
REVIEW
published: 11 July 2022

doi: 10.3389/fclim.2022.754264

Frontiers in Climate | www.frontiersin.org 1 July 2022 | Volume 4 | Article 754264

Edited by:

Zita Sebesvari,

United Nations University, Japan

Reviewed by:

Luis E. Pineda,

Yachay Tech University, Ecuador

Ken Genskow,

University of Wisconsin-Madison,

United States

*Correspondence:

Andrew J. Constable

a.constable@utas.edu.au

Specialty section:

This article was submitted to

Predictions and Projections,

a section of the journal

Frontiers in Climate

Received: 06 August 2021

Accepted: 02 May 2022

Published: 11 July 2022

Citation:

Constable AJ, French S, Karoblyte V

and Viner D (2022) Decision-Making

for Managing Climate-Related Risks:

Unpacking the Decision Process to

Avoid “Trial-and-Error” Responses.

Front. Clim. 4:754264.

doi: 10.3389/fclim.2022.754264

Decision-Making for Managing
Climate-Related Risks: Unpacking
the Decision Process to Avoid
“Trial-and-Error” Responses
Andrew J. Constable 1,2*, Simon French 3, Vita Karoblyte 4 and David Viner 5

1Centre for Marine Socioecology, University of Tasmania, Hobart, TAS, Australia, 2 Australian Antarctic Program Partnership,

University of Tasmania, Hobart, TAS, Australia, 3 Alliance Manchester Business School, Manchester, United Kingdom,
4 Independent Researcher, Munich, Germany, 5CGG, London, United Kingdom

We provide an overview of decision support tools and methods that are available
for managing climate-related risks and for delivering adaptation and resilience options
and solutions. The importance of understanding political, socio-economic and cultural
contexts and the decision processes that these tools support is emphasized. No tool
or method is universally suited to all circumstances. Some decision processes are
structured with formal governance requirements; while others are less so. In all cases,
discussions and interactions with stakeholders and other players will have formal and
informal aspects. We categorize decision support tools in several broad ways with the
aim of helping decision makers and their advisors select tools that are appropriate to their
culture, resources and other circumstances. The assessment examines the constraints
and methodological assumptions that need be considered.
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INTRODUCTION

Climate change only differs from other risk management problems by the fact there is only one
Earth and a number of the risks are existential to life on the planet. But it is still about managing
risk, for which there is an immense body of literature and decades of experience to draw upon; the
wheel need not be reinvented. Risks (Simpson et al., 2021) can be directly related to greenhouse
gas emissions, such as the risk related to exceeding an average increase in air temperature since
preindustrial times of 1.5◦C, or indirectly related to that, such as health outcomes from a warming
climate (Vanos et al., 2020) (see Box 1). Further, climate risks may also relate to risks from actions
used to ameliorate other risks.

Deciding on actions to ameliorate climate-related risks is a very human process; many
psychological factors may impact on the cognitive and deliberative processes of individuals and
organizations (Orlove et al., 2020). These factors play important roles in making sense of the
problems to be tackled and in the final decisions on what actions may be taken. They can also
influence choices (decisions) on the types of methods to employ to inform decision-making. Actual
methods, tools and processes for making decisions on climate change are not often discussed,
except in a macro sense, when talking about how to manage climate change, as if the solution
and the problem are inextricably linked and seemingly obvious. Yet managing risks, particularly
indirect ones, may be achieved through many different pathways, many of which may involve
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great uncertainty, and which will have varying benefits, costs
and effectiveness for ameliorating risk. A decision-maker may
potentially have leanings to one or a few of many options,
depending on their own preferences, which may not be in the
interests of everyone. Moreover, individual steps to manage
climate risks will have varying degrees of reversibility, potentially
locking in future pathways. How can errors of judgement be
reduced, and poor outcomes avoided as far as possible?

A climate management process is more likely to require
iterative approaches over many years, if not decades, because
a number of risks are expected to emerge in the future and
actions are needed now in order to take effect to reduce risk
before the future arrives. While “trial-and-error” processes may
be a necessary option for managing emergency responses to
extreme events, it is not an option for timely mitigation intended
for limiting global mean temperatures to not rising above 2◦C
(IPCC, 2018). Nor is it an option under many circumstances
where individuals, communities and sectors may be seriously
disadvantaged by a proposed action. So what decision methods
are available that could be brought to bear in resolving and
deciding on (locally, regionally, globally) the best courses of
action to tackle climate change, adapt to the challenges that
are unable to be avoided, and enable the greatest chance for
climate recovery and resilience of natural and human systems?
More importantly and bearing in mind the human influences
in process and outcomes, how might the complexity of the
interactions of different risks (Simpson et al., 2021) be unpicked
and made relatively straightforward in order to appraise how
best to tackle the problem with limited resources, and many
competing interests and perspectives?

In effect, risk management under climate change is the same
as managing a nested “control system” (Box 1). The outer
system is Earth’s climate, with inner systems in Earth’s regions,
and progressing further inward toward locations (cities; or, in
nature, ecosystems), and specific instances (houses, households
and individuals; forests, glades and colonies). At whatever level,
the principles of a control system can apply. It is not just a
top-down process, defined as measures or regulations adopted
by governments or corporate bodies, but includes bottom-up
processes where actions can be taken by individuals or collectives
of individuals with a mind to “think globally-act locally”. There
is an interaction within and between these levels to achieve an
effective control system at any level. Decision-makers need to be
aware of these interactions in order to provide effective responses;
the degree to which the interactions need to be made explicit will
depend on the scale of response being considered. Also, they need
to be aware that, unlike a readily-understood control system such
as a thermostat, adjustments (or iterations) will be needed along
the way to correct the trajectory, rather than allow overshoots and
a need for subsequent correction and restoration.

Decision processes do not have a uniform structure. The
circumstances surrounding decisions may differ in many ways.
There may be a range of uncertainties involved, differing in
character and scale (see Box 1, Figure 1, Table 1). For climate
change, the issues may relate to protecting a small locality or
community or perhaps adapting a region or continent; and the
potential consequences of the decision may vary from something

quite moderate up to very significant, perhaps existential. The
people involved can vary from a single decision-maker to
several decision-makers, or in the climate change context often
local or national governments with a plethora of stakeholders.
The objectives may be unclear at the outset, often contentious
among the decision makers and stakeholders. Experts may
disagree in their advice, and data to resolve their differences
may be sparse. The formal governance structures which dictate
who should decide, and their responsibilities, authorities and
accountabilities, can constrain the decision-making considerably,
including the formal interactions with stakeholders. At the same
time, availability of social and more traditional media ensures
that informal debate among all players – decision makers,
stakeholders, experts, and decision analysts – and the public
will take place beyond the formal decision process creating
expectations and even bottom-up actions, yet also providing a
lot of relevant and useful information. Against such a breadth of
circumstances, it is inconceivable that a single decision-making
tool will be suitable for all cases: although some proponents
of a method or software application might suggest otherwise
in their marketing. People seeking to manage responses to the
climate challenges amongst a portfolio of other challenges can
find linking tools to tasks within their context a challenge in itself.

Here, we recognize that decision-making for managing
climate-related risks is most likely to be unorganized,
unstructured and, in simple terms, messy at the outset.
However, many risks need to be managed by a collective of
people, using processes that enable collective and repeatable
outcomes, whether they be through communities, businesses
and industries, civil society groups, and governments. The more
often the processes are predictable and repeatable, the more they
can be used by others in similar contexts. We lean to decision
analytic approaches that can navigate the complex nature of risk
management and make explicit the nature and background of
a decision.

Our aim is to provide an overview for policy-makers on what
tools may be useful to support decision-making in managing
climate-related risks, recognizing the complexity of the issues both
in the physical world and the socio-political world in which
the decisions have to be made. In doing so we also provide
a guided literature review, both directly and through many
of our citations. Decision-making (hereafter DM when used
as an adjective) literature specifically oriented toward “climate
change” is sparse (Figure 2). We separate DM literature from
other literatures that may relate to the causes and drivers of
the phenomena that underpin understanding the risks; we seek
literature specifically related to the decision process. A broader
literature on decision-making tools is used in this overview, with
links to experience in their application to climate-related DM.
While we do not undertake an exhaustive and systematic review,
we have covered sufficient breadth for the reader to find examples
of the application of the main DM tools and techniques available.

The first part of our overview relates to framing decision-
making. We identify the components of making decisions to
respond to climate risks in a timely manner; some components
of decision-making may have greater importance than others
depending on the context for the decision-makers. By doing
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BOX 1 | Example of climate-risk control systems-managing risk of heat stroke in elderly people.

Heat stroke in elderly people is a well-established phenomenon during heat waves (Vanos et al., 2020). Care for immobile elderly people at home during elevated
heat, such as in heatwaves or during summer in many parts of the world, has many factors to consider. Thermo-regulation in a patient can be assisted by reducing
heat in the vicinity. Both of these are examples of control systems in which the carer can actively make decisions and facilitate immediate outcomes.

A control system has a target condition for the state of the system, a controller (regulator), and a mechanism for changing the state of the system. The controller
measures the state of the system, compares that measurement with the target condition and adjusts the controlling mechanism to move the state of the system
toward the target condition.

A thermostat in an air conditioner managing the temperature of a room is one such control system on which the carer may depend. Thermoregulation in a human
body acts in a similar way. Under heat stress, the body reduces heat by increasing blood flow to the skin where heat can dissipate into the air. In addition, cooling
is achieved by the evaporation of sweat. Heat transfer is more effective as the room temperature falls below body temperature. Evaporