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The satellite-derived sea ice concentration (SIC) and thickness (SIT) observation over

the Arctic region are assimilated by implementing the Ensemble Optimal Interpolation

(EnOI) into the Community Ice CodE version 5.1.2 (CICE5) model. The assimilated

observations are derived from Special Sensor Microwave Imager/Sounder (SSMIS) for

the SIC, European Space Agency’s (ESA) Soil Moisture and Ocean Salinity mission

(SMOS) for the SIT of the thin ice, and ESA’s CryoSat-2 satellite for the SIT of the thick

ice. The SIC, and SIT observations are assimilated during 2000–2019, and 2011–2019,

respectively. The quality of the reanalysis is evaluated by comparing with observation

and modeled data. Three data assimilation experiments are conducted: noDA without

data assimilation, Ver1 with SIC assimilation, and Ver2 with SIC and SIT assimilation.

The climatological bias of the SIC in noDA was reduced in Ver1 by 29% in marginal ice

zones during boreal winter, and 82% in pan-Arctic ocean during boreal summer. The

quality of simulating the interannual variation of sea ice extent (SIE) is improved in all

months particularly during boreal summer. The root-mean-square errors (RMSEs) of SIE

anomaly in August are significantly reduced compared to noDA. However, the interannual

variations of SIT is unrealistic in Ver1 which requires the additional assimilation of the

SIT observation. The climatological bias of SIT over the Arctic was further reduced in

Ver2 by 28% during boreal winter compared to that in Ver1. The interannual variability of

SIT anomalies is realistically simulated in Ver2 by reducing the RMSEs of SIT anomalies

by 33% in February, and 28% in August by compared to that in Ver1. The dominant

interannual variation extracted by empirical orthogonal function (EOF) of SIT anomalies

in Ver2 is better simulated than Ver1. The additional assimilation of SIT improves not only

SIT, but also SIC. The climatological bias of SIE and the errors in leading EOF of SIC

anomalies in Ver2 is further reduced compared to those in Ver1 during boreal winter.

However, improvements led by assimilating additional SIT observation is not clear during

boreal summer, possible due to the lack of available SIT observation during this season.
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INTRODUCTION

Arctic sea ice is an important component of the Earth system
in a warming climate that changes most dramatically during
recent decades (Serreze et al., 2009; Screen and Simmonds,
2010; Perovich et al., 2017; Kwok, 2018). Arctic sea ice
extent and thickness have consistently decreased rapidly in
all seasons due to the anthropogenic forcing during last few
decades (Kwok and Rothrock, 2009; Stroeve et al., 2012a). In
addition to the contribution of anthropogenic forcing, internal
variability dominating the Arctic summer circulation trend is
also important cause of declining in September Arctic sea ice
since 1979 (Ding et al., 2017). The rate of Arctic sea ice decline
is unprecedented over at least the past 1,500 years according to
reconstructed sea ice historical data (Kinnard et al., 2011), and
an ice-free state is expected in the middle of twenty-first century
according to climate model predictions under the high emission
of the greenhouse gases (GHGs) scenarios (Wang and Overland,
2012; Notz and Stroeve, 2016; Guarino et al., 2020; Notz et al.,
2020).

What is more, dramatic decrease of Arctic sea ice has
increased interannual variability in the sea ice extent (SIE),
particularly from summer to autumn. The interannual variability
of the summer Arctic sea ice is non-linearly rising with a
warmer climate, so that uncertainties for Arctic sea ice prediction
also become large for recent decades (Goosse et al., 2009).
Holland et al. (2008) showed the significant increase in standard
deviation of September SIE anomaly in the global climate model
projections, which eventually would contribute to decrease the
predictability for Arctic sea ice in the future. On the other hand,
Massonnet et al. (2018) suggested that Arctic sea ice volume
will exhibit less year-to-year variability through the enhanced
action of growth and melt processes as the ice thins in the
future projections.

It has been recently recognized that Arctic sea ice plays an
active role on the weather and climate system in the middle
latitude in Northern Hemisphere as well as those in Arctic
region (Zhang et al., 2012; Kim et al., 2014; Mori et al., 2014;
Kug et al., 2015). The recent decrease in the sea ice affects the
surface energy budget by the reducing the surface albedo and
disappearing an insulating cap of the air-sea interfaces, which can
increase the oceanic temperature to amplify the variation of the
local near-surface temperature in Arctic (Stroeve et al., 2012b),
then it induces the stationary Rossby wave-train to influence
the climate in mid-latitudes particularly over the Eurasian and
North America (Bader et al., 2011; Cohen et al., 2012; Mori et al.,
2014; Kug et al., 2015), north Pacific such as the Aleutian low,
and tropical central Pacific (Overland et al., 1999; Kennel and
Yulaeva, 2020). That is, Arctic sea ice states are also considered
as the cause of the weather and climate variability beyond the
polar region (Deser et al., 2015). The possibility of mid-latitude
effects of Arctic sea ice leads to increasing demand for the
accurate predictions of the Arctic sea ice in recent decades, even
though its influence on the mid-latitude climate significantly
varies on the period analyzed, implying the necessity of the
robust observational evidence (Overland et al., 2016; Blackport
and Screen, 2020a,b; Cohen et al., 2020).

In addition, an accurate prediction of the Arctic sea ice leads to
economic benefits by predicting the shipping route through the
Arctic (i.e., Northern Sea Route, NSR) for commercial shipments
between Europe/North America and Asia (Liu and Kronbak,
2010; Smith and Stephenson, 2013). Feasibility of the NSR is
only possible when the climate model with high-resolution grid
system is developed and the accurate predictions for the sea
ice state (concentration and thickness) are guaranteed (Aksenov
et al., 2017). Therefore, there has been a rising demand for
Arctic sea ice predictions at sub-seasonal to interannual time
scales (Eicken, 2013). In addition to the deterministic sea ice
forecasts (Blanchard-Wrigglesworth et al., 2015; Wayand et al.,
2019), as the forecast of Arctic sea ice is intrinsically uncertain
due to the uncertainties originated from the chaotic nature of
the sea ice component and irreducible model errors as with other
climate system, probabilistic forecasts of Arctic sea ice have been
explored recently to quantify the uncertainty in a forecast and to
produce the optimal decision making (Dirkson et al., 2019; Gao
et al., 2021).

The quality of Arctic sea ice prediction using the numerical
model strongly depends on the degree of implementation of
sea ice-related dynamical/physical processes in the dynamical
model and the quality of the initial condition (Chevallier et al.,
2013; Sigmond et al., 2013; Wang et al., 2013; Tietsche et al.,
2014). In particular, Tietsche et al. (2014) insisted that shortage
of the knowledge of Arctic sea ice initial conditions should
impede the skillful predictions. To guarantee the skillful sea
ice predictions, it is essential to improve the initial conditions
by implementing data assimilation techniques using available
observations (Lisæter et al., 2003).

