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Concerns over climate change have led to the promotion of biofuels for transport,

particularly biodiesel from oilseed crops and ethanol from sugar and starch crops.

However, additional concerns arose on whether the climate change mitigation potential

of biofuels is negated by the associated direct land requirements (dLUC) for growing

biofuel feedstocks, or by the indirect land requirements (iLUC) that compensate for the

diversion of crops from food/feed into fuel, both cases potentially leading to emissions

of greenhouse gases. We investigated official data over the last 20-year period to

estimate the magnitude of the effects ethanol production in the USA has had on land

use domestically and abroad. The data analyzed shows that, over the period, the use of

corn for ethanol increased by 118 Mt per year. According to our model, most of it came

from the displacement of other uses of corn, mainly feed, which was compensated for

by increased feed production elsewhere. Results indicate a relatively low dLUC but a

significant iLUC effect, mainly due to the compensation for the foregone feed production

as a result of diverting corn into ethanol production. Meeting the renewable-energy target

of 15 billion gallons of corn ethanol more than negates the climate benefits from avoided

use of gasoline (by 18.0 Mt CO2-eq.), suggesting that promoting corn ethanol for global

climate change mitigation may be counter-productive as, despite decreasing domestic

emissions, global emissions increase. We suggest that the policy be revised accordingly.

Keywords: indirect land use change (iLUC), corn ethanol, climate changemitigation, life cycle assessment, carbon

footprint

HIGHLIGHTS

- Indirect effects negate the potential of corn ethanol used as a gasoline substitute in the USA to
mitigate climate change.

- Diverting corn from other markets (food, feed, and export) is not burden-free as markets balance
supply via indirect manners.

- Emissions from indirect land use change (iLUC) are important contributors to the total
climate-change impact.
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INTRODUCTION

Concerns over climate change have led to the promotion
of biofuels for transport, particularly biodiesel from oilseed
crops and ethanol from sugar and starch crops (e.g., RFS,
U. S. Government, 2005). The production of fuel from
crops is intuitively superior in terms of its climate-change
impacts relative to equivalent fossil-based fuels: the carbon
released upon combustion is balanced by the carbon that the
crop photosynthesized while growing. However, when a life
cycle approach is taken, it is clear that there are a range
of indirect emissions that cannot be excluded from robust
and comprehensive assessments, such as those from fertilizer
production and land-use change (LUC). Most crops require
land on which to grow; converting land from a natural state to
cropland almost always entails a decrease in the terrestrial carbon
stock between the two steady states prior and post conversion,
the difference between those is what is emitted to the atmosphere
as carbon dioxide (CO2). LUC emissions can negate the climate-
change benefits from replacing fossil fuels with biofuels (see e.g.,
Brandão et al., 2011).

Cumulative LUC is estimated to account for around 1/3 of
total anthropogenic CO2 emissions (180 PgC, Myhre et al.,
2013), although some argue that LUC has been underestimated
(Arneth et al., 2017). Currently, terrestrial ecosystems account
for the sequestration of around 25% of global emissions of CO2

(Friedlingstein et al., 2020), but while it has been traditionally
thought that terrestrial ecosystems were net sinks of CO2, it
now appears that they may be a net source of greenhouse gases
(GHGs) to the atmosphere (Tian et al., 2016). Consequently, an
increase in demand for crops is expected to put pressure on land
which, in turn, may result in CO2 emissions from conversion of
natural ecosystems to cropland.

In addition, the climate changemitigation potential of biofuels
may be determined by the indirect land use (iLUC) requirements
for growing the food or feed crops that compensate for the
diversion from other uses into fuels (e.g., Searchinger et al., 2008),
leading to both emissions and avoided emissions, the net effect
being positive or negative depending on the particular case under
study. This issue has been documented and is well established
in scientific and policy contexts, and ways to measure it have
been proposed. (e.g., Fargione et al., 2008; Searchinger et al., 2008,
2015; Edwards et al., 2010; Ros et al., 2010; Rajagopal et al., 2011;
Thompson et al., 2011; Wicke et al., 2012; Palmer and Owens,
2015; Panichelli and Gnansounou, 2015).

The USA is the world’s leading producer of ethanol, producing
around half of the global output (see Figure 1), partly due
to the policy support that currently exists for biofuels. The
Renewable Fuel Standard (RFS)—a US federal programme

Abbreviations:CO2, Carbon dioxide; DDGS, Dried distillers’ grains with solubles;

dLUC, direct Land Use Change; EISA, Energy Independence and Security Act;

FAO, Food and Agriculture Organization of the United Nations; FAOSTAT, FAO

Corporate Statistical Database; GHG, Greenhouse gas; GWP, Global Warming

Potential; iLUC, indirect Land Use Change; LCA, Life Cycle Assessment; LUC,

Land Use Change; Mt, Million metric tons; N, Nitrogen; PgC, Petagram (1015

grams) of Carbon; PJ, Petajoule (1015 joules); RFS, Renewable Fuel Standard; USA,

United Stated of America; USDA, United States Department of Agriculture.

originated with the Energy Policy Act of 2005 (U. S. Government,
2005)—requires transportation fuel to contain a minimum
volume of biofuels. The standard was expanded by the Energy
Independence and Security Act (EISA) of 2007, which requires
renewable fuel to be blended into transportation fuel in
increasing amounts each year, up to 36 billion gallons by 2022.
The changes required by the 2007 legislation are usually referred
to as RFS2, and includes the requirement to use 36 billion
gallons of biofuels by 2022, of which a maximum of 15 billion
gallons from corn-starch ethanol and a minimum of 16 billion
gallons from cellulosic biofuels. It has long been established that
biofuels are not carbon-neutral (e.g., Johnson, 2009). One of the
provisions in RFS2 is that the biofuels adopted must emit lower
levels of GHGs along their life cycle relative to the fossil fuels
they replace. However, concerns remain on the likelihood that
biofuel expansion will meet its goal of climate change mitigation
(e.g., GAO, 2016), particularly since the share of corn used for
ethanol has increased from <1% in 1980 to around 40% in
2020 (USDA, 2021), which raises concerns over whether this
share increase came via cropland expansion (resulting in dLUC),
diversion from other corn uses (resulting in iLUC) and/or came
via intensification (i.e., increased production per ha), all of which
incurring GHG emissions.

Direct land use change (dLUC) entails converting land from
one use into another. Land uses range from natural ecosystems
to forest, grassland, permanent cropland or arable land. Indirect
land use change (iLUC) refers to the conversion of land to make
way for the crops that compensate those that were used for food
but that are now being used for fuel. For example, if corn is
diverted from feed to fuel in the USA, thereby decreasing global
supply of feed while feed demand remains unchanged, the now
underprovided feed market will trigger production and, in turn,
LUC elsewhere so that the feed gap is compensated for and the
feed market balances (i.e., maintains the same level of supply).
An alternative way of increasing production without land as an
additional factor of production is achieved via increased use of N
fertilizer, other agrochemicals, mechanization and breeding (see
Edgerton, 2009).

Our paper investigates the possible effects of producing
annually 15 billion gallons of corn ethanol in the USA on other
markets (e.g., food and feed), on the use of land domestically (i.e.,
USA) and abroad and, consequently, on the associated level of
global GHG emissions.

METHODOLOGICAL FRAMEWORK

Theory
As the aim of the research is to compare the changes in
land use and associated climate-change impacts induced by the
production of corn ethanol, we used the areas of land under the
different corn uses at the beginning of the period (year 1999) as
the counterfactual against which the actual land use at the end
of the period is measured (year 2018). We have thus assumed
that the counterfactual corresponds to the land dedicated to the
different uses of corn in the absence of policy support for ethanol,
and is represented by the corn land use areas for food, feed,
ethanol, etc. at the start of the period.
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FIGURE 1 | Global ethanol production by country or region [Renewable Fuels Association (RFA) (2021)].

