in gray. The station-based trends are all
above the average while the reanalysis-based trends vary about
the ensemble mean.

Figure 1C displays the variations X′′
k

about the ensemble
mean trend. To the extent that the linear trend is an
indication of the forced component, it could presumably be
estimated from simulation results. In a simulation, internally
generated variability about the forced trend would be present
but, in the absence of initialization, the variations would
not be expected to coincide with those observed so would
detract from skill rather than contribute to it. X′′

k
serves

as a rough indication of the kind of natural variations,
superimposed on externally forced GHG warming, that might

be predicted with suitable models and observation-based
initial conditions.

Under time averaging (indicated by an overbar) and ensemble
averaging (indicated by curly brackets or the subscript A) the
overall variance of annual mean temperature has the components

{Xk
2} = X2

A + {X∗2
k
}

= α2Aσ
2
t + {X′′2

k
}

= {α2k}σ
2
t + {X′2

k
}

= α2Aσ
2
t + {α∗2k }σ 2

t + {X′2
k
} (2)

represented as

σ 2
X = σ 2

XA
+ σ 2

X∗ = σ 2
αAt

+ σ 2
X
′′ = σ 2

αt + σ
2
X′ = σ 2

αAt
+ σ 2

α∗t + σ
2
X′

(3)
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The fractional contributions to the overall variance of the
different components are

1 =
σ 2
XA

σ 2
X

+
σ 2
X∗

σ 2
X

= 0.97+ 0.03

=
σ 2
αAt

σ 2
X

+
σ 2
X"

σ 2
X

= 0.74+ 0.26

=
σ 2
αt

σ 2
X

+
σ 2
X
′

σ 2
X

= 0.75+ 0.25

=
σ 2
αAt

σ 2
X

+
σ 2
α∗t

σ 2
X

+
σ 2
X
′

σ 2
X

= 0.74+ 0.01+ 0.25 (4)

Taken together, the analyses of globally averaged annual mean
temperature anomalies for the 1980–2018 period have about 97%
of their variance in common. For this globally averaged variable,
some 74% of the variance is accounted for by the ensemble mean
linear trend and 26% by the variation about it. This is similar to
the variance accounted for by the ensemble mean of the linear
trends fitted to the individual analyses at just over 75% with
just about 25% of the variance associated with variations about
the means. The ensemble variance of the trend itself is small
at about 1%. Obviously, and as expected, the analyses agree to
a large extent among themselves although for globally averaged
annual mean temperature much of the variance is associated with
a comparatively strong linear trend.

4. THE GEOGRAPHICAL DISTRIBUTION OF
THE VARIANCE OF ANNUAL MEAN
TEMPERATURE

Forecast results are compared to analysis data in terms of
temporal anomalies. The standard skill measures of correlation
and mean square error are based on the variances and
covariances of the anomalies.

4.1. Overall Variance Levels
For Xk now representing the anomalies of local annual mean
temperature (rather than of the global mean temperature) the

temporal variance of the analyses is
〈

σ 2
Xk

〉

=
〈

X2
k

〉

where angular

brackets indicate the global average. Figure 2B plots the square
roots of these quantities together with the square root of the
ensemblemean< {σ 2

Xk
} >. The variances of the reanalyses values

are larger than or near to that of the mean while the station-based
variances are smaller.

Component variances following (2) are calculated locally
at each grid point and then globally averaged. The fractional
contributions to the overall variance following (4) are

1 =
< σ 2

XA
>

< σ 2
X >

+
< σ 2

X∗ >

< σ 2
X >

= 0.83+ 0.17

=
< σ 2

αt >

< σ 2
X >

+
< σ 2

X
′ >

< σ 2
X >

= 0.24+ 0.76

In this case, some 83% of the overall variance is common to
the analyses with about 17% differing across analyses. The local
trends account for about 24% of the variance with 76% associated
with the variation about these trends. These numbers contrast
with the values for globally averaged annual mean temperature
since the global averaging reduces the overall variance and
enhances the fraction that is common to the analyses.

4.2. Geographical Distribution of Variances
From (2,3), the geographical distribution of the overall variance is

σ 2
X = {X2

k
} = X2

A + {X∗2
k
} = σ 2

XA
+ σ 2

X∗

with the associated standard deviations σX and σX∗ plotted
in the upper panels of Figure 3. The bottom panel plots the
ratio σ 2

X∗/σ
2
X giving the fraction of the overall variance that is

associated with differences across analyses. The complementary
term σ 2

XA
/σ 2

X = 1 − σ 2
X∗/σ

2
X is the fraction of variance common

to the analyses.
The geographical distribution of variability represented by σX

has the expected distribution with larger values tending to occur
at high latitudes and/or over land and weaker variability over
the oceans excepting the eastern tropical Pacific. The variability
associated with differences in analyses σX∗ has comparatively
large values over high elevation areas and at southern high
latitudes. By contrast with σX , values of σX∗ are comparatively
small over the northern ocean and also over land areas, except
for the polar regions.

The ratio σ 2
X∗/σ

2
X is a measure of the differences across

analyses. It has a marked geographical distribution with a distinct
gradient from lower values in the northern hemisphere to larger
values in the southern hemisphere. For the green areas in the
plot, the ratio is <10% and these areas account for most of
the northern hemispheric land and ocean, although with some
areas having values within 10–30%. Values are broadly larger in
the southern hemisphere, especially over tropical land and in
polar regions. These results are, perhaps, a bit surprising since
temperature is one of the best observed variables, especially since
the satellite era.

The analyses have much of their variance in common.
Differences between pairs of variances are tested following
Pitman (1939) using the t-statistic in the form

t =
(F − 1)

√
n− 2

2
√

F(1− r2)
(5)

where F is the usual F-ratio and n is the number of years, in
this case 39. The test takes into account that the variances have a
common component via the correlation term. The test nominally
determines if the variance that is not common to the two analyses
is statistically significant, i.e., not due only to sampling error. The
number of pairs with different variances, based on this test, is
plotted in Figure 4.

Areas with fewer differences are found mainly over the
extratropical oceans while areas with the most disagreement
are found over tropical oceans, at least according to this test.
These latter regions are also regions of weak variability. The
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FIGURE 3 | Standard deviations (A) σX and (B) σX∗ of annual mean

temperature under time and ensemble averaging where

σ 2
X = {X2

k } = X2
A + {X∗2

k } = σ 2
XA

+ σ 2
X∗ following (2,3) together with the (C) ratio

σ 2
X∗ /σ

2
X giving the fraction of the overall variance accounted for by differences

among analyses.

pattern of Figure 4 is not particularly similar to that of the
bottom panel of Figure 3 for σ 2

X∗/σ
2
X at least over tropical land

and Antarctic regions. The overall implication of Figures 3, 4
is that the geographical pattern of the variance of annual mean
temperature can differ non-trivially from analysis to analysis and
from place to place.

4.3. Linear Trend
The linear trend is a simple measure of the increase in
annual mean temperature over the period considered. From

FIGURE 4 | The number of pairs of variances that differ among the 11

analyses at the 95% confidence level according to the Pitman (1939) test

which discounts the common variance.

(2,3), the variances associated with local trend and non-trend
variability are

σ 2
X = {X2

k
} = {α2k}σ

2
t + {X′2

k
} = σ 2

αt + σ
2
X′

The geographic distribution of the trend that is common to the
analyses is characterized by the ensemble mean trend αA which
is plotted in the upper panel of Figure 5. The fraction of the
local variance associated with linear trend σ 2

αt/σ
2
X is plotted in

the lower panel of Figure 5.
Despite the increase in globally averaged temperature seen

in Figure 5A, there are notable local regions of negative
temperature trend in Figure 5 for this climatological period
(1980–2018) as seen also for instance in Hartmann et al. (2013,
Fig 2.22) for the period 1981–2012. Nevertheless, as expected,
temperature trends are generally positive, most notably over land,
and especially so at higher northern latitudes.

The fraction of the variance accounted for by the trend in
Figure 5 conforms broadly to the strength of the trend itself in
northern regions of positive trends while this is less the case
in southern regions of weak or negative trends. The relative
importance of the trend would be expected to be larger in regions
of weak variability compared to regions of strong interannual
variability. The skill of a prediction will be expected to depend
on the comparative magnitude of the trends in the forecasts and
in the verifying data.

5. SKILL MEASURES

Differences in verification data will result in differences in skill,
but are the differences large enough to be of interest, particularly
for the more heavily averaged quantities considered in decadal
prediction? The consequences for basic skill measures due to
differences in verifying analyses are investigated by using them
to verify the results of a CCCma decadal prediction experiment.
Annual mean temperature is considered since it is a basic decadal
prediction variable as well as the variable with the best current
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FIGURE 5 | (A) Ensemble mean linear trend αA and (B) the local ratio σ 2
αt
/σ 2

X

of the trend variance to the total variance.

skill. Bigger discrepancies very likely exist for other variables,
such at precipitation, but this is not pursued here.

Current approaches typically compare ensemble mean
forecasts to a single verifying data set, but we may compare the
ensemble mean forecast to the ensemble mean of the analyses,
individual analyses to the ensemble mean forecast and individual
ensemble members to individual analyses. The three cases are

rAA =
XAYA

σXAσYA

rkA =
XkYA

σXk
σYA

rkl =
XkYl

σXk
σYl

(6)

Here rAA is the correlation of the ensemble mean forecast
with the ensemble mean of the analyses, rkA the correlation of
the ensemble mean forecast with the k individual analyses to
illustrate the consequence of differences in verifying data sets
on skill, and rkl the scatter that is possible if a single forecast is
compared to a single set of verifying data. Here k = 1...11 for
the 11 analyses and l = 1...40 for the 40 ensemble members of
the forecasts.

Taking the forecasts and analyses as vectors, standard
deviationmeasures the length of the vectors, correlation the angle
between them and root means square error the distance between
them. While correlation is independent of a simple scaling of the
forecast variance or length, mean square error (MSE) is not. The
MSE values paralleling (6) are

e2AA = (YA − XA)2 = σ 2
XA

+ σ 2
YA

− 2σXAσYArAA

e2kA = (YA − Xk)2 = σ 2
Xk

+ σ 2
YA

− 2σXk
σYArkA

e2kl = (Yl − Xk)2 = σ 2
Xk

+ σ 2
Yl
− 2σXk

σYrkl (7)

Differences in results illustrate the consequences of taking all
of the information into account (in the sense of the ensemble
means), a single analysis for the verification of the ensemblemean
forecast, and a single forecast compared to a single analysis.

There are 11 analyses, 40 ensemble members, and forecasts
from 1 to 10 years for a possible 4,400 plots of rkl. This reduces
to 110 plots for rkA and to 10 for rAA. In what follows forecasts
for the first 5 years are considered since the skill of annual mean
temperature plateaus by that time. This reduces the potential
number of plots by half but plotting the 55 values for rkA, let alone
the 2,200 values for rkl is unwieldy. Dimensionality is reduced by
considering globally averaged values < rkA >, forecasts for years
1, 3, and 5 for rAA, and the locally best and worst values of rkA
and rkl.

6. CORRELATION SKILL

The three versions of correlation skill in (6) give an indication
of the kinds of results that can arise based on individual and/or
averaged forecasts and analyses.

6.1. Skill of Ensemble Mean Forecasts and
Verifying Data
Current approaches typically compare ensemble mean forecasts
to a single verifying data set. When multiple verifying data sets
are available it is natural to consider their ensemble mean also.
The implicit assumption is that each analysis is composed of
information on the actual state of the system plus unavoidable
analysis errors arising from problems with the raw data as well as
difficulties associated with the particular analysis system.

The forecast and analysis ensembles are, of course, different in
kind as well as in size. The forecast ensemble may be thought of
as being composed of predictable (or signal) and unpredictable
(or noise) components Yl = ψ + yl (e.g., Boer et al., 2013,
2019a,b) where the predictable component ψ is common to the
ensemble members while the unpredictable noise component yl
differs across the ensemble. Together they represent a range of
realizations of the evolution of the forecasting system arising
from differences in initial conditions nominally close to the actual
initial state of the system and representing the uncertainty in
the initial state. By contrast, the analysis ensemble represents a
particular evolution of the physical system plus error expressed
as Xk = X + ǫk where X is the actual value and ǫk the error
in the kth analysis system. The physical system will also have
predictable and unpredictable components here represented as
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FIGURE 6 | Correlation skill rAA between the ensemble mean forecast and

ensemble mean analysis.

X = χ + x so that Xk = χ + x + ǫk. The ensembles
behave differently under ensemble averaging. For the forecasts,
YA = ψ + yA → ψ with the arrow indicating the large
ensemble limit where the unpredictable or noise component
is averaged out and only the predictable or signal component
remains. For the analysis ensemble XA = X + ǫA = χ +
x + ǫA where ǫA becomes small in the large ensemble limit
only if there are no appreciable systematic analysis errors due
to data or other difficulties. Ensemble averaging acts to reduce
unpredictable variance in the forecasts but not in the analysis
ensemble although it is expected to reduce the error variance.

The correlation rAA between the ensemble mean forecasts YA

and the ensemble mean of the analyses XA is plotted in Figure 6

for annual average temperature for year 1, 3, and 5 forecasts. The

FIGURE 7 | The global average of the correlation 〈rkA〉 between ensemble

mean forecasts YA and the analyses Xk . Results for the station-based analyses

and reanalyses are shown as dashed curves and solid curves, respectively.

The correlation 〈rAA〉 is the solid thick black curve.

results are largely similar to those from the analysis of an earlier
version of the forecasting system (Boer et al., 2013), except for
the loss of skill in the North Atlantic subpolar region discussed
by Sospedra-Alfonso et al. (2021).

6.2. The Skill of the Ensemble Mean
Forecast
Current approaches typically compare the ensemble mean
forecast YA against a single verifying data set X. The availability
of several analyses Xk provides some information of the
consequences of different verifying analyses for the correlation
skill of annual mean temperature. Figure 7 plots the global
average < rkA > for the first 5 years of the forecasts.
The correlations decline until about year 4 and then remain
approximately the same. This kind of result is seen in Boer et al.
(2013, 2019a) and is consistent with the initial decline in the
skill of the initialized internally generated component until the
more or less constant correlation skill of the externally forced
(e.g., due to GHGs, land use change) component takes over. The
perhaps surprising aspect is that, even for this heavily averaged
quantity, there is a noticeable difference in the calculated skill
of the forecast depending on the verification used. The best
correlations are with HadCRUT5 which is also the analysis that
has the strongest trend (0.19◦C/decade) in Figure 2A. The lowest
correlation values are associated with JRA-55 and ERA-Interim,
which are among the three analyses with the lowest trends (0.14
and 0.15◦C/decade, respectively) in Figure 2A.

Figure 7 also illustrates that, on the global average, the
correlation skill of the ensemble mean forecast < rkA > is
generally higher when verified against the station-based analyses
(the dashed curves in the figure) than when verified against
reanalyses (the solid curves in the figure). The skill of the
ensemble mean forecast against the ensemble mean of the
analyses < rAA > (the solid thick black curve) essentially
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FIGURE 8 | The local maximum and minimum correlation skill rkA over all reanalysis for Year 1, 3, and 5 ensemble mean forecasts.

separates the results into two groups. The exception to this is the
ERA5 result which falls slightly below the ensemble mean result
initially but rises above it at later forecast ranges (where it closely
matches the result using the Berkeley analysis).

We may only speculate as to the reason for this apparent
difference between station-based and reanalysis-based skill.
Figure 2 is suggestive in that the trend of the global mean
temperature tends to be stronger in station-based analyses
compared to the reanalyses and this could contribute to enhanced
skill. The ERA5 trend (0.18◦C/decade) is the second highest
among the reanalyses for instance. To the extent that the trend
in the global average < Xk > is reflected in the average of
the local skill < rkA > this would be expected to dominate
at longer forecast ranges as the skill of the internally generated
component declines. Figure 2 also indicates that the average of
the temporal variance of the station-based analyses is generally
lower than that of the reanalyses. These two aspects of the
data could reinforce or offset one another with stronger trend
and weaker variance possibly favoring larger correlation skill.
This might explain why ERA5- and HadCRUT5-based skills
are comparatively high (strong trend, weak variance) compared

to the NCEP-DOE based skill (strong trend and variance) for
instance. This is only suggestive however since the correlations
in Figure 7 are the average of local, not global, values, and the
covariance of the non-trend components may play a role locally.

The choice of verification data for intercomparing the skill
of decadal predictions is made difficult by these differences. For
correlation, the ensemble mean analyses does not result in the
best skill in this case at least. Differences in forecast skill may
offer another way for data producers to consider the behavior of
their analyses. We note in passing that using different analyses
in the development and verification of statistical methods could
potentially affect the results of those studies. A strong trend,
even if erroneously strong, may act to boost overall correlation.
At year 1 the ensemble mean analysis provides one of the
best correlations and is among the best at all forecast ranges.
The analyses that exhibit the lowest correlation are generally
low for all ranges. The choice of a verification data set is
apparently not immaterial with different analyses producing
different skill values.

Plotting the eleven correlation results rkA for each of several
forecast ranges is avoided, but the differences in rkA that can
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FIGURE 9 | Correlation skill rkA for the reanalyses with maximum and minimum global averaged correlation skill 〈rkA〉 in Figure 7 for Year 1, 3, and 5 ensemble mean

forecasts.

result from differences in the verifying analyses is indicated in
Figure 8 which plots the maximum and minimum values of rkA
at each point for year 1, 3, and 5 forecasts. These are upper and
lower bounds of rkA and the patterns are reminiscent of the decay
of rAA in Figure 7 with, however, the maximum values larger and
the minimum values smaller.

The difference between the maximum and minimum
correlation skill of the ensemble mean forecast, due to the
differences in the data used to verify the forecasts, is quite
striking in Figure 8. These upper and lower bounds can arise
from different analyses at different points. They represent the
best and worst scores available if one were able to choose the
corresponding analysis at each point. While this is not directly
possible the range of scores illustrates and reiterates that non-
trivial differences in apparent skill can arise depending on the
verification data set used.

This is illustrated in particular in Figure 9 which plots the
correlations rkA using the HadCRUT5 station-based and the JRA-
55 reanalyses as verification data. The skill in both cases declines
notably over the oceans although with a more rapid decline in
the JRA-55 case for the tropical and northern hemisphere oceans.

There is also a difference in the immediate vicinity of Australia
where negative skill is seen which extends over part of the land.
Differences over land appear at year 1 and evolve subsequently
with forecast range although perhaps less so over North America
compared to other regions. The overall difference carries over to
the global average in Figure 7. It would apparently be beneficial
to assess the skill of the current version of the CCCma decadal
prediction system using the HadCRUT5 data, at least for annual
mean surface air temperature. The verifying observations should
of course be the most accurate available and not chosen based on
the best agreement with the predictions.

6.3. Skill for Individual Forecasts and
Analyses
Although not directly pertinent, it is perhaps of modest interest
to consider the upper and lower bounds of the correlations
that result when comparing individual ensemble members of the
forecast ensemble with individual sources of verifying data, i.e.,
rkl in (6). The result is shown in Figure 10. For year 1, even the
worst match between forecasts and analyses, the lower bound,
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FIGURE 10 | The local maximum and minimum correlation skill rkl between individual members of the reanalysis Xk and forecast Yl ensembles for Year 1, 3, and 5.

has regions of positive skill, although mainly over the oceans,
but by year 3 essentially all skill is lost. By contrast, skill for
the upper bound is positive virtually everywhere even at year 5.
The range of results is impressive which argues for large enough
ensembles so as to average out much of the noise in the ensemble
mean forecasts and, perhaps, the use of an ensemble average of
available verification data so as to average out (some of the) error
in the analyses.

7. MEAN SQUARE ERROR

The differences in correlation in (6) that depend on the averaging
of the forecasts and/or analyses are paralleled by differences in
mean square error in (7). Since variances differ among analyses,
so too will values of MSE. Figure 11 displays the root mean
square error (RMSE) eAA between the ensemble means of the
analyses and forecasts for years 1, 3, and 5. The RMSE increases
modestly with forecast range especially at higher latitudes where
error is relatively large. The reverse is to some extent the case
for regions of the subpolar North Atlantic and Labrador Sea
suggesting difficulties in the initialization over these regions

(Sospedra-Alfonso and Boer, 2020; Sospedra-Alfonso et al.,
2021).

Figure 12 displays the upper and lower bounds of the
RMSE ekA between individual analyses and the year 1 ensemble
mean forecast. The lower row of Figure 12 plots the RMSE
bounds ekl between individual analyses and year 1 forecasts.
The patterns in both Figures 11, 12 resemble that of the
standard deviation of the analyses in Figure 3 as would be
expected in that larger variations support the possibility of larger
errors and differences. The results again illuminate that skill
scores can differ depending on the verifying analysis used to
calculate them.

8. SUMMARY

There is increasing interest in climate change and climate
prediction on annual to multi-annual timescales based on
individual and multi-model approaches. To be of use such
forecasts must exhibit skill and this requires verification.
Reanalysis and station based sources of gridded climate data are
available for verification studies. The current study considers
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FIGURE 11 | Root mean square error eAA between the ensemble mean

analysis XA and the ensemble mean forecast YA.

seven reanalyses and four station based analyses of annual
mean surface temperature which is a basic decadal prediction
variable. The analyses are compared both for the global average
and locally. The study additionally investigates the correlation
and mean square error scores of decadal forecasts at ranges
from 1 to 5 years produced at the Canadian Centre for
Climate Modelling and Analysis. The 39 year period 1980–
2018 is common to all of the data sets and is used in
the analysis.

Globally averaged annual mean temperatures exhibit general
warming over the period, roughly characterized by fitting a
linear trend to the data, together with variations about the
trend. There are visible differences between different analyses

which are also seen in their deviations from the ensemble
average of the analyses. The magnitudes of the linear trends vary
modestly across the analyses with the trends of the station-based
analyses somewhat stronger than that of the ensemble mean
trend. Half of the trends in the reanalyses are larger and half
smaller than the ensemble mean trend. Globally averaged annual
mean temperature analyses have about 97% of their variance in
common with about 74% of the variance accounted for by the
ensemble mean linear trend and 26% by the variation about the
trend. The variance of the trends themselves is small at about 1%.
Global mean temperature results agree reasonably well among
the analyses although the agreement owes much to the trend in
temperature associated with global warming.

For geographically distributed annual mean temperatures,
anomalies from the long term mean are the variable of interest.
The global average of local temporal variability gives a broad
measure of overall variability and is seen to differ modestly
across analyses. The variances from the reanalyses exceed those
from the station-based analyses. Global averages of the local
variance components indicate that about 83% of the variance is
in common and about 24% is associated with the variance of
local trends.

The geographical distribution of the variance exhibits the
usual pattern with larger values at higher latitudes and over land.
The fraction of the overall variance accounted for by variation
about the ensemblemean shows amarked hemispheric difference
with larger values in the southern hemisphere and over tropical
land, presumably reflecting the asymmetry in the accuracy and
availability of the raw data entering the analyses. A pairwise
test comparing the variances of the analyses, discounting their
common features, indicates that the best agreement is over
the extra-tropical oceans and some land areas and the worse
agreement is over tropical oceans and at high latitudes (visually
associated with ice boundaries).

The differences in correlation and mean square error skill
measures for multi-year predictions of annual mean temperature
that arise from differences in the verifying data are considered
in three ways. The basic measure compares the ensemble
average forecast with the ensemble average of the analyses.
For correlation this is symbolized as rAA and the results
are reminiscent of those in, e.g., Boer et al. (2013, 2019a),
with a general decrease of skill over the first 3–4 years and
then a stabilization of the global averaged skill thereafter.
This behavior is attributed to the declining skill of the
initialized predictable component giving way to the skill of the
forced component.

This general behavior applies also to the skill of the ensemble
mean forecast as compared to different analyses symbolized as
rkA. For the global means of rkA the scores using station-based
verification data are greater than the global mean of rAA while
the values using reanalyses as verification tend to be lower.
The benefit of choosing a “compatible” verification data set is
illustrated by contrasting rkA using the HadCRUT5 analysis as
verification compared to using JRA-55 reanalysis as verification.
This suggests once again how different sorts of verification
data may affect the forecast skill reported by forecasting and
modeling centers.
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FIGURE 12 | The (left) maximum and (right) minimum root mean square error (top) ekA of different analyses Xk compared to the ensemble mean forecast YA, and

(bottom) ekl of individual analyses Xk and forecast members Yl for Year 1.

The upper and lower bounds of rkA are evaluated at each
gridpoint. The maximum value of rkA is greater than that of rAA
while the minimum is lower. The differences between these two
values indicate the range of skill values that different verifying
analyses can produce locally.

While not particularly pertinent to current decadal prediction
systems which forecast ensemble means, the differences are even
more notable when plotting the bounds of rkl, the correlation
values comparing single forecasts with single analyses. In this
case, the correlation is positive virtually everywhere for the upper
bound and negative almost everywhere for the lower bound.
These bounds apply locally so are not necessarily associated
with an individual analysis, but they nevertheless indicate that a
sequence of single forecasts verified with a single verifying data
set can “get lucky” or the reverse locally. Similar kinds of results
are seen for root mean square error.

An ensemble mean acts to average out unpredictable variance
and to improve the skill of a deterministic forecast. However,
even for the ensemble mean forecast the calculated skill of
the forecast can depend on the analysis used to verify it. This
can be problematic when comparing the skill of forecasting
systems which are verified with different analyses or even when
comparing different versions of the same forecasting system if the
verifying analysis does not remain the same. The implication is
that some agreed upon verification data set should be used by all
modeling centers when verifying decadal forecasting results. The
difficulty is in choosing that data set. Of course the “best” data set
should be used, if such can be identified and agreed upon. The
ensemble mean of available analyses is a straightforward option

but the differences between analyses, and the resulting differences
in forecast skill, mitigates against this. The ensemble mean of
a subset of recent analyses, assumed to be of improved quality,
would be another option. Such a standard verification data set
could be updated periodically to provide a benchmark against
which to verify and intercompare decadal forecasts.
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HadCRUT5 (https://www.metoffice.gov.uk/hadobs/hadcrut5/,
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