Fortunately, the satellite-derived observational data of the sea
ice concentration (SIC) have been successfully produced for over
30 years (Cavalieri et al., 1996). In addition, although retrieval
methods are an early stage of development, pan-Arctic sea ice
thickness (SIT) satellite observations have been produced since
2002 (Hendricks et al., 2018), and dataset with high spatial
gridded resolution of 12.5 km and temporal resolution of 1
day have been also yielded from the 2010s (Tian-Kunze et al.,
2014). Thus, several studies have carried out data assimilation
of satellite-derived SIC and SIT into dynamical sea ice models
using advanced assimilation techniques. Lisæter et al. (2003)
used an ensemble Kalman filter (EnKF) to assimilate SIC data
derived from Special Sensor Microwave/Imager (SSM/I) carried
on board the satellites of the Defense Meteorological Satellite
Program (DMSP). Lindsay and Zhang (2006) conducted a
nudging scheme to assimilate observed monthly averaged SIC
and sea ice velocity independently into the coupled ice-ocean
model. Stark et al. (2008) assimilated the SSM/I SIC and sea ice
drift data using an optimal interpolation scheme into the Met
Office Forecasting Ocean Assimilation Model (FOAM). Caya
et al. (2010) implemented the 3D-VAR to assimilate SIC into the
Community Ice-Ocean Model (CIOM). The positive impact of
assimilation on improving the simulation quality of the modeled
SIC was well-established in aforementioned studies.

The next generation of researches emphasized the updates
of the SIT in addition to the SIC for the accurate estimates
of the growth/decaying speed of the sea ice, and the resultant
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sea ice openness regulating the ocean-atmosphere interactions
are strongly dependent on the SIT. As a pioneer work, Tietsche
et al. (2013) and Massonnet et al. (2013, 2015) showed that the
quality of SIT in their reanalysis is improved by updating both
SIC and SIT with the given SIC increment (i.e., multivariate
updates). However, Massonnet et al. (2015) discussed that those
results are needed to be further verified because of the inadequate
observations of SIT and have large uncertainties in the estimation
of SIT. In addition, their methodology has a clear limitation to
improve the SIT simulation as the SIT updates is solely dependent
on the SIC observation, and the degree of the update is based on
the modeled relationship between SIC and SIT.

There are attempts directly assimilating SIT using satellites-
based SIT observation (Yang et al., 2014; Chen et al., 2017;
Blockley and Andrew Peterson, 2018; Mu et al., 2018; Xie et al.,
2018). For example, Yang et al. (2014) shows that the data
assimilation of SIT observation of SMOS into an ocean-sea
ice model using local ensemble singular evolutive interpolated
Kalman filter (SEIK) improves the forecast skill of SIT. Xie et al.
(2018) assimilated SIT observation of merged measurements
from CS2 and SMOS (CS2SMOS) into the TOPAZ4 system
with Deterministic EnKF during boreal winter and showed the
improvement in the SIC and sea ice drift in the central Arctic
Ocean and Kara Sea.

However, the period of the experiments for the SIT
assimilation is only for few months or years in previous
researches, therefore, it was rather short to assess the degree
of improvement in simulating long-term climatology and the
interannual variability (Massonnet et al., 2015). This is, it has
not been tried to reconstruct the Arctic sea ice states more
than a decade by assimilating both satellite-based SIC and
SIT observations.

In this study, we reconstructed the Arctic sea ice states for a
decade (i.e., during 2010–2019) by assimilating satellite-derived
SIC and SIT into the Los-Alamos sea ice model version 5.1.2
(CICE5) using Ensemble Optimal Interpolation (EnOI) scheme
(Backeberg et al., 2014; Mignac et al., 2015; Kaurkin et al., 2016).
In addition, the reanalysis quality by assimilating SIC observation
is evaluated through the data assimilation experiment for two
decades (i.e., during 2000–2019). This article is organized as
follows. The description of the model and methods is given in
Section Data and Methods. In Section Results, the impact of the
data assimilation on the SIC and SIT states are assessed. Summary
and Discussions are given in Section Summary and Discussions.

DATA AND METHODS

The Sea Ice Model and
Atmospheric/Oceanic Forcing
We used the Community Ice CodE (CICE) version 5.1.2 sea
ice model, will be referred as CICE5 for simplicity, developed
by the Los Alamos National Laboratory (LANL) (Hunke et al.,
2015). The CICE model is a state-of-the-art sea ice model,
which is originally developed as a stand-alone version, and
it is now set up as a sea ice component of the National
Center for Atmospheric Research (NCAR) Community Earth

System Model (CESM) (Gent et al., 2011; Hurrell et al., 2013;
Danabasoglu et al., 2020), and the others (Maclachlan et al.,
2015). The CICE5 is a multicategory sea ice model to describe
the ice thickness distribution with five thickness categories (fixed
thickness boundaries are 0, 0.64, 1.39, 2.47, and 4.57m by
default). The sea ice in each category consists of seven vertical
layers and one snow layer to resolve the sea ice temperature and
salinity variations. The CICE5 has a thermodynamic process of
mushy layer thermodynamics and a dynamic process of elastic-
anistropic-plastic dynamics (Wilchinsky and Feltham, 2006;
Turner et al., 2013). The most complex physics parameterization
schemes such as melt pond and ridging is recently added in this
version of the CICE. The horizontal resolution of this model is
1◦ approximately with 320× 384 dimensions on a displaced pole
grid and the time step is 1 h.

In this study, CICE5 is forced at the surface with atmospheric
and oceanic fields. The National Center for Environmental
Prediction Reanalysis 2 (NCEP R2) dataset is used for
atmospheric forcing (Kanamitsu et al., 2002). The atmospheric
forcing for CICE5 was passed on to the sea ice in flux form at the
atmosphere-sea ice boundary (Lee et al., 2019). The near-surface
atmospheric variables [6-hourly specific humidity (kg kg−1), 2-
m air temperature (K), 10-m U-wind and V-wind (m s−1)] was
used to calculate the turbulent fluxes using bulk formulae (Large
and Yeager, 2009), and the near-surface air density (kg m−3) was
calculated using the relationship delineated in Large and Yeager
(2009). Monthly mean downward shortwave/longwave radiation
(W m−2) and total precipitation rate (kg m−2 s−1) were used as
atmospheric forcing.

The Optimal Interpolation Sea Surface Temperature
(OISST) version 2 from National Oceanic and Atmospheric
Administration (NOAA) (Reynolds et al., 2002) was used for
daily sea surface temperature (SST) () forcing. The SST of
mixed-layer slab ocean model in CICE5 is nudged toward
the OISST data with 21-day Newtonian relaxation time-scale.
The sea surface salinity was fixed constant value of 34 psu in
this work.

Data for Assimilation and Validation
The satellite-observed daily SIC are obtained from the National
Snow and Ice Data Center (NSIDC, http://nsidc.org/data/
NSIDC-0079). They are derived from the ScanningMultichannel
Microwave Radiometer on the Nimbus-7 satellite and from
the Special Sensor Microwave Imager/Sounder (SSMIS) aboard
Defense Meteorological Satellite (DMSP) F17 using the bootstrap
algorithm (BT) version 3 (Comiso, 2017). The SSMIS BT data is
on the polar stereographic projection with a spatial resolution of
25 km. The observational error value of 0.15 is uniformly given
for accounting for measurement and representation errors (Janji
et al., 2018), according to suggestion of Tonboe and Nielsen
(2010). The OISST version 2 reanalysis data for daily SIC is also
used for constraining the long-term control simulations to obtain
the stationary ensemble perturbations as explained in Section
Data Assimilation Scheme (Reynolds et al., 2002).