We used official data from the (USDA, 2021) to estimate
how additional demand for corn ethanol may be met which, as
mentioned above, can take place in a variety of ways. The possible
sources of additional supply are:

(i) Diversion: use of corn from land already devoted to corn but
for non-ethanol uses, such as food and feed, which may result
in iLUC when the assumption of ceteris paribus in adjacent
markets is adopted, i.e., supply and demand in the markets for
food and feed are assumed to remain at constant levels;”

(ii) dLUC: additional production via corn cropland expansion
onto other land uses; and/or;

(iii) Intensification: yield increase via, e.g., increased fertilizer use
on existing cropland.

We have estimated increased supply to come from a combination
of the above. Subsequently, we estimated the indirect effects from
each of the sources, such as land use requirements. Therefore,
we have taken a consequential life cycle approach to estimating
the climate change impacts of the policy shock under analysis.
Life cycle assessment (LCA) and carbon footprinting aremethods
standardized by ISO (2006a,b, 2013). The carbon footprint of
products/services refers to their life cycle GHG emissions.

The need to assess systems comprehensively along their
supply chain led to the recognition that LCA is the appropriate
decision-support tool for assessing the impacts of biofuel systems
(European Union, 2009). LCA comprehensively compares
alternative systems with the same functionality, thereby
providing an appropriate basis to inform policy that aims at
supporting transitions toward more sustainable production and
consumption systems. LCA helps identify trade-offs between
alternatives, and highlights risks of shifting burdens between
impacts, life cycle stages, generations, and countries (Brandão,
2020). Published applications of environmental systems analysis

tools, such as LCA, to biofuel systems has elucidated that the
assumed climate benefit of biofuels is not always realized (e.g.,
Brandão et al., 2021b), not least because of indirect effects usually
not accounted for, such as iLUC (Searchinger et al., 2008).
Clearly, biofuel systems need to be analyzed quantitatively and
comprehensively before robust claims can be made about their
relative environmental superiority.

Choosing the Appropriate Period and Data
Sources
We used the available statistical data from the USDA (2021)
and FAOSTAT (2021) on key agricultural parameters, such as
quantity and area of corn, and corn use (food, feed, ethanol, etc.)
over the most recent 20-year period (1999–2018) in the USA.
Given the availability of data up to, and including, 2019, and the
need to minimize inter-annual variability, we selected the period
as the average of 1998–2000 to the average of 2017–2019.

Balancing Markets
The production of ethanol from corn entails the co-production
of dried distillers’ grains with solubles (DDGS), which is used as
animal feed, compensating to a degree for the diversion of corn
from feed to fuel.

As feed energy and protein are co-produced jointly in different
ratios across the various feedstocks, and soybean meal is co-
produced with soybean oil (thereby substituting the marginal
source of vegetable oil, which is identified as being palm oil), we
estimated the balancing of the feed and vegetable oil markets after
the shock (i.e., more DDGS but less corn in the feed market) by
solving multiple equations simultaneously. The use of this by-
product in the feed market implies that the exact amounts of feed
energy and feed protein be displaced if the market is to balance.
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We have followed the same method for balancing the food
and feed markets as that used in other studies (e.g., Dalgaard
et al., 2008; Schmidt andWeidema, 2008; Brandão et al., 2021a,b).
In our consequential LCA model, the fate of DDGS as animal
feed is included via substitution of the marginal feed crops. The
energy and protein contained in DDGS substitute the marginal
sources of feed energy and protein, i.e., the feedstocks responding
to a change in demand. Assuming that the demand for feed
is both global and independent from the fuel market, cereal
grain is identified as the marginal source for feed energy while
soybean meal as the marginal source for feed protein (Schmidt
and Weidema, 2008). We have adopted Schmidt and De Rosa
(2020) estimates for the marginal supply mix for feed energy and
feed protein, which is based on the suppliers’ largest share in
global production increase over the period 2012–2016.

- Feed energy: corn from the USA (61%) and from Argentina
(11%), and wheat from Russia (22%) and the Ukraine (7%),
representing 54% of the increase in global annual production.

