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This paper uses 7,200 smoothed climate change projections for each of the four

emissions scenarios, together with inter-annual variation provided by detrended historical

climate data to investigate changes in growing season (wettest 3 months) weather

patterns from the 2020s to the 2060s for ten countries of Southern Africa. The analysis

is done in 8,888 quarter-degree pixels by month. Temperature unequivocally rises in the

region, but it rises relatively less along the coasts, particularly on the eastern side of

the region. Precipitation has trended downward for much of the region since 1975, but

relatively little change in precipitation is projected between the 2020s and the 2060s.

Under the higher emissions “Paris Forever” scenario, we found that by the 2060s, the

1-in-20-year low-rainfall events will occur twice as frequently in most of the region, though

it will occur less frequently in northwestern Angola. The 1-in-20-year high-rainfall events

will occur 3 to 4 times as often in northeastern South Africa and twice as often in most

of Angola.

Keywords: climate change, climate uncertainty, Southern Africa, risk, climate extreme events

INTRODUCTION

For determining the full effect of climate change—particularly as it is applied to agriculture, but
also to human life and all sectors of the economy—we must understand sources of uncertainty
and sources of variability. First, there is uncertainty in regard to the future flow of greenhouse gas
(GHG) emissions, and therefore in regard to future amounts of CO2 in the upper atmosphere at
points in the future. Second, even if we had full knowledge regarding the amount of CO2, there is
still uncertainty as to how the mean climate would be affected (Kunreuther et al., 2014; Chen et al.,
2021; IPCC, 2021; Lee et al., 2021). Finally, even if we had certainty about CO2 levels and mean
climate, there would always be inter-annual and intra-annual variation.

In what follows, we consider four different emissions scenarios in ten countries of Southern
Africa: Angola, Botswana, Eswatini, Lesotho, Malawi, Mozambique, Namibia, South Africa,
Zambia, and Zimbabwe. For each of the emission scenarios, we consider 7,200 smoothed climate
change projections with monthly values spanning 2019 to 2069. We also augment each of the
smoothed climate projections with 100 different 51-year sequences randomly drawn by year
with replacement from a 69-year detrended historical dataset. This gives us a total of 720,000
variation-augmented climate projections for each emissions scenario.
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This article is an extension of earlier work on the impact of
climate change in the region (Fant et al., 2015; Schlosser and
Strzepek, 2015; Arndt et al., 2019) that used a large ensemble
of climate models (based on the older AR4/CMIP3 rather
than the AR5/CMIP5 used here) but which did not adequately
address climate variability, without which, investigating changes
in climate extremes is not possible. The novelty of this approach
is in using a large ensemble of climate futures [100 times
the size used in the previous work of Schlosser and Strzepek
(2015)] so that the tails of the distribution are more fully
modeled, more completely taking into account uncertainty
and variability.

Collins et al. (2013) explore the range of climate model
predictions from CMIP5 across various emissions scenarios and
climate models at the global level, and IPCC (2013) shows maps
focusing on Southern Africa. Seneviratne et al. (2012) provides a
very thorough discussion on both observed andmodeled weather
extremes (thoughwith a greater focus on observed), though at the
global level. Seneviratne et al. (2021) updates the earlier work in
the just-released IPCC assessment report.

Assessing the magnitude of climate change and the added
effects of climate uncertainty and inter-annual variability enables
research to better investigate the impact of climate shocks
on sectors of the economy dependent on weather, such as
agriculture, infrastructure, energy, and construction. In a related
paper, we use the future variation-augmented climate projections
to assess the impact on agricultural production in the region
(Thomas et al., 2022).

Southern Africa is an important region to study the effects of
climate because of the importance of agriculture to the region for
its contribution to GDP, for employment, and for food insecurity,
which is a problem for the region (Thome et al., 2018; FAO et al.,
2020).

MATERIALS AND METHODS

MIT-IGSM Future Climate Data
In this paper, we use results from a large ensemble of
projected changes in monthly precipitation and near-surface
air temperature for ten nations of Southern Africa (Schlosser
et al., 2020, 2021). The ensemble is developed by integrating
pattern-change responses derived from the Coupled Model
Intercomparison Project Phase 5 (CMIP5) climate models with
the Massachusetts Institute of Technology Integrated Global
Systems Model (MIT-IGSM), an earth-system model coupled
to a global economic model that evaluates uncertainty in
socio-economic growth, anthropogenic emissions, and global
environmental response.

The methodology used to combine the two relies on pattern-
kernels of regional change from climate models (Schlosser
et al., 2012) and the application of these patterns of change to
downscale the zonal output of the MIT Integrated Global System
Model (Reilly et al., 2018). IGSM operates in the dimensions
of latitude and elevation (depth) only, so that they might
consider a wider-range of potential climates that can develop out
of assumptions surrounding emissions, demographics, and the

economy. Approaches that consider the longitude with elevation
and latitude take much longer to run and require much greater
computing power.

In order to expand these results longitudinally, the authors
use a Taylor series expansion that allows them to construct a
full grid of climate-change pattern kernels, using CMIP5 climate
models. There are many CMIP5 models available for use, but
many centers producing these models produce more than one.
The authors chose to use only one model per center to avoid
biasing the ensemble’s representativeness.

The MIT-IGSM produces 400 unique results for each
emissions scenario. Each of these are spread out longitudinally
using 18 GCMs from CMIP5 [these are detailed in Schlosser
et al. (2021)], giving the ensemble 7,200 members of a hybrid
frequency distribution (HFD) per emissions scenario. The
version of the data used in the analysis in this paper is one in
which each member is smoothed by averaging over a multi-year
period, preserving the trend, or signal but removing the variation.

The MIT-IGSM evaluated four scenarios of future climate
and socio-economic development to span a range of possible
actions to reduce greenhouse gas emissions through the
twenty-first century (Schlosser et al., 2021). These emissions
scenarios are:

Reference (REF): No explicit climate mitigation policies
anywhere in the world. It can be seen as a baseline.
Paris Forever (PF): Assumes that countries meet themitigation
targets in their Nationally Determined Contributions (NDCs)
and those targets are met throughout the century.
2C: Reflects an effort to limit climate change to no higher
than a 2◦C global average by the year 2100 through globally
coordinated, smoothly rising carbon price. This scenario
reflects the uncertainty of the climate response in the MIT
Earth System Model (MESM, Sokolov et al., 2018) and leads
to an overall probability of having 66% of the runs using this
emissions scenario keeping the global average at or below 2◦C.
1p5C: Similar to the 2C, but aims to limit warming to no
higher than 1.5◦C. The probability of achieving this target in
this emissions scenario is 50%.

To simplify the exposition in this paper, we often elect to focus
on the more plausible models (our subjective interpretation): the
2C and PF.

Princeton Global Forcings Historical
Weather Data
While we expect quite a range of uncertainty reflected across
the possible smoothed climate change projections, we also know
that year-to-year variation is quite important for agriculture
and many other human endeavors. To simulate inter-annual
variation in a manner that is spatially and temporally consistent,
we decided to base the values on historical weather provided the
Princeton Global Forcings (PGF) dataset, version 3 [based on
(Sheffield et al., 2006)]. This dataset provides daily weather data
for a number of weather variables, including the ones relevant
to this analysis: precipitation and daily minimum and maximum
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temperatures. The data spans the period from the beginning of
1948 to the end of 2016. It is at a quarter degree resolution,
which in most places reflects rectangles with 25–30 kilometers
on each edge. For most of our work we are interested in monthly
data, so we aggregate the data, summing the precipitation and
computing monthly values for mean daily maximum and mean
daily minimum temperatures. Because the HFD data represents
deviations from the climate of 1981–2000, we also used PGF to
provide this baseline climate information.

Combining Smoothed Climate Change
Projections and Historical Weather
Variability
Belcher et al. (2005) proposed a technique for generating feasible
future weathers that account for climate change which they
called “morphing.” They used it for thermal simulation of
buildings, but the idea can be applied to other problems, such as
assessment of future agricultural production or water availability.
In their version, they added the smoothed climate “delta” (with
“delta” signifying a change in a variable)—that quantifies how
a smoothed (or averaged) climate variable shifts between the
baseline climate and the future climate—to the historical weather
value to produce what they call the “design” weather and
what we will call here the “variation-augmented climate change
projection.” Their method has the advantage of preserving spatial
relations and temporal relations (intra-annual and inter-annual).
However, as used in their original idea, it gives only one sequence
of future weather at each pixel.

Augmenting smoothed climates has the advantage over the
original GCMs in two ways. First, the models are downscaled
to a much finer spatial resolution that is required for studies on
the effect of climate on agriculture, since agricultural production
(and modeling) relies on location-specific weather and land
characteristics, with the original GCMs at ∼250-kilometer
resolution and the down-scaled resolution being ∼30-kilometer
resolution. Second, the original GCMs would need to be run
repeatedly to give enough samples to adequately account for
the tails due to both uncertainty and inter-annual variation, and
those are not available and take tremendous computing power
to produce.

We maintain the spirit of what Belcher et al. (2005) did, but
adapt it to recognize that climate change has already affected at
least some of the historical sequence, which is contrary to their
implicit initial assumptions. To compensate for the climate signal
that is already in the historical data, we use regressions to remove
the trend and keep the variation around the trend as the value that
we are interested in using to produce variation using our Monte
Carlo simulation procedure. The inter-annual variation and the
climate delta then both get added to the baseline climate value.

Specifically, for each variable in the historical weather dataset,
we took the monthly series of 69 yearly values at each pixel
and regressed them on a constant, a value for year, and a value
equal to 0 for years <1975 and the year minus 1975 for values
greater. This gave us a piecewise linear regression over time that
assumed that the effect of climate change altered the trend in
1975. It gives us one trend prior to 1975 and one trend after

1975, but the trend lines meet at the year 1975, and therefore are
dependent on each other. The year 1975 was chosen because in
annual global temperature graphs, there is a clear shift in rate
of temperature change that took place somewhere in the 1970s.
Many studies de-trend with a straight line for the entire time
period, which strikes us as wrong because it fails to acknowledge
any shift in the climate since the 1940s. On the other hand,
over-correcting by using some kind of non-parametric method
such as loess or localized polynomial would remove inter-decadal
variation, which we wanted to keep in due to the nature of the
smoothing for the MIT-IGSM. There is no perfect solution, but
the method used in this paper seemed better than the others
considered. We estimated these regressions for each variable-
pixel-month and retained the residual from each year. These are
the “variation deltas” – the inter-annual variation measures –
which form the basis for future random draws of weather in the
Monte Carlo procedure.