For SIT, the satellite-observation data have been derived from
two different dataset of CryoSat-2 (CS2) and Soil Moisture Ocean
Salinity (SMOS). The CS2 SIT is used here (http://nsidc.org/data/
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RDEFT4). The CS2, the European Space Agency (ESA) satellite
mission, Level-4 SIT data based on radar altimeter measurements
of sea ice freeboard is used for the area where the SIC is >0.7
(i.e., 70% of total area in the corresponding grid point) (Kurtz
et al., 2014; Kurtz and Harbeck, 2017). The period for CS2
assimilation spans from January 1, 2011 to December 31, 2019.
The SMOS is obtained from (https://icdc.cen.uni-hamburg.
de/thredds/catalog/ftpthredds/smos_sea_ice_thickness/catalog.
html). The L3C SMOS, the ESA mission, version 3.1 from
January 1, 2011 to April 15, 2018 and version 3.2 from October
1, 2018 to December 31, 2019. Daily thickness data derived
from L3B brightness temperatures using a single layer emissivity
model is used for assimilating the modeled sea ice thinner than
1.0m (Kaleschke et al., 2012, 2016; Tian-Kunze et al., 2014).
The CS2 data is on the polar-stereographic grid system with
a horizontal resolution of 25 km, and the SMOS data is on
the NSIDC polar-stereographic grid system with a horizontal
resolution of 12.5 km. The uncertainties of the observed SIT data
are 1.5m (0.3m for random and + 1.2m for systematic) for
CS2 and 0.7m (averaged of thin thickness) for SMOS, according
to Chen et al. (2017). The satellite-based SIT observations are
only available in the cold season from September (October) to
May (April) for CS2 (SMOS and CS2SMOS), as it is difficult to
discriminate between measurements from open ocean and sea
ice due to melt ponds forming on the sea ice surface during the
melt season (Tilling et al., 2018).

The verification for the quality of updated sea ice field by
assimilating satellite data is conducted by utilizing observation
and reanalysis data. The daily SIC derived from passive
microwave sensor data (SSM/I) using the NASA Team algorithm
(NT) is used to validate the reanalysis output (Cavalieri et al.,
1996). The SSMIS NT data is used here (http://nsidc.org/
data/NSIDC-0051). The Pan-Arctic Ice-Ocean Modeling and
Assimilation System (PIOMAS) SIC and SIT are also used (Zhang
and Rothrock, 2003). The weekly averaged SIT product version
2.3 of CS2SMOS derived from merging CS2 and SMOS using
an optimal interpolation scheme is used to validate the updated
thickness field (Ricker et al., 2017). The CS2SMOS data is used
here (http://spaces.awi.de/display/CS2SMOS). Since CS2SMOS
is created by merging CS2 and SMOS, there is some overlap with
the assimilated data set. The grids of CS2SMOS are projected
onto the 25 km EASE2 Grid. The model output, observation
and reanalysis data are all re-gridded onto the 1 rectilinear
latitude/longitude grid system from a displaced pole grid system
used to solve the polar singularity problem for model and from
Polar-Stereo graphic for satellite observations.

Data Assimilation Scheme
The satellite-derived sea ice data is assimilated using an Ensemble
Optimal Interpolation (EnOI) scheme (Figure 1). The EnOI
method approximates the background error covariance matrix
(B matrix) by using a stationary ensemble member instead of
a multiple realization of the model for the Ensemble Kalman
Filter (EnKF; Evensen, 2003). Note that, because the mean
state of Arctic sea ice is changing rapidly, the EnOI method
with stationary B matrix used in this study has a limitation

that it would cause a performance degradation compared to
techniques considering flow-dependent features such as EnKF.
While the EnKF is advantageous by using state-dependent
ensemble perturbations, the use of EnKF is often limited as it
requires multiple numbers of realization. Therefore, the EnOI is a
cost-effective alternative to the EnKF to assimilating the complex
dynamic models requiring high computation costs to operate
(Oke et al., 2007). As a result, the data assimilation algorithms
based on the stationary B matrix is still widely used to produce
many SIC reanalysis products such as HadISST with OI (Rayner
et al., 2003), NOAA OIv2 with OI (Reynolds et al., 2002), and
ECMWF ORAS5 with 3D-Var (Zuo et al., 2019).

In our work, to obtain the stationary ensemble perturbations,
two sets of model integrations are performed. First, long-term
control simulations are obtained by nudging the daily OISST sea
surface temperature (SST) data along with the daily OISIC SIC,
and monthly PIOMAS SIT data (dotted black line in Figure 1).
The restoring time scale are 21-day for SST, 6-h for SIC, and 5-
day for SIT. Note that the small change in the nudging time-scale
does not lead systematic changes in the nudged states. The state

vector in a control simulation is denoted as x
s(y)
d

, where d is dth

day of a year, and y denotes a year between 1982 and 2019.
Secondly, the perturbed experiment is performed to obtain

the ensemble perturbations ε
n(y)

d+1
, which is the perturbation

for the stationary B matrix. Initially (i.e., at January 1st, 1982),
the initial condition by adding a random perturbation to a

control simulation (i.e., x
s(y)
d

+ δx
s(y)

d
) are generated. Then, 1-

day forecasted state x
f (y)
d+1

is obtained by integration the model

for 1-day [i.e., x
f (y)
d+1

= Md→d+1

(

x
s(y)
d

+ δx
s(y)

d

)

, whereMd→d+1

is the dynamical forecast model from day d to d + 1]. Then,
the difference from the control simulation at a corresponding

day (i.e., ε
n(y)

d+1
= x

f (y)
d+1

− x
s(y)
d+1

) is defined as the perturbation
(red bidirectional arrow in Figure 1). This difference is rescaled
by 10% of its original amplitude, then, added to the initial

condition at next day (i.e., δx
s(y)

d+1
=

ε
n(y)

d+1
10 ) (Green left bracket in

Figure 1). This procedure is repeated for every day from 1982

to 2019 to obtain the ε
n(y)

d
. As a result, the procedure to obtain

the perturbations is similar to those for bred vectors (Toth and
Kalnay, 1993, 1997).

The reason to utilize the bred vector approach is to prescribe
fast-growing perturbations that can successfully mimics the
forecast errors (Toth and Kalnay, 1997). The fast-growing
errors dominate total forecast errors by definition, while the
contribution of the non- or slow-growing errors for total forecast
error becomes smaller in time. Therefore, the bred vector,
which is known as a fastest growing perturbation, effectively
represents forecast uncertainty with limited the number of
ensemble members. Since the number of ensembles (38 in this
study) is limited compared to the degrees of freedom of themodel
(about 105 of CICE5), the ensemble perturbations generated by
the procedure mimicking the breeding method grows faster than
others to better represent total forecast errors with the limited
number of samples.
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FIGURE 1 | The schematic of the generation system for forecast error perturbations of ε
n(y)
d+1 for calculating stationary background error covariance matrix (i.e., B

matrix). The black (dotted) line represents the model long-time simulation nudged sea ice and ocean reanalysis with atmospheric forcing and the black (solid) line

represents the 1-day forecast experiments forced atmospheric forcing data without restoring sea ice fields. The blue dot represents the initial conditions from the

model long-time simulation. The red bidirectional arrow represents the 1-day forecast errors and the green left bracket represents the forecast perturbations using the

bred vectors.

The procedure for generating B(d) matrix (d denotes a
number of day varying from 1 for 1st January to 365 for 31th
December) using the perturbations is as follows. B(d)matrix has

size of Nb × Nb (Nb is a dimension of the state vector) and ε
n(y)

d
denote the forecast error state vectors at day d in year y with
size of Nb × 1. By assigning each year’s perturbation sequentially
at each column, εd for day d is generated whose size is Nb ×

Ny, where Ny is the number of years (i.e., 38). The stationary

B(d) matrix is constructed as B
(

d
)

≈
1
Ny

[ εd] [ εd]
T . As B

matrix is separately formulated by the calendar day, the Bmatrix
accounts to the seasonal spatial differences in the perturbations.
The B matrix for the each variable is formulated separately in a

univariate sense: the observed information of one variable had

no effect on the others during the assimilation procedures.

It should be noted that the generating algorithm of ensemble

error perturbation used in this study does not take into account

themodel uncertainty originated from the physical parameters or

the boundary conditions. That is, only the uncertainty led by the

instability in the system was considered in the background error
covariance matrix B, which can underestimate the amplitude of

the error in the background states.
Then, in order to prevent non-physical update of analysis by

the observation at unrealistically remote region, the localization

scheme of Local Analysis (LA) is carried out (Sakov and Bertino,

2011). A localization radius of 800 km is applied as in Kimmritz

et al. (2018) and Massonnet et al. (2015). With LA, the updates at
each grid point are applied using observations within a specified
distance. In addition to this, LA uses a quasi-Gaussian weight
function as a localization function (Gaspari and Cohn, 1999),
so observation and background error covariance in observation
space are downweighted with increasing distance from the
updated grid point like a Localized Ensemble Transform Kalman

Filter (LETKF) (Hunt et al., 2007). Post-processing to conserve
physical ranges for such variables is applied to keep the analysis
states as physically reasonable values. That is, in the case with
analysis value of the SIC with negative, and value >1, they are
changed to 0, and 1, respectively (Kimmritz et al., 2018). The
minimum value of the SIT analysis is set to 0.

In this study, the CICE5 has five categories of the SIT.
A fractional sea ice area of each category is a prognostic
variable, however, the total SIC, which is denoted by the
sum of fractional ice areas for each category, is a diagnostic
variable. As the satellite-derived SIC data only provide the
aggregated concentration, the SIC increment is calculated using
the difference between the modeled total SIC and the observed
SIC. Then, analysis increment of total SIC are distributed to each
category according to the modeled percentage of the SIC in each
category with respect to the total value as method used in Chen
et al. (2017). Each category of the SIT is also updated in the
same way. Although the EnOI also can facilitate the multivariate
scheme as in Zhang et al. (2018) to update each SIT category,
it has not been validated whether the static covariance matrix
between the aggregated SIT and SIT in each category successfully
operates for the multi decades. For this reason, we adopted a
relatively simple scheme as aforementioned.

When the SIC increment is positive in the case of both SIC
and SIT is 0, the SIC in each category is updated by multiplying
the pre-defined ratio for each category. The pre-defined ratios
are 60, 20, 10, 5, and 5%, for the category 1–5, respectively.
The SIT in each category is updated as a averaged value of the
upper and lower thickness limit of each category, which is 0.32,
1.02, 1.93, 3.52, and 6.95m for the category 1–5, respectively. To
update the positive SIT increment in the case of both SIC and
SIT is 0, the SIT in each category is updated by multiplying the
aforementioned pre-defined ratios, and the SIC in each category
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is updated by dividing the SIT increment to the aforementioned
fixed SIT values.

Experimental Design
The impact of data assimilation of the SIC and SIT is investigated
by comparing the quality of the reanalysis in three experiments.
“noDA” is a control experiment forced by atmospheric and
oceanic forcing fields without any data assimilation. It should be
noted that the noDA experiment is not same as long-term control
simulation used to obtain the ensemble perturbations in Section
Data Assimilation Scheme. The long-term control simulation
used to generate ensemble perturbations is the experiment in
which sea ice fields are nudged in addition to atmospheric and
oceanic forcing, but noDA is driven by forcing only without
nudging of sea ice. “Ver1” is an experiment assimilated only
SIC, and “Ver2” assimilates both SIC and SIT satellite data. In
Ver2, the state vectors for SIC and SIT are constructed and
updated separately. The period for the data assimilation in Ver1
is 2000–2019. The data assimilation of the SIT in Ver2 was
performed from 2011 to 2019 when SIT observation data is
available. Therefore, the reanalysis value before 2011 for Ver2
is identical to Ver1. All data assimilation experiments have a
spin-up time of 1-year.

RESULTS

Properties of the Background Error
Covariance Matrix
Figure 2 shows the standard deviation (STD) of the SIC
perturbation for calculating Bmatrix at 15th January, April, July,
and October. In January, the STD of SIC perturbation is relatively
high in themarginal sea ice regions, while it is quite small over the
rest of areas including the North Pole (Figure 2A). This denotes
that the instability leading the growth of the SIC is relatively
high over the marginal sea ice regions including the Atlantic
sector of the Barents and Greenland Seas and in the Pacific
sector of the Bering Sea and Sea of Okhotsk, and these regions
are characterized by strong atmospheric and oceanic variability
during boreal winter (Semenov et al., 2015). In April, the overall
STD pattern is similar to January, but the amplitude is relatively
weak (Figure 2B). The SIC variability in July and October shows
a reduced regional difference compared to boreal winter and
spring season (Figures 2C,D). These features are evident by the
year-to-year variability shown in satellite observations for the
same period (not shown). This implies that the background error
perturbations would reflect the inter-annual variability of the sea
ice in observation and the state-of-the-art numerical models.

To examine the detailed spatial distribution of the B matrix,
Figures 3A,D shows the global covariance patterns of the
background error perturbations with respect to two selected
points at 15th February, and October, respectively. Note that
the localized covariance pattern is shown as in a final form of
B matrix for the data assimilation. The covariance pattern with
respect to the East Greenland (75◦N, 10◦W) is tilted in northeast-
southwest direction (Figure 3A). This tilted spatial distribution
is similarly shown in the SIC and sea surface temperature
(SST) regression patterns using monthly anomalies from long-
term simulation (i.e., noDA) (Figure 3B). More importantly,

FIGURE 2 | The year-to-year standard deviation at 15th January (A), April (B),

July (C), and October (D) of forecast error perturbations for sea ice

concentration (a fraction from 0 to 1) generated by using long-time integration

during 1982–2019.

the tilted direction of the covariance pattern is consistent
with the direction of the climatological sea ice drift, indicating
that the East Greenland Current (EGC) is a major contributor to
transport sea ice export southward along the continental margin
(Figure 3C). This indicates that the sea ice particle mainly moves
southwestward, therefore, the covariance with respect to any
given point around this region would have relatively high values
in southwest direction.

Similarly, over Beaufort Sea (i.e., 75◦N, 150◦W), the
covariance pattern exhibits zonally-elongated pattern
(Figure 3D), and it is also shown in the regression using
monthly SST and SIC from long-term simulation (Figure 3E).
The Beaufort Gyre (BG), which flows westward, can be
responsible for this zonally-elongated pattern by transporting
sea ice particle along the BG. This clearly demonstrates that the
perturbations for the Bmatrix reflect the physical properties and
balances associated with the sea ice variability.

Figure 4 shows that the time evolution of SIC anomalies over
2000–2019 at the two points used in Figure 3 for the observation
and background state of Ver1 and Ver2. The amplitude of the
STD of the ensemble perturbations, used to formulate B matrix,
are added to, and subtracted from the background state (i.e.,
before update by assimilation). The observations are generally
within the uncertainty range of the model states estimated using
stationary ensemble perturbations. It can be also seen that it is
also well-represented when zooming in on 2007 (Figures 4B,D).
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FIGURE 3 | The covariance patterns (A,D) in forecast error perturbations of sea ice concentration (a fraction from 0 to 1) generated by using long-time integration, the

regression patterns [shaded for sea ice concentration and contour for sea surface temperature (◦C); B,E], and mean sea ice drift (cm/s; C,F) in model long-time

integration outputs during 1982–2019. The covariance and regression patterns between a selected grid point (A–C: 75N, 10W in Greenland Sea; D–F: 75N, 150W in

Beaufort Sea) and global grid points are left and middle column. The upper (lower) panels are results at 15th February (October). All the plots are localized using

quasi-Gaussian weight function with localization radius of 800 km.

This indicates that the amplitude of B matrix properly measures
the amplitude of the model uncertainty to some extent.

The Effect of Data Assimilation
Climatology and Seasonal Cycle
Figure 5 shows that the climatological seasonal cycle of sea ice
extent (SIE, the summed area of all Arctic grid points with SIC >

0.15) over 2000–2019 (Figure 5A), and 2011–2019 (Figure 5B).
The STD of the analysis errors representing the uncertainty
embedded in the final reanalysis product (Xa) is obtained by
calculating the diagonal component of the equation P−1

a = P−1
b

+

HTR−1H, where Pa, Pb, and R are the covariance matrices of
the analysis, background, and observation, respectively, and H is
observational operator.

Compared to noDA, the seasonal evolution of the SIE in Ver1
and Ver2 becomes quite similar to the satellite observation (i.e.,
SSMIS NT). For example, in Ver1, the SIE is almost identical to
the observation, and exhibited a relatively small difference only

from November to February. On the other hand, in noDA, the
SIE tends to be systematically underestimated, and overestimated
during melting, and freezing season, respectively. The negative
SIE bias in noDA during the boreal summer is due to the
excessive bottom melting process during previous seasons (not
shown). Then, the ice thinning during boreal summer play a
role on the increase in the sea ice production during the ice
growing season, whichmay contribute to the excessive SIE during
boreal winter (Massonnet et al., 2018). The reduction in the
climatological SIE bias in the Ver1 and Ver2 compared to the
noDA is particularly robust in August and September, which is a
melting season, rather than during January and February, which
is the ice freezing season. This improvement in simulating SIE
in Ver1 and Ver2 is also clearly shown in monthly time-series
(Figure 5C).

It is interesting to note that the SIE in Ver2 is better
than that in Ver1, indicating that the assimilation of the SIT
observation in Ver2 further reduces the climatological bias in
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FIGURE 4 | The temporal evolution over 2000–2019 (A,C) and in 2007 (B,D) of sea ice concentration anomalies (a fraction from 0 to 1) for observation (black) and

background states of Ver1 (blue) and Ver2 (red) at a grid point used in Figure 3 (A,B: 75◦N, 10◦W in East Greenland Current area; C,D: 75◦N, 150◦W in Beaufort Gyre

area). The orange (skyblue) shading marks the uncertainty (standard deviation) of the ensemble perturbations.

SIC in Ver1 (Fritzner et al., 2019). The SIE in Ver2 exhibits
smaller climatological bias during January-February than that in
Ver1. The improvement is minimal during 2000–2019, however,
it becomes clear during 2011–2019 (Figures 5B,C). On the other
hand, SIE in Ver2 is almost identical to that in Ver1 during
boreal summer. This might be due to the fact that the SIC is
already well-fitted to the observed by assimilating the SIC during
boreal summer.

Figure 6 shows the spatial distribution of the climatological
SIC of SSMIS NT and bias in noDA and Ver1 in February
and August when the improvement in the SIE simulation was
robust. The observation shows that the sea ice is distributed
not only in polar regions but also in the subpolar regions
such as Sea of Okhotsk, Bering Sea, Labrador Sea, and Baffin
Bay in February (Figure 6A). The subpolar regions have no
sea ice in August (Figure 6D). The climatological bias of SIC
in noDA is greater than the observation about 0.3 in most
of marginal ice zones, while it is relatively weak over polar
region (Figure 6B). The positive bias of SIC in the noDA in
most of marginal areas is significantly reduced more than a
quarter in Ver1 (Figure 6C). In August, the negative bias of
SIC in noDA reached up to −0.4 throughout the central Arctic
Ocean with relatively weaker bias amplitude over Canadian

Archipelago (CAP) region (Figure 6E). This negative bias is
almost disappeared in Ver1 (Figure 6F). This confirms that
the SIC data assimilation improves climatological state of the
assimilated variable in both freezing and melting seasons.

To examine the simulation quality of the climatological SIT,
Figures 7A,B show the Northern Hemisphere-averaged monthly
SIT climatology, and the spatial distribution of the climatological
SIT of CS2SMOS and bias in Ver1 and Ver2 in February. Note
that only the calendar months when satellite SIT observation
is available are drawn. Over the thin SIT area (SIT of SMOS
< 1m), the SMOS SIT is kept as a nearly constant value (i.e.,
0.4m) from November to March (Figure 7A), possibly due to
the cancellation between the SIT thickening of the pre-existing
sea ice and the SIT reduction by the new formation of the thin
sea ice during freezing season. This constant SIT climatology
from November to March is not successfully simulated in noDA,
implying that the new sea ice formation is weakly simulated
in the model. On the other hand, the SIT climatology is kept
as the constant in Ver1. However, the positive SIT bias about
0.2m is shown throughout all seasons in Ver1. The SIT bias
in Ver2 is systematically reduced compared to that in Ver1,
while keeping the constant SIT climatology from November
to March. This indicates that the simulation quality of the
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FIGURE 5 | The mean seasonal cycle of Arctic sea ice extent index (106km2) during 2000–2019 (A) and during 2011–2019 (B) and temporal evolution over

2000–2019 (C) for SSMIS NT satellite data (black), noDA experiment (gray), Ver1 (blue), and Ver2 (red). The orange shading marks the uncertainty (standard deviation)

of the analysis.

SIT climatology is improved by the direct injection of the
SIT observation.

Over the thick SIT area (SIT of CS2 > 1m), the monthly
CS2 climatology is increasing from October to April as it is the
freezing season (Figure 7B). The new sea ice formation in those
regions is not robust as it is already filled with the sea ice from
the beginning of the freezing season. Even though the increasing
trend from October to April is shown in noDA, the negative
SIT bias is overwhelmed for all seasons. In Ver1, the negative
SIT bias is significantly decreased, however, the thickening
of SIT during the freezing season is not simulated. For example,
the climatological SIT in CS2 is increased from about 1.7m in
October to 2.5m in April, while that in Ver1 is continuously
about 2m from October to April. On the other hand, in Ver2,
the negative SIT bias is reduced by keeping the increasing trend
during the freezing season to some extent.

The spatial distribution of the climatological SIT bias in
February also demonstrates the positive impact of the SIT data
assimilation in Ver2 (Figures 7C–E). The strong negative bias of
SIT in noDA is distributed in central Arctic ocean (Figure 7C).
The climatological SIT in CS2SMOS exhibited a maximum value
over the CAP region (not shown), and this spatial feature is
well-simulated in both experiments to some extent (contours in
Figures 7D,E). As a result, the SIT bias in both Ver1 and Ver2
is not robust over the CAP region (shadings in Figures 7D,E).
In more detail, the amplitude of the SIT bias in Ver2 is <0.5m

over the CAP region, while that is reached up to 1m in Ver1,
supporting the notion that the SIT bias is systematically reduced
through the assimilation of the observed SIT data.

The next question is whether the realistic SIT simulation
by assimilating SIT observation contribute to improve the
simulation quality of the SIC. As it is already pointed out in
Figure 5 that the SIE climatology in Ver2 during winter season
exhibited smaller bias amplitude compared to that in Ver1, we
focused on the change in the SIC and SIT bias by assimilating
SIT observation during boreal winter season. Figures 8A,B

shows the latitudinally-averaged (65–80◦N) absolute value of
climatological bias of the SIT, and SIC in Ver1 and Ver2
during DJF season, respectively. Note that our main points are
still rigorous with the changes in the latitudinal bands for the
averages. The absolute SIT bias in Ver2 is reduced compared
to that in Ver1 in most of the Arctic regions; the decrease in
the SIT bias is shown around 30–80◦E, 120–180◦E, 160–90◦W,
and 30–0◦W (Figure 8A). Interestingly, the reduction in the SIC
bias by assimilating SIT observation is also evident over 30–
80◦E, with the relatively stronger changes over the Kara Sea
(i.e., 50–80◦E) (Figure 8B), even though the reduction of the
SIT bias in Ver2 is modest in this region. The large reduction
of the SIC bias in this region might be due to the fact that
the SIC bias in Ver1 is greatest in those regions, therefore,
there would be much room for the improvement in simulating
SIC climatology.
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FIGURE 6 | The climatology of sea ice concentration (a fraction from 0 to 1) of SSMIS NT satellite data (A,D) and climatological bias in noDA (B,E) and in Ver1 (C,F)

with respect to the satellite observation in February (A–C) and August (D–F) during 2000–2019.

Over 30–80◦E, where the Kara-Barents Sea is located, the sign
of the SIT bias in Ver1 is negative, which is corrected to some
extent in Ver2 (Figure 8C). The climatological SIC exhibited a
strong positive bias in Ver1, and this is significantly reduced in
Ver2 (Figure 8D). This indicates that the additional assimilation
of the SIT observation leads the increase in the SIT climatology
over Kara-Barents Sea, and this contributes to decrease the SIC
climatology over this region.

To confirm that the reduction in the bias of the SIC and
the SIT in Kara-Barents Sea during boreal winter is led by the
increase in the climatological SIT, we conducted an idealized
experiment; the individual categories of SIT in initial conditions
at 1st February from 2000 to 2019 are increased by 0.05m,
compared to noDA experiment in domain of Kara-Barents Sea
(30–80◦E, 70–80◦N). Note that all other variables are unchanged
to examine the sole impact of the SIT change. All-year-averaged
monthly (i.e., February) difference in the SIC and SIT between
sensitivity experiment and noDA showed that the SIC changes
led by the increased SIT exhibited a negative value in this domain
(not shown). This confirms that the reduction in the positive
SIC bias over Kara-Barents Sea in Ver2 compared to that in
Ver1 (i.e., decrease in the SIC climatology in Ver2) is caused

by the reduction the negative SIT bias (i.e., increase in the SIT
climatology in Ver2) to some extent.

The mechanism representing this inverse relationship
between SIC and SIT climatology would be related to
thermodynamic or mechanical processes. For instances, the
SIT changes can lead the changes in ice conductive flux from ice
bottom surface to top surface (Maykut and Untersteiner, 1971).
The conductive heat flux of sea ice is inversely proportional
to the SIT changes, that is, the increasing in SIT could lead
to shrinkage of the conductive flux. Once the conductive
heat flux from ice bottom to top surface is decreased, it acts
to increase the sea surface temperature because the energy
staying in the bottom boundary of the sea ice is rising, which
could cause the change in ocean-sea ice heat flux acting on
changes in SIC (McPhee, 1992). The mechanical process
related to changes in SIT is the ridging which is one of the
dominant processes leading the ice deformation. The ridging
process can bring out the ice floes to break into smaller
blocks that accumulate, resulting in consumption of ice area
(Martin, 2007). However, we leave it as a future work as
accounting for the detail mechanism is outside the scope of
this study.
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FIGURE 7 | The mean seasonal cycle of sea ice thickness (m) averaged over the valid SMOS area (A) and over the valid CryoSat-2 area (B) during 2011–2019 for

satellite observation used for assimilation (black), noDA experiment (gray), Ver1 (blue), and Ver2 (red). The orange shading in (A,B) marks the uncertainty (standard

deviation) of the analysis. The climatological bias in noDA (C), Ver1 (D), and Ver2 (E) with respect to CS2SMOS in February. The contour lines in (C–E) represent the

climatology in each model experiment.

Interannual Variability
In this sub-section, the interannual variability simulated in the
reanalysis products will be evaluated.We first calculated the root-
mean-square error (RMSE) of the SIE anomalies between the
data assimilation experiments and the reference data (SSMIS NT,
or the PIOMAS) with respect to the calendar month (Figure 9).
Note that the monthly anomaly is defined by subtracting the
climatology at the corresponding calendar month. The result
in noDA have largest errors among all experiments in most
of seasons, and those in boreal summer is particularly large
(gray lines in Figure 9). In Ver1, the RMSE of SIE reduces for
most of seasons compared to that in noDA especially during
boreal summer and autumn (blue lines in Figure 9). The RMSE
in Ver2 is in similar amplitude compared to Ver1, however,
RMSE during boreal autumn and winter (October–March) is
systematically higher (red lines in Figure 9). This indicates
that, even though the assimilation of the SIT observation
improves the simulation quality of the climatological SIE (as
demonstrated in the previous sub-section), this advantage is not
shown in simulating the interannual variability. Nonetheless,
we will show that the quality in simulating the dominant SIC

variability with spatial distribution is improved in Ver2 in
next sub-section.

To investigate the time evolution of the SIE in more detail,
we calculated the time-series of the SIE anomaly in February and
August in Figure 10. In February, the noDA follows the overall
variability well due to influence of the prescribed atmospheric
and SST forcings (correlation coefficient between the SIE in
noDA and SSMIS NT is 0.77) (Figure 10A). As noDA already
exhibited a good performance, the positive impact of data
assimilation on the interannual variability of SIE in February
is minimal.

However, in August, the quality of the reanalysis with
the data assimilation is quite improved (Figure 10B). It is
shown that the interannual variability of SIE in noDA is
large in Figure 10B. We speculate that atmospheric forcing is
the cause of large interannual variability in SIE in “noDA”
in August. The downward shortwave radiation of the NCEP
reanalysis data is relatively higher than that of other forcing
data sets (e.g., JRA-55 and ERA-Interim) especially in summer,
which may induce excessive melting of sea ice (Lee et al.,
2019). As a result, it was understood that the thinning
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FIGURE 8 | The meridionally averaged (65–80◦N) absolute mean bias (A,B) and mean bias (C,D) between data assimilation experiments (Ver1 represented by blue

lines; Ver2 represented by red lines) and satellite observation (CS2SMOS for thickness and SSMIS NT for concentration) for sea ice thickness (m; A,C) and

concentration (a fraction from 0 to 1; B,D) during DJF season over 2011–2019. The gray lines in left column represent the difference of absolute mean bias between

Ver2 and Ver1.

FIGURE 9 | The root-mean-square-errors with respect to the SSMIS NT (solid lines) and PIOMAS (dashed lines) of sea ice extent index (106km2) for noDA (gray), Ver1

(blue and skyblue), and Ver2 (red and pink) during 2000–2019 (A) and 2011–2019 (B).

of sea ice due to the excessive shortwave radiation can
lead to increased interannual variability of sea ice (Holland
et al., 2008). The anomaly correlation coefficients between
the noDA and the SSMIS NT is only 0.51, while the

correlation with the SSMIS NT is improved to 0.94 (0.95) for
Ver1 (Ver2).

In order to explore the regional features, we calculated the
grid point-wise RMSE of the SIC anomalies during 2011–2019
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FIGURE 10 | The time-series of Arctic sea ice extent anomaly (106km2) for SSMIS NT (black), noDA (gray), Ver1 (blue), and Ver2 (red) in February (A) and August (B)

during 2000–2019. The “sm_R” in legend shows the correlation coefficient between each experiment and observation data.

in Figure 11. In February, the RMSEs of SIC in noDA, Ver1,
and Ver2 against SSMIS NT tends to be similar from each other,
which is consistent with the minimal improvement in simulating
SIE in February. However, in August, the improvement by
assimilating sea ice variables is clear. The RMSEs in noDA
are systematically large over the overall Arctic regions, while
that in Ver1 or Ver2 is significantly reduced in most regions
(Figures 11D–F).