- Feed protein: soybeanmeal fromUSA (52%) and Brazil (48%),
representing 70% of the increase in global annual production.

In addition, the co-production of vegetable oil from
soybean meal interacts with the vegetable oil market,
for which palm oil produced in Indonesia (55%)
and Malaysia (45%) are identified as the marginal
suppliers (Schmidt and De Rosa, 2020).

System Boundary Delimitation
Activities representing the cultivation of crops, such as corn,
soybean, wheat, palm oil (e.g., inputs of agrochemicals and fuels)
are included in ourmodel. For the processing of corn into ethanol
and the subsequent displacement of petroleum gasoline, we used
data from GREET (ANL, 2020).

After estimating the changes in supply of the marginal
crops, and respective areas and locations, we calculated
emissions for the LUC in those countries from data
previously modeled in Brandão et al. (2021a), based on the
share of current production of those marginal crops that
comes from expanding cropland in those countries. Land
diverted from other agricultural uses is excluded from the
delimitations of our system and, thus, is not subject to LUC
considerations, unlike the land requirements for producing
the marginal feed crops and associated land displaced by
the co-production of DDGS. The iLUC component of the
model is based on Schmidt et al. (2015), while the LUC
component is based on BSI (2011) (see section Estimating
Land-Use Change).

Characterizing GHG Emisisons
Emissions of carbon dioxide (CO2), methane (CH4), and nitrous
oxide (N2O) are included in the assessment by using IPCCGWP-
derived characterization reflecting cumulative radiative forcing
over 100 years, yielding factors of 1, 25 and 298 for CO2, CH4,
and N2O, respectively.

RESULTS

Estimating Supply Changes
Over the period in question, total annual corn supply increased
by 56% from 234 million metric tons (Mt) to 365 Mt, but
this increase was not equal among all uses: ethanol production
increased considerably over the period, while other uses
remained largely unchanged (USDA, 2021).

The total production of corn for ethanol increased from 13 to
134 Mt (the amount required to produce 15 million gallons of
ethanol), which corresponds to a share increase from 6% to 37%
of the total corn produced in the USA at the beginning and end
of the 20-year period, respectively. Corn use for feed remained at
around 140 Mt, implying a share decrease from 60% to 39% of
total production (and associated land use) over the period.

Estimating Displacement Effects
The data show that most of the corn being additionally produced
annually is used for ethanol (117 out of 131 Mt), indicating the
possibility of diversion from the other use(s) of corn that would
otherwise have occurred if the land devoted to other purposes
at the beginning of the period had remained dedicated to those
other uses at the end of the period of assessment. Assuming
that the corn land used for non-ethanol purposes would have
remained unchanged (i.e., continue being dedicated to non-
ethanol purposes) in the absence of policy support for biofuels,
we attributed the changes in the actual use of land for non-
ethanol corn relative to that of 20-years ago as a result of RFS2,
implying a lack of supply of corn to other uses relative to the
supply expressed in the counterfactual.

“Despite the production of corn increasing considerably over
the two decades, we estimated that of the 134Mt used for ethanol:

• 18 Mt came from land already under ethanol corn,
• 56 Mt came from expansion of land for corn, while
• 60 Mt came from diversion from other uses, particularly

– 44 Mt was from feed,
– 9 Mt was from food, and
– 7 Mt from exports.”

We have used the quantities diverted from their respective
markets to estimate the knock-on effects when the food, feed,
vegetable oil, and export markets balance supply as a result of
meeting the ethanol target expressed in RFS2. Figure 2 shows the
sources of corn supply: diversion of land from other uses and
expansion for fuel, and implicit yield increases.

Estimating how the Feed, Food, Export and
Vegetable Oil Markets Balance
The conversion of 134 Mt of corn to ethanol results in the co-
production of 37 Mt of DDGS (at 10% moisture), containing a
digestible energy content of 636.1 PJ and 10.1Mt ofmetabolizable
protein. However, the diversion of 44 Mt of corn from the feed
market subtracts 654.1 PJ and 2.8 Mt of protein, leaving −18.3
PJ and 7.2 Mt to be balanced by the marginal feed energy and
protein sources, respectively.

In order to balance the feed and vegetable oil markets,
4.6 Mt of palm oil are required, 19.7 Mt of soybean meal
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FIGURE 2 | Sources of corn supply for ethanol at the beginning and end of the 20-year period: diversion form other uses and land expansion (area and volume of

production—the figures on the bars refer to the volume of production in Mt). Negative values refer to land (and associated production) coming from diversion from

other uses (60 Mt). In addition, land expansion for corn for ethanol by 5.2 Mha produced an additional 56 Mt.

FIGURE 3 | Implications associated with the policy shock of 15 billion gallons of ethanol from corn in the USA, including the balancing of vehicle fuel, food, feed, and

vegetable oil markets.

are displaced, and 21.3 Mt of feed-energy crops will come
into production. Figure 3 illustrates this, as well as the land
requirements, which are further specified in Table 1. Figure 3

shows that 5.2 Mha are required for growing additional corn
for ethanol, plus 0.9 Mha for compensating for the diversion of
US corn from food purposes, plus 0.7 Mha for compensating
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for diversion from the export market and −3.2 Mha for
compensating for changes in the feed and vegetable oil markets.
Total LUC (direct and indirect) amounts to 3.8 Mha (see
Table 1).

Estimating Land-Use Change
dLUC emissions are included by estimating the carbon-stock
changes between the reference land use and the land used for
the production of the crop, and amortized over 20 years. In
order to estimate the reference land-use mix, our algorithm
reflected the trend over the past 20 years (1999–2018) of
expansion/contraction of forest, grassland, annual cropland and

TABLE 1 | Implications on crop production and land use associated with the

policy shock of 15 billion gallons of ethanol, including the balancing of markets

(food, feed, vegetable oil, and exports).

Changes in

production (Mt)

Land use

(Mha)

Corn (USA) 83.1 7.6

Wheat (Russia) 4.6 1.7

Corn (Argentina) 4.8 0.6

Wheat (Ukraine) 1.4 0.3

Soybean (USA) −13.3 −3.8

Soybean (Brazil) −12.1 −4.0

Palm oil (Malaysia/Indonesia) 4.6 1.3

Total 61.2 3.8

perennial cropland in the particular country (or country-mix)
from FAO data (FAOSTAT, 2021); see Brandão et al. (2021a).
The resulting values are consistent with the methodological
guidance given in RED (European Union, 2009) and its
amendment (European Union, 2015), PAS2050 (European
Commission, 2010), Carré et al. (2010), BSI (2011), Blonk
(2014), Novaes et al. (2017), ecoinvent (Moreno Ruiz et al.,
2019; Donke et al., 2020) as well as the guidelines for
National Greenhouse Gas Inventories (Buendia et al., 2019),
and include carbon stock changes in mineral and organic
soils due to changes in land management in addition to
changes in land use. IPCC tier 1 values for carbon stocks
in soil and vegetation, according to soil type, vegetation
type, land use, and land management were applied, using the
proportion of area of each soil/climate per country to produce
a weighted average.

Estimating the Carbon Footprint of the
Policy Shock
We have estimated that meeting the renewable-energy target
of producing 15 billion gallons of ethanol (45.1 Mt) from
corn in the USA is associated with the net GHG emissions
of 18.0 Mt CO2-eq., representing the emissions at different
stages of the ethanol life cycle: crop cultivation, processing,
transport, use, as well as substitution effects and land-
use change, which is included under crop cultivation (see
Figure 4). The impact is not evenly distributed among the
affected countries.

FIGURE 4 | Global annual emissions associated with producing 15 billion gallons of corn ethanol in the USA.