Mathematically, let vi,yr,m be the value of a monthly weather
statistic from the PGF database for pixel i, year yr, and month
m, where v is monthly precipitation or mean daily maximum
or minimum temperature for the month. The variable yr75 is
defined as 0 if yr ≦ 1975 and yr – 1975 if yr > 1975. We estimate
the following regression:

vi,yr,m = b0,i,m + b1,i,myr + b2,i,myr75 + ǫi,yr,m (1)

where b0,i,m is the intercept term, b1,i,m is the parameter
associated with yr, b2,i,m is the parameter associated with yr75,
and ei,yr,m is the residual of the regression, which is the variation
delta that we will use to in the Monte Carlo simulation.

We also adapt the morphing method further, by generating
multiple sequences of feasible future sequences of climate
variations. Our idea is to keep 12-month sequences for the entire
study area together as a single unit, drawing randomly with
replacement from the 68 or 69 12-month sequences. Our goal
is to come close to attaining ideal simulated data: one which
maintains spatial relations, intra-annual relations, andminimizes
the degree of inter-annual correlation that is lost by artificially
breaking the data into 12 consecutive month segments.

We recognize that there is correlation in precipitation in
consecutive months. It is an important characteristic of the
growing season that the rainfall through the season be consistent.
Since the growing season in many locations spans the time from
one calendar year into the next, we decided that we did not
want to use the calendar year as our unit of observation to
draw for random weathers in the future. Instead, we created
what we call “meteorological years” that begin during the dry
season. Most specifically, they begin in the middle month of
the driest 3-consecutive-month period (by pixel). This allowed
us to take data from 69 calendar years and convert it into 68
meteorological years that were less serially correlated than the
calendar year values.

We created baseline climate variables at each pixel to which
the climate changes from the HFDs could be added. We did this
by summing the daily precipitation for each pixel-year-month
combination and by taking the mean of the daily minimum and
maximum temperatures for each pixel-year-month. After doing
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this, using only data from 1981 to 2000, we took averages of these
pixel-year-month combinations by pixel-month.

We added the smoothed climate change deltas by year to these
baseline variables. For precipitation we added the precipitation
change. For both the mean daily maximum temperature and
mean daily minimum temperature we added the mean daily
temperature change—which was the only temperature variable
provided in the HFDs. We took the 2- by 2.5-degree smoothed
climate change rectangles and assumed that the shift was identical
for all of the 80 quarter-degree pixels within the historical
weather dataset located within the larger rectangle. The result was
quarter-degree resolution smoothed climate projections.

On top of these smoothed values, we added the variation
deltas to give us variation-augmented climate projections. For
each emissions scenario, we have 7,200 smoothed climate change
projections, and overlaid 100 variation delta datasets on each
to give us a total of 720,000 variation-augmented climate
projections spanning 51 years for each month and close to
9,000 pixels.

RESULTS

Characteristics of the Smoothed Climate
Change Projections
Figure 1 shows the magnitude of the median across 7,200
models for changes in annual precipitation between 2020 and
2050 under the PF scenario. The changes are relatively small
in magnitude, with the highest decline reaching to around
30 millimeters per year. The areas with the largest decreased
precipitation are located in the mid-latitude band encompassing
part of Zimbabwe and central Mozambique, along with northern
Botswana and Namibia, and southern Zambia and Angola.
There are other areas of loss in western South Africa and
southern Botswana and Namibia. There are also areas with
small increases reaching to around 30 millimeters. Areas of
increased precipitation are located in southeastern South Africa
and northwest Angola, along with small portions of northern
Mozambique and northern Zambia.

Figure 2 shows the median value of the projected change in
the mean daily maximum temperature for 2050 under the PF
scenario relative to the baseline period. Coastal areas on both
coasts, though especially on the eastern side of the continent,
show lower temperature increases than the interior. Coastal
region medians are generally below 1.75◦C, while the interior is
above 1.75◦C, with a large portion above 2◦C. As we will see in
a later section, the highest temperature increase is located in the
area that already has the highest temperature. See Schlosser et al.
(2021) for a more complete treatment of the climate data.

Historically Observed Climate Patterns
The study area spans arid and semi-arid land in the southwest
quadrant of the region up through sub-humid land in the
northern and eastern parts of the region. Figure 3 shows the
precipitation of the wettest 3 consecutive months. There are
many similarities between rainfall in the wet 3 months and
annually (not shown), but one difference is that the higher
annual rainfall of much of the eastern part of the region—eastern

South Africa, southern Mozambique and Lesotho—is not fully
reflected in high rainfall in the wet 3 months. This is because the
southeastern part of the region has reasonably high rainfall even
in their driest months, reflecting a precipitation pattern with little
intra-annual variation.

Many crops are adversely impacted by high temperatures
during the growing season. Figure 4 shows the mean daily
maximum temperature of the warmest month of the wettest 3
months. If the wettest 3 months reflect the growing season—
as it does in most locations—this temperature measure is a
good indicator of how stressed crops will become. Schlenker
and Roberts (2009) and Lobell et al. (2011a,b) found that
temperatures above around 29 or 30 degrees C reduce yields of
rainfed maize. Similar results have been found for other grains
(Lobell et al., 2011b) and for soybeans (Schlenker and Roberts,
2009; Lobell et al., 2011b). Figure 4 shows that even before the
effects of climate change are accounted for, much of the study
area is past the optimal temperature for maize cultivation.