Figure 12 shows the RMSEs for the SIT anomalies in February
and August in noDA, Ver1, and Ver2 against the CS2SMOS.
In February, the noDA show that the RMSEs in CAP regions
including east Greenland, Wandel Sea, and east of Beaufort Sea
are relatively large than other regions (Figure 12A). In Ver1,
the RMSE is slightly large over the polar regions compared
to noDA (Figure 12B). In Ver2, the RMSE in CAP region is
systematically reduced than that in noDA andVer1 (Figure 12C).
In August, the relatively large RMSEs are mainly shown over the
CAP region in noDA, and it is relatively small in the remaining
regions (Figure 12D). The RMSE of the SIT anomalies in Ver1 is
increased to some extent compared to noDA (Figure 12E). Even
though the RMSE of the SIT anomaly in Ver2 is systematically
reduced than that in Ver1, however, it is only comparable to
noDA (Figure 12F). This modest improvement is probably due
to the fact that this is the season when the SIT observation is not
injected even in Ver2 due to the lack of SIT observation.

Dominant Modes
To analyze the spatial distribution of the dominant interannual
variability of the SIC and SIT, we performed the empirical
orthogonal function (EOF) analysis for observation and

reanalysis. The leading EOF of SIC anomalies for SSMIS NT,
PIOMAS, Ver1, and Ver2 in February for 2000–2019 are shown
in Figure 13. The leading EOF for SSMIS NT, PIOMAS, Ver1,
and Ver2 is well-separated from its second EOF and their
explained variance is 23.2, 26.1, 24.4, and 32.5%, respectively.
The leading EOF of SIC anomalies for SSMIS NT exhibits dipole
patterns in the Greenland-Barents Sea and Baffin Bay-Labrador
Seas in Atlantic sector (Figure 13A). The winter Odden sea ice
feature, which denotes a large positive tongue of SIC anomaly
that advances rapidly northeastward into the Greenland Sea over
8◦W−5◦E, 73–77◦N (Shuchman et al., 1998; Deser et al., 2000),
appears in all four products, even though those in the Ver1
and Ver2 exhibited a larger amplitude than the SSMIS NT or
PIOMAS. The negative SIC anomalies are shown in Baffin Bay
and Labrador Sea in all four products.

In the Pacific sector, the positive SIC anomalies are shown
over the Bering Sea in all four products. In the SSMIS NT
and the PIOMAS, this SIC anomalies over the Bering Sea is
mostly confined at the north of 60◦N, whereas, in the Ver1
and Ver2, it is further extended to the south. The positive
SIC anomalies appear in the Sea of Okhotsk in SSMIS NT,
PIOMAS, and Ver2, however, it is overwhelmed by the negative
values in Ver1. As a result, the SIC anomalies of the dominant
EOF in Ver1 exhibited the erroneous dipole pattern. This
is also shown in the dominant EOF in noDA (not shown),
implying that the dipole pattern can be corrected through
SIT data assimilation. In order to examine the similarity with
the leading EOF of the SSMIS NT, we calculate the pattern
correlation coefficients (PCC) for PIOMAS, Ver1 and Ver2.
The dominant EOF in the PIOMAS is most similar to that in
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FIGURE 11 | The root-mean-square-errors of sea ice concentration (a fraction from 0 to 1) for noDA, Ver1, and Ver2 with respect to the SSMIS NT observation are

calculated in February (A–C) and in August (D–F). The RMSE of noDA (A,D) and the difference of Ver1 (B,E) and Ver2 (C,F) with respect to noDA are calculated

during 2011–2019.

the SSMIS NT (PCC = 0.84), followed by Ver2 (0.71) and
Ver1 (0.54).

The standardized principal component (PC) time series of the
leading EOF for each data is shown in Figure 13E. All PC time
series show a decreasing trend. The temporal correlation of the
PC time-series from the SSMIS NT is almost similar between
noDA and Ver1; the temporal correlation coefficient between the
SSMIS NT and noDA is 0.86, where that between SSMIS NT
and Ver1 is 0.72. However, assimilating SIT observation in Ver2
further improves the simulation quality of PC time-series (0.89).
This means that the indirect effect of SIT data assimilation on SIC
simulation contributes to the realistic SIC interannual variations.

The assimilation of the SIT observation plays a critical role in
mimicking the observed leading EOF and the associated PC time
series in February (Figure 14). The explained variance of the first
modes accounts for 28.5, 28.5, 25.5, and 32.4%, for CS2SMOS,
PIOMAS, Ver1, and Ver2, respectively. The CS2SMOS and
PIOMAS shows that the interannual variability is robust over the
CAP region (Figure 14A). In the CS2SMOS, a tongue of positive
SIT anomaly extending from west to east in Beaufort Sea between

120◦W and 180◦E along the latitude of 71–74◦N, associated with
the Beaufort Gyre, is shown. However, the dominant EOF of the
SIT in Ver1 exhibited quite different spatial distribution from
the observation (Figure 14C). There is an arbitrary negative, and
positive SIT anomalies near the CAP region, and Wandel Sea in
Ver1, respectively. As a result, the PCC between the leading EOF
in Ver1 and that of CS2SMOS is −0.27, and the correlation of
the corresponding PC time-series is only 0.06 (Figure 14E). This
clearly indicates the necessity of the SIT data assimilation for the
realistic simulation of the SIT anomalies.

On the other hand, in Ver2, the quality in simulating
SIT anomalies is systematically improved (Figure 14D). The
amplitude of the positive SIT anomalies in CAP region in
Ver2 is similar to those in CS2SMOS. In addition, the zonally-
elongated positive SIT anomalies associated with Beaufort Gyre
is successfully mimicked to some extent only in Ver2. The PCC
between the dominant EOF of CS2SMOS and that of Ver2 is 0.80,
which exhibited even higher PCC value between CS2SMOS and
PIOMAS (i.e., 0.61). The corresponding PC time-series in Ver2 is
also well-correlated with the CS2SMOS (i.e., temporal correlation
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FIGURE 12 | The root-mean-square-errors of sea ice thickness (m) for noDA, Ver1, and Ver2 with respect to the CS2SMOS observation and PIOMAS reanalysis are

calculated in February (A–C) and in August (D–F). Note that the CS2SMOS is used in February and the PIOMAS is used in August due to the absence of satellite

data. The RMSE of noDA (A,D) and the difference of Ver1 (B,E) and Ver2 (C,F) with respect to noDA are calculated during 2011–2019.

is 0.89) (Figure 14E). It appears that data assimilation of SIT
significantly improves the simulation quality of dominant Arctic
SIT variability during boreal winter.

The reanalysis quality in simulating SIC anomalies during
boreal summer is quite similar between SSMIS NT, PIOMAS,
Ver1, and Ver2 (not shown). On the other hand, the dominant
EOF of the SIT anomalies in Ver2 exhibited a modest
improvement during boreal summer (Figure 15). The leading
EOF in PIOMAS shows the Central Arctic Thinning-like pattern
(Fučkar et al., 2016) and the PCC between the dominant EOF of
PIOMAS and that of Ver2 is 0.82, which exhibited slightly higher
PCC between PIOMAS and Ver1 (i.e., 0.74). The corresponding
PC time-series in Ver2 also exhibited higher temporal correlation
with the PIOMAS (i.e., correlation is 0.87) than that in Ver1 (i.e.,
correlation is 0.72) (Figure 15D). As there is no observation of
SIT in summer, the improvement in simulating SIT anomalies
during boreal summer in Ver2 might be originated from the
improved reanalysis quality of the SIT anomalies during boreal
winter. That is, the realistic simulation of the SIT anomalies
during boreal winter season is maintained up to boreal summer

season possibly due to the multi-season persistency of the sea ice
anomalies (Holland et al., 2011).

SUMMARY AND DISCUSSIONS

In this work, we have exploited the satellite observation of
SIT from the CryoSat-2 and SMOS from European Space
Agency’s (ESA), and SIC from the Special Sensor Microwave
Imager/Sounder (SSMIS) aboard Defense Meteorological
Satellite (DMSP) to assimilate the SIC and SIT in CICE5 model
using ensemble optimal interpolation (EnOI). The SIC, and
the SIT satellite observation are assimilated during 2000–2019,
and 2011–2019, respectively. In order to use the EnOI, the
stationary ensemble perturbations for calculating background
error covariance matrix are generated by using long-term
model integrations during 1982–2019. We have found that
the stationary ensemble perturbations not only represent the
seasonal variability of sea ice variable, but also successfully
reflect the physical properties and balances related to the sea
ice variability.
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FIGURE 13 | The spatial distributions of the eigenvector of the first empirical

orthogonal function mode of sea ice concentration (a fraction from 0 to 1) for

SSMIS NT observation (A), PIOMAS reanalysis (B), Ver1 (C), and Ver2 (D) in

February during the period 2000–2019. The pattern correlation represented

“PCC” is calculated between SSMIS NT observation and each product. The

time-series of the principal component (E) for SSMIS NT (black), PIOMAS (light

green), Ver1 (blue), and Ver2 (red) is calculated and the “sm_R” represents the

correlation coefficients with SSMIS NT data.

The quality of the reanalysis produced by sea ice data
assimilation are evaluated in terms of climatological field,
interannual variability, and dominant interannual variation by
comparing assimilated states and the those in the observations
and reanalysis. By assimilating the SIC satellite observations,
the systematic bias of SIC in control simulation (i.e., noDA)
is remarkably corrected in marginal ice zones, and pan-Arctic
ocean during boreal winter, and summer season, respectively
(Figure 6). The sea ice extent (SIE) anomalies in data assimilation
experiments exhibited a similar year-to-year variation to SSMIS
NT compared to that in noDA in all calendar months especially
during boreal summer (Figures 9, 10). The SIC assimilation have
an effect on the correction in climatological bias of SIT, but
interannual variations of the SIT are still unrealistic (Figure 7),
which requires an additional assimilation of SIT observation.

Not only the climatological bias, but also the RMSEs of
SIT anomalies are further reduced particularly during boreal

FIGURE 14 | The first EOF mode of sea ice thickness in February during the

period 2011−2019. The CS2SMOS satellite thickness data is used here. The

arrangement of the plots is the same as in Figure 13.

winter by additionally assimilating SIT observations (Figure 12).
The empirical orthogonal function (EOF) analysis showed that
the dominant interannual variation of SIT anomalies exhibited
similar spatial distribution to those in the observation during
boreal winter season (Figure 14). The positive SIT anomalies
observed in central Arctic ocean, centered over the Canadian
Archipelago (CAP), are well-simulated in Ver2 (experiment with
SIC and SIT assimilation), where the negative anomalies are
distributed in CAP and Beaufort Sea in Ver1 (experiment with
SIC assimilation).

Interestingly, the improvement in the SIT states leads to
the correction in the SIE bias (Figure 5). The reduction in the
negative SIT bias by additionally assimilating SIT observation
contributes to reduce the positive SIC bias over Kara-Barents
Sea (Figure 8). This inverse relationship between SIC and SIT
is also shown in the idealized experiment by increasing the
SIT. Even though the assimilation of SIT observation did not
result in appreciable differences in interannual variability of
SIE anomalies, there has been the improvement in simulating
dominant interannual variation for SIC in February (Figure 13).
The observed dipole pattern between Greenland-Barents Sea
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FIGURE 15 | The spatial distribution of the eigenvector of first EOF mode of sea ice thickness for PIOMAS (A), Ver1 (B), and Ver2 (C) in August during 2011–2019.

The pattern correlation represented “PCC” is calculated between PIOMAS and each experiment. The time-series of the principal component (D) for PIOMAS (light

green), Ver1 (blue), and Ver2 (red) is calculated and the “pi_R” represents the correlation coefficients with PIOMAS reanalysis data.

and Baffin Bay-Labrador Sea, and the zonally-elongated positive
SIC anomalies, referred as Odden feature, are well-simulated in
reanalysis produced by both in Ver1 and Ver2. However, the
observed positive anomalies in Sea of Okhotsk are successfully
reproduced only in Ver2. The PC time-series of the leading EOF
for SIC in Ver2 showed a higher temporal correlation with the
observation than that in Ver1.

Through the series of the data assimilation of the sea ice
variables, not only the degree of the improvement in simulating
the climatology and the interannual variability of the sea ice can
be assessed, but also a scientific question can be drawn. The
indirect impact of the SIT assimilation on the SIC is one of typical
subjects. The simulation of the SIC climatology and the variability
tends to be improved once the SIT observation is further
assimilated in addition to the SIC observation. This indicates that
the non-linear physical processes associated with the corrected
SIT help to improve the SIC simulation (Collow et al., 2015).
In addition, even though the SIC improvement by assimilating
SIT observation is not clear during boreal summer season in
this study, several previous studies showed that the knowledge
of winter ice thickness can provide some predictive capability
for summer ice extent (Kauker et al., 2009; Holland et al., 2011).
This means that the reduction the systematic errors in SIT during
boreal winter season have a seasonal memory to improve the
SIC simulation during boreal summer. To fully understand the
mechanism of the improvement led by the data assimilation,

the interactions between sea ice variables, and temporal memory
of the sea ice variables, which might be dependent on the season,
should be investigated further as a future work.

In addition, the improvement of the SIC simulation by
assimilating SIT observation implies that the multi-variate
assimilation might further improve the reanalysis quality. As it
is already demonstrated that the updated SIT leads a positive
impact on the SIC through physical processes in the model, the
direct updates of the SIC by given SIT increment based on the
modeled covariance would lead the improvement in simulating
SIC without any time lags.

The reanalysis produced in this study aims to improve the
quality of the initial condition of the sea ice component in
the Global Seasonal forecast system (GloSea) for the seasonal
forecasts (Maclachlan et al., 2015). In particular, as still
operational version of the GloSea (i.e., GloSea version 5) for the
seasonal forecasts only assimilates the SIC, the improvement in
the sea ice initial conditions by assimilating the SIT observation
is expected. This expectation is based on the previous studies
that a significant improvement in predictive skill of Arctic sea-
ice extent and ice edge location for multi-seasons forecasts
targeted to September Arctic sea ice by assimilating the CryoSat-
2 thickness (Blockley and Andrew Peterson, 2018). However, the
temporal coverage of the SIT observation is limited after 2010,
and this significantly shortens the hindcasts period compared to
the conventional period for the hindcasts for seasonal forecasts
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(i.e., longer than two decades, e.g., Johnson et al., 2019).
Nonetheless, the temporal coverage of a decade (i.e., from 2010
to the present) would allow the preliminary assessment of the
seasonal forecast skill and its possible advantages by assimilating
the SIT observations.
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