Frontiers in Climate | www.frontiersin.org 6 March 2022 | Volume 4 | Article 814052

https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://www.frontiersin.org/journals/climate#articles


Brandão iLUC Negates Bioethanol GHG Mitigation

DISCUSSION

The results highlight that the production of 45.1 Mt corn ethanol
substitute 28.0 Mt of gasoline, and thereby avoid the emission
of 85.2 Mt CO2-eq. Despite the significant avoided emission
of GHGs, as well as those from soybean production being
substituted in both the USA and Brazil, the net level of GHG
emissions is positive (by 18.0Mt CO2-eq.) due to GHG emissions
from ethanol processing and palm oil cultivation in South-East
Asia, which are larger than the avoided emissions and therefore
negate any climate benefit that substituting gasoline and soybean
cultivation incurs. The net results show that corn ethanol has a
carbon footprint of 105.1 gCO2-eq/MJ, which is 17% higher than
that of gasoline (90.2 gCO2-eq/MJ).

While meeting the renewable energy target may meet
domestic climate policy goals, as the USA would save 25.9 Mt
CO2-eq., the effect abroad would be mixed:

• Malaysia and Indonesia (South-East Asia) would see their
emissions increase significantly (by 72.6 Mt CO2-eq.),

• Brazil and Argentina (South-East America) would decrease
emissions by 40.3 Mt CO2-eq, and

• Russia and the Ukraine (Europe/Asia) would increase
emissions by 11.5 Mt CO2-eq.

A substantial contribution is made from land use change: 22.4Mt
CO2-eq., or 28% of the emissions in the crop cultivation phases
of the life cycle, in which it is included.

There is no scientific consensus on how to capture dLUC
and iLUC emissions in the carbon footprint of an agricultural
commodity, making bioenergy systems notoriously challenging
to model (see e.g., Cherubini et al., 2009) and giving rise
to disparate carbon-footprint estimates (Pereira et al., 2019;
Brandão et al., 2021b). Currently, standards are being developed
by the GHG Protocol that give guidance on this methodological
issue. Standardization is welcomed since the exclusion of LUC
considerations may lead to contradicting insights (e.g., Lee et al.,
2021).

CONCLUSIONS

The sustainability of ethanol has been scrutinized over the last
years (e.g., Farrell et al., 2006; Hill et al., 2006). Concerns over
the climate change mitigation potential of biofuels (e.g., Creutzig
et al., 2015), in particular, resulted in a debate that got richer
by including LUC (e.g., Foley et al., 2005; Silalertruksa et al.,
2009; Aoun et al., 2013; Berndes et al., 2013; Qin et al., 2016;
Saez de Bikuña et al., 2017) and iLUC (e.g., Fargione et al., 2010;
Hertel et al., 2010; Plevin et al., 2010; Di Lucia et al., 2012;
Ahlgren and Di Lucia, 2014), which helped in making more

robust and comprehensive estimations of the climate change
impact of biofuels.

We estimated the carbon footprint associated with meeting
the annual target of 15 billion gallons of ethanol from corn in

the USA, including direct and indirect effects, such as emission
associated with cropland expansion and intensification, as well
with the balancing of the various markets (food, feed, vegetable
oil and export) that occurs when diverting corn from other
uses and when co-producing DDGS that is subsequently used as
animal feed.

We conclude that using corn for ethanol as a gasoline-
substitute for transportation fuel is ineffective if the aim is
to mitigate global climate change. There are more effective
negative emission technologies that are less land intensive
(Brandão et al., 2021c). The potential for first-generation
biofuels used as transportation fuels to mitigate climate change
has been extensively questioned (e.g., Brandão, 2020), as
have bio-based products in general (e.g., Weiss et al., 2012).
Similarly, the concept of iLUC is disputed by many, but
is increasingly recognized as too important a parameter to
be ignored (e.g., Muñoz et al., 2015). What appears to be
universally recognized is the need to not shift burdens between
different impacts (e.g., Yang et al., 2012) or countries—a
phenomenon known as leakage (e.g., de Gorter and Drabik,
2011; de Gorter et al., 2013)—for which the net effects
have to be properly estimated and challenging parameters
should not be avoided because of their inherent uncertainty
(Weidema, 2009).
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