Figure 5 shows that there is significant variation across the
region for which months are the wettest 3 months, though most
of the area has the wet season spanning the summer months:
fromNovember-December-January to February-March-April. In
the extreme southwest, there is a relatively small area that with
peak rainfall in the winter: mostly May-June-July.

Figure 6 shows the change in annual precipitation between
1975 and 2015 at each pixel computed by the regressions that
generated the “variation deltas.”Most of the study area has gotten
drier over that period—though the trends are only statistically
significant at the 10% level in a small portion of the area.
Parts of Mozambique, in particular, have lost more than 150
millimeters over that 40-year period. Parts of Zambia, Zimbabwe,
Botswana, South Africa, and Angola have seen drops of over 100
millimeters. At the same time, extreme northwest Angola has
seen an increase of 150 millimeters during that period. While
not perfectly matching at every pixel, the trends noted by the
regression from historical data are similar to the median changes
from the 7,200 climate models for the period between 1990 and
2020 (not pictured). That is, themedian of the climatemodels (PF
scenario, in particular) shows a relatively steep decline through
2020, and levels off after 2020.

Variation-Augmented Climates
From the pool of 68 independent meteorological years that were
computed using the PGF historical weather dataset, we took
5,100 random draws with replacement and used those draws to
give 100 51-year collections of climate variation deltas that we
could use to add to the smoothed climate change data to give
variation augmented climate change data. The distribution of
the precipitation draws for the wettest 3 months aggregated to
the country level is found in Figure 7. We see that Botswana,
Namibia, Zimbabwe, Eswatini and to a lesser extent, South Africa,
have longer right tails than left. Malawi and Zambia have longer
left tails. Mozambique, Lesotho, and Angola are mostly even.

Figure 8 shows the distribution of temperature deltas derived
from the detrended PGF data converted to meteorological years
and drawn for 100 51-year intervals. These were aggregated from
pixel to national level. Eswatini and Namibia appear to have
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FIGURE 1 | Median projected change in annual precipitation across the ensemble of 7,200 smoothed climate change projections from 2020 to 2050 under the PF

scenario, millimeters. Source: Authors calculations, based on Schlosser et al. (2021).

longer left tails (greater uncertainty toward cooler temperatures)
when measured from the median value. The other countries
appear to be mostly balanced.

Using the 100 51-year collections of variation deltas, we
add them to the 7,200 smoothed climate change projections
for each scenario, to get 720,000 variation-augmented climate
change projections per emissions scenario as our complete set of
possibilities. With such large numbers, it enables us to examine
the full statistical distributions of future climate. In particular,
given increasing uncertainty in climate over time, skewness in
most climate uncertainties and in some of the variability from
historical weather, it is not very obvious what the combined
distributions will look like. Studying them, as well as using them
to inform crop models and hydrological models in companion
papers, will allow us to better understand the fuller cost of
climate change, including valuation of shocks, which in turn
will help us more accurately value investments to mitigate the
costs of climate change, including investments in agricultural
research, crop insurance, infrastructure, irrigation, storage, and
social protection.

In the left graph of Figure 9, we see the rainfall distribution
for the wettest 3 months averaged across Zambia using 9 years
of annual data for each plot on the graph1. The first thing to

1The 2020s span 2021-2029, the 2040s span 2040-2048, and the 2060s span

2060-2068.

note is the large difference between the spread of the smoothed
climate—which is the uncertainty across about the mean climate
given an emissions scenario—compared to that of the variation-
augmented climate—which combines both the uncertainty and
the inter-annual variation. It shows that the inter-annual rainfall
variation is larger than the uncertainty (as can be seen by the
difference between the right and left tails of the smoothed climate
from the right and left tails of the variation-augmented climate),
though by 2060s under PF the contribution of each component is
more even since the uncertainty over the magnitude of the mean
changes to climate is fairly large by then.

The smoothed climate box and whiskers plots can be
important for planning and investing purposes because it gives
some idea of the likelihood surrounding a particular future. Often
too little is understood about the degree of uncertainty, which
can result in poor investments and planning for an outcome that
might not actually happen. In some cases, policymakers have
been told by researchers with limited access to models that there
will be less precipitation in the future, and as a result, investments
might have been made reflecting that belief. Once the uncertainty
is properly accounted for, information about the distribution of
climate futures could lead to amore nuanced and ultimatelymore
helpful investment plan and policy response.

The distributions for the two emissions scenarios are very
similar in the 2020s, but by the 2060s the uncertainty and
variation is slightly larger for PF than for 2C, with the PF notably
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FIGURE 2 | Median projected change in daily maximum temperature across the ensemble of 7,200 smoothed climate change projections from the baseline period

(1981–2000) to 2050 under the PF scenario relative to the baseline period, 0C. Source: Schlosser et al. (2021).

having a longer left tail. Additionally, it appears that the left
tails of the variation-augmented climate distributions are slightly
longer than the right tails, which implies that drought extreme
events are projected to be stronger (in terms of distance from the
median) than flood extreme events.

The right graph of Figure 9 shows the distribution of the
mean daily maximum temperature for the warmest month of
the wet 3 months for Zambia. We note several differences from
what we noted with precipitation. First, uncertainty concerning
the mean of the temperature measure has a relatively stronger
influence when compared to the corresponding inter-annual
variability than for what we observed with precipitation. Second,
we see that unlike precipitation, for which the medians changed
very little, with temperature the medians are rising, and they
rise much more with PF than with 2C. The right tail grows
faster over time than the median does, and the left tail does not
change much over time at all. This is potentially bad news for
agriculture, since for most crops, productivity drops off rapidly
at higher temperatures.

More specifically, looking at the 2060s and comparing the
two variation-augmented plots in Figure 9, the medians for
the high emissions scenario is roughly 1◦C higher than for
the low emissions, but the extreme part of the tails have a
3◦C difference. This is just one indicator of how much more
severe climate extreme events could become in the future. It
can help us see the importance of reducing GHG emissions

globally even now, because it foreshadows the potential cost of
unconstrained emissions.

In balance, however, it could be that even with high emissions,
the future climate mean could be realized as one of the more
optimisticmodels, in which case the crisis could be onlyminor. In
the 2C emissions scenario, the median in the 2060s is 1.5◦C above
that of the 2020s. Such a rise would be harmful to agriculture, but
clearly not as harmful as one of the hotter climate models tells us
it could be.

We also graphed the precipitation distributions for other
countries (see Supplementary Material) and noted the skewness
of each.We found that Angola, Botswana, Namibia, and Eswatini
had long tails to the right. That is, the model extremes were
higher on the high rainfall end than on the low rainfall end. At the
same time,Mozambique,Malawi, Zambia, Lesotho, South Africa,
and Zimbabwe had much longer tails to the left, favoring bigger
dry extremes.

Table 1 summarizes the median changes in climate and the
range of combined uncertainty and inter-annual variation of
precipitation during the wettest 3months by pixel and aggregated
to the national level. Table 1 confirms that changes in the median
across decades and across emissions scenarios is very small in
every single nation in the study area.

The second thing we notice in Table 1 is that the range of
uncertainty rises across decades given any emissions scenario.
Third, we see that the increase in uncertainty over time is much
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FIGURE 3 | Rainfall in wettest 3 months, millimeters, 1981–2000. Source: Authors’ calculations based on Princeton Global Forcings, version 3 [2018, based on

Sheffield et al. (2006)].

greater for the higher emissions scenario, with the range twice as
large in South Africa for the “PF” compared to the “2C” in the
2060s, though only 25 percent larger in the case of Angola. We
also see that the range of uncertainty can be quite large relative to
the median. In the case of the “PF” scenario for Zimbabwe in the
2060s, the range from the 5th to the 95th percentile is 54 percent
of the median rainfall.

Table 2 shows the distribution across countries for the
variation-augmented climate change for the mean daily
maximum temperature for the warmest month of the wettest
3 months for each pixel. Unlike the case for precipitation in
which the median did not change much across decades and
across emissions scenarios, we note that across all countries,
temperatures are projected to rise. However, for the lower
emissions “2C” scenario, the changes are small. Most countries
are projected to experience only a 0.2◦C increase over the next
20 years, followed by a 0.1◦C increase in the following 20 years.

However, with the higher emissions “PF” scenario,
temperatures are projected to rise between 0.5◦ and 0.7◦C
in the next 20 years, depending upon the country. And between
the 2020s and the 2060s, temperatures are projected to rise 1.1◦

to 1.5◦C. Under both scenarios, the increases are in addition to
the increases already experienced since the 1970s.

As noted for ranges in climate uncertainty and inter-
annual variability for precipitation, the ranges for temperature
also increase through time and are larger for the higher

emissions scenarios. As for the skewness in the uncertainty about
temperature change, all 10 countries have longer right tails than
left. Referring to the values used to construct Table 2, the median
to 95th percentile range for Zambia and Zimbabwe is at least 90
percent larger than the 5th to median range. And for Botswana
and Malawi it is around 70 percent larger. For the other 6
countries, the difference ranges from 20 percent to 45 percent.

Graphs for the distributions in Tables 1, 2 are found
in Supplementary Figures 1, 2. These figures not only show
the skewness of the data for every year between 2020 and
2069, but they also show that for some countries, the
distribution often has more than one peak, similar to what is
seen in bivariate normal distributions. Supplementary Figure 3

contains precipitation graphs and Supplementary Figure 4

contains temperature graphs similar to those in Figure 9 for the
other 9 countries of the Southern Africa study area.

Even though we noted in Figure 9 that there were only little
changes in the left-tail of the precipitation projections in the
future for Zambia, we look further at the tails in Table 3, focusing
on the frequency of relatively rare 1-in-100-year events. Table 3
has data for not only Zambia but for all 10 countries in the study
area. It has data on both the dry year and wet year events, using
the 2020s and the low emissions scenario as the baseline level, and
seeing what the new frequency is for baseline occurrence.

The problem with reading box and whiskers plots like those
in Figure 8 is that because of the size of the dots in the plot,
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FIGURE 4 | Mean daily maximum temperature for the warmest month in the wettest 3 months, 0C, 1981–2000. Source: Authors’ calculations based on Princeton

Global Forcings, version 3 [2018, based on Sheffield et al. (2006)].

it is difficult to see how thick the tails are. However, when
we look at Table 3 and using the 1-in-100-year low rainfall
event during the wet season for the 2020s as a baseline to
measure against, we see that although the tail appeared to be
moving leftward over time, it actually was moving rightward
for Zambia. 1-in-100-year dry events will become rarer there,
occurring once every 242 years by the 2060s under 2C and once
every 177 years by the 2060s under PF. Zambia is not unique
in having such events become rarer: Angola and Malawi also
have the dry year extremes become rarer under 2C in both
the 2040s and 2060s, though not true by the 2060s under the
PF scenario.

More common are the increases in the occurrence of rare
dry years, as seen especially under the PF scenario in the 2060s.
Lesotho, Botswana, Eswatini, and Mozambique all will expect
the 1-in-100-year dry events to occur 4 times more frequently
by then. Namibia, Zimbabwe, and South Africa will see them
occurring 2.5 times as frequently.

Figure 10 shows the pixel-level changes in frequency of 20-
year events by the 2060s under the REF scenario. Northwestern
Angola will see dry events less frequently in the 2060s under
climate change with the REF scenario, while southern Angola will
see them occur roughly twice as often as the baseline 1981–2000
climate. Much of Zambia will have modest increases in dry years,
while much of the rest of the study area will see dry years occur
about twice as often. The parts of coastal Namibia that appear to

have an increased frequency of 4 times is in a very dry area, and
the increase reflects a quantitatively small decline.

Table 3 also has information on the occurrence of 1-in-100-
year wet events in the wet season. By the 2060s, Botswana will
be much less likely to experience a rare extremely wet year, only
seeing it occur once every 351 years. On the other hand, by the
2060s under the PF scenario, Angola will experience them 4 times
more frequently, Lesotho more than 3 times as often, andMalawi
roughly 2.5 times as often.

Figure 11 shows the frequency of high-rainfall, 20-year events
by the 2060s under the REF emissions scenario. Frequency triples
and quadruples in northeastern South Africa, and doubles in
much of the eastern coast of South Africa, southernMozambique
and Zimbabwe, northern Zambia, and eastern Botswana, and
north and central Angola. Namibia’s large increase along the coast
is in a low rainfall area and the increase is quantitatively small.

Table 4 shows the results of the same kind of analysis except
for mean daily maximum temperature of the warmest month
of the wettest 3 consecutive months—and in absolute change in
temperature in ◦C rather than in percent change. The largest
increases occur for the high emissions scenario by the 2060s, with
values averaging around a 0.8◦C increase over the 2020s and a
0.5◦C increase relative to the 2040s.

However, what is of greatest concern is the frequency of
extreme high temperature events. Events that happen every 1-
in-100 years will become commonplace by the 2060s, if the PF
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FIGURE 5 | Middle month of wettest 3 months, 1981–2000. Source: Authors’ calculations based on Princeton Global Forcings, version 3 [2018, based on Sheffield

et al. (2006)].

scenario proves to be correct. For Angola, this kind of event will
occur every year, though for Eswatini it will only occur on average
every fifth year.

On the other hand, if emissions rates can be lowered, by the
2060s, 1-in-100-year events will occur only once every 13 years
(in the case of Angola) or even less frequently−1-in-33 years
in the case of Eswatini. Even by the 2040s under the higher
emissions scenario, the frequency of extreme heat events will
become common, ranging from every 3 years for Angola to every
13 years for several countries (Lesotho, Eswatini, and Zimbabwe).

Making such events much more common will create
challenges for farmers in a number of ways. We mentioned
two of them: lower yields due to heat-stress and lower livestock
productivity due to heat stress. It also will lower productivity of
labor, because people also suffer from heat stress, and will have
negative health consequences, particularly for seniors and those
who are malnourished or sick. It may also lower the efficiency of
farm machinery, since engines and moving parts are subject to
stress under higher temperatures.

DISCUSSION

In this paper we described the development of smoothed
climate ensembles (Schlosser et al., 2021) and their subsequent
enhancement with inter-annual variation derived from historical

weather in such a way that we were able to consider the full-
range of effects of climate change on ten countries of Southern
Africa. By augmenting the ensemble of smoothed climate change
projections with inter-annual variation derived from historical
observations in the manner used here, we were able to assess how
the frequency and magnitude of precipitation and temperature
extremes might change over time, starting with projections at
a fine resolution that were then aggregated to the national and
regional levels.

The fine-scale analysis together with the focus on low-
frequency weather events allows for more detailed sub-national
planning that together with linking to other models could
allow for developing targeted investments that could be of great
benefit to farmers and local planners dealing with infrastructure
and energy.

Because the MIT-IGSM dataset used in this study spanned
all of continental Africa and the PGF historical weather dataset
provides global gridded weather data (as do a number of other
datasets), the methods in this study can readily be applied to
all other countries in Africa. Furthermore, while there are many
advantages of using 7,200 climate models for Africa (such as
providing a more complete distribution of climate futures), it
would be possible to use fewer models for applications on other
continents, taking advantage of the suites of downscaled models
provided by CCAFS (Navarro-Racines et al., 2020) orWorldClim
(Fick and Hijmans, 2017), for two examples.
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FIGURE 6 | Fourty year trend in change to annual precipitation, 1975–2015, millimeters. Source: Authors, using Princeton Global Forcings daily precipitation. Hash

marks show areas with <10% joint statistical significance on the sum of the parameters associated with yr and yr 75 from Equation (1).

FIGURE 7 | Variation in historical precipitation of the wettest 3 months by country based on detrended monthly data, 1948–2016. Source: Authors’ calculations

based on Princeton Global Forcings, version 3 [2018, based on Sheffield et al. (2006)]. For box and whisker plots, the box is bounded by the 25th and 75th

percentiles, with the mid-line inside the box showing the median. The length from the 25th to the 75th percentile is called the inter-quartile range (IQR). The endpoint

of the whiskers is the point that just lies within a distance of 1.5 times the IQR from the ends of the boxes. Any point beyond the whiskers is plotted individually.

This paper focused on the weather during the 3 wettest
consecutive months for each pixel because we were primarily
concerned with how climate change will impact the agricultural
sector. We discovered that median precipitation is not projected
to change much. However, largely because of an increase

in uncertainty under climate change, the frequency of both
extreme high precipitation and extreme low precipitation events
will increase.

The largest changes will occur with temperature,
which will rise at the median, but will rise by
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FIGURE 8 | Variation in historical mean daily maximum temperature for the warmest month of the wettest 3 months by country from detrended monthly data,

1948–2016. Source: Authors’ calculations based on Princeton Global Forcings, version 3 [2018, based on Sheffield et al. (2006)]. For box and whisker plots, the box

is bounded by the 25th and 75th percentiles, with the mid-line inside the box showing the median. The length from the 25th to the 75th percentile is called the

inter-quartile range (IQR). The endpoint of the whiskers is the point that just lies within a distance of 1.5 times the IQR from the ends of the boxes. Any point beyond

the whiskers is plotted individually.

FIGURE 9 | Uncertainty and variation in future precipitation and temperature for Zambia. Source: Authors’ calculations. Values are for total precipitation during the

wettest 3 months and the mean daily maximum temperature for the warmest month during the wettest 3 months of the year for each pixel, for the given decade,

aggregated to the country level. For box and whisker plots, the box is bounded by the 25th and 75th percentiles, with the mid-line inside the box showing the median.

The length from the 25th to the 75th percentile is called the inter-quartile range (IQR). The endpoint of the whiskers is the point that just lies within a distance of 1.5

times the IQR from the ends of the boxes. Any point beyond the whiskers is plotted individually. Blue is for the smoothed climate projections. Red is for the

variation-enhanced climate projections.

even more in the high temperature tails of the
distributions. Furthermore, we discovered large differences
between the lower emissions scenario and the higher
emissions scenario.

While many will find the results regarding frequency of
extreme weather events of interest in their own right, the
authors were interested in accounting for climate uncertainty
and inter-annual variability for related analyses of irrigation,
hydropower, and agriculture for the region. Findings for South
Africa are in Arndt et al. (2021) and for the agricultural
impact on the Southern Africa region, results can be found

in a companion article in this special issue (Thomas et al.,
2022).

Regarding agricultural adaptation to climate change, it is likely
that spontaneous adaptation will occur at the farm and household
level, even without government assistance. For example, farmers
may be able to

Move locations of their farms within the country to areas with
lower mean temperatures.
Change crops or crop varieties to ones that are more
heat resistant.
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TABLE 1 | Median precipitation and variation for the wettest 3 months across climate models and multiple years in selected decades, in millimeters.

Medians Range, 5th-95th percentiles

2C PF 2C PF

Country 2020s 2040s 2060s 2020s 2040s 2060s 2020s 2040s 2060s 2020s 2040s 2060s

Angola 450 451 452 451 450 449 60 72 81 53 75 101

Botswana 193 193 194 192 190 188 67 81 90 75 110 150

Eswatini 413 415 416 418 423 429 117 142 158 134 199 276

Lesotho 333 334 335 335 336 338 70 85 95 105 159 220

Malawi 627 628 630 627 627 627 134 163 182 114 172 235

Mozambique 557 560 563 556 558 561 126 154 172 132 198 263

Namibia 128 128 128 126 123 120 47 56 62 50 72 95

South Africa 213 213 214 213 214 215 26 32 36 36 53 72

Zambia 582 583 585 582 580 580 100 121 135 88 134 182

Zimbabwe 376 377 378 376 372 367 93 112 125 103 150 199

Source: Authors’ calculations.

Variability includes inter-annual variation based on historical weather as well as uncertainty surrounding the future of greenhouse gas emissions and the resulting change in mean climate

over time.

TABLE 2 | Median value for mean daily maximum temperature and variation during the wettest 3 months across climate models and multiple years in selected decades,

in 0C.

Medians Range, 5–95th percentiles

2C PF 2C PF

Country 2020s 2040s 2060s 2020s 2040s 2060s 2020s 2040s 2060s 2020s 2040s 2060s

Angola 30.4 30.6 30.7 30.6 31.1 31.7 0.9 1.0 1.2 0.9 1.2 1.7

Botswana 35.1 35.3 35.4 35.3 36.0 36.8 1.3 1.5 1.7 1.4 2.0 2.6

Eswatini 30.0 30.2 30.3 30.2 30.8 31.3 0.9 1.1 1.2 1.0 1.4 1.9

Lesotho 24.4 24.6 24.7 24.6 25.1 25.7 0.9 1.1 1.2 1.0 1.4 1.9

Malawi 30.0 30.2 30.3 30.2 30.8 31.4 0.8 1.0 1.1 1.0 1.4 1.9

Mozambique 32.0 32.1 32.3 32.2 32.7 33.3 0.8 1.0 1.2 0.9 1.3 1.8

Namibia 32.1 32.3 32.4 32.3 32.9 33.5 0.9 1.1 1.2 1.0 1.4 1.9

South Africa 30.0 30.2 30.3 30.3 30.8 31.4 0.8 1.0 1.1 0.9 1.2 1.6

Zambia 30.5 30.7 30.8 30.8 31.3 31.9 1.1 1.3 1.5 1.2 1.8 2.4

Zimbabwe 31.7 31.9 32.1 31.9 32.6 33.3 1.3 1.6 1.8 1.4 2.1 2.9

Source: Authors’ calculations.

Variability includes inter-annual variation based on historical weather as well as uncertainty surrounding the future of greenhouse gas emissions and the resulting change in mean climate

over time.

Shift their planting months slightly to months with cooler
temperatures and not too-diminished levels of rainfall.
Build shelters or plant trees to provide shade for their livestock.
And with sufficient power availability and in conditions
where it makes economic sense, fans and air-conditioning can
be used.
Shift outdoor work to cooler hours of the day or possibly even
in the night or early morning.

Nevertheless, policy makers can do things to assist farmers in
their efforts to adapt. These include

Investment in developing cultivars and livestock that are
heat resistant.

Investment in irrigation (there is some evidence that
irrigation cools temperatures in the cropping zone and that
irrigated crops produce higher yields than rainfed crops
because most years the rainfall is suboptimal for maximal
yields).

Consider whether there are cooler parts of the country
that could be developed without adverse environmental
impacts, and assist with legislation and infrastructure
to facilitate voluntary movement of farmers to
those areas.

Commit to mitigation of GHG emissions and work in
bilateral and global forums to encourage all nations
to contribute.
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TABLE 3 | Change in frequency of very high and very low precipitation years for the wet 3 months of the year.

Percent change in median

precipitation relative to 2020s for “2C”

Frequency of low rain event that

was 1-in-100 in 2020s for “2C”

Frequency of high rain event that

was 1-in-100 in 2020s for “2C”

2C PF 2C PF 2C PF

ISO 2040s 2060s 2040s 2060s 2040s 2060s 2040s 2060s 2040s 2060s 2040s 2060s

AGO 1.3% 1.1% 1.6% 0.9% 171 127 181 82 46 38 37 24

BWA 1.3% 0.0% 0.1% −1.9% 76 61 44 25 94 351 101 351

LSO 2.1% 1.4% 2.2% 2.1% 104 74 41 23 52 73 38 29

MOZ 0.2% 1.1% −0.5% 0.1% 72 67 45 27 73 61 74 56

MWI 0.8% 1.6% 0.5% 0.7% 105 130 101 69 57 42 84 42

NAM 1.6% −1.3% −0.8% −5.2% 81 77 52 36 83 147 105 205

SWZ −0.8% 0.0% −0.3% 2.0% 72 66 38 26 115 92 118 80

ZAF 1.5% 1.2% 1.6% 2.1% 95 76 63 42 54 80 56 73

ZMB 1.4% 0.7% 1.1% −0.3% 165 242 154 177 80 62 95 65

ZWE 3.0% 2.0% 1.4% −0.5% 90 84 52 35 75 97 68 66

Source: Authors’ calculations.

Values account for inter-annual variation based on historical weather as well as uncertainty surrounding the future of greenhouse gas emissions and the resulting change in mean climate

over time.

FIGURE 10 | Frequency of 20-year low-rainfall events under climate change, REF scenario, 2060s (baseline 2020s 2C). Source: Authors.

For future studies, alternative methods might be used to produce
inter-annual variability measures that allow for a larger subset
of variation deltas to choose from or which better preserve
inter-annual correlation. Unrelated to the manner in which
the variation deltas are drawn, it would also be of interest

to investigate the impact of increases in the variability of
precipitation, given that several authors have argued for the
likelihood of experiencing increased weather variability under
climate change (Pendergrass et al., 2017; Bathiany et al., 2018; van
der Wiel and Bintanja, 2021).
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FIGURE 11 | Frequency of 20-year high-rainfall events under climate change, REF scenario, 2060s (baseline 2020s 2C). Source: Authors.

TABLE 4 | Change in frequency of very high temperature years for the wet 3 months of the year.

Percent change in median temperature relative to

2020s for “2C” in 0C

Frequency of high temperature event that was

1-in-100 in 2020s for “2C”

2C PF 2C PF

ISO 2040s 2060s 2040s 2060s 2040s 2060s 2040s 2060s

AGO 0.1 0.3 0.2 0.7 26 13 3 1

BWA 0.2 0.4 0.3 0.9 44 24 10 4

LSO 0.2 0.4 0.2 0.7 54 30 13 4

MOZ 0.1 0.3 0.2 0.7 36 21 5 2

MWI 0.1 0.3 0.3 0.7 38 22 6 2

NAM 0.2 0.3 0.3 0.8 33 20 5 2

SWZ 0.2 0.3 0.2 0.7 45 33 13 5

ZAF 0.2 0.3 0.2 0.8 28 17 5 2

ZMB 0.1 0.3 0.2 0.7 44 24 8 3

ZWE 0.1 0.3 0.3 0.7 56 28 13 4

Source: Authors’ calculations.

Values account for inter-annual variation based on historical weather as well as uncertainty surrounding the future of greenhouse gas emissions and the resulting change in mean climate

over time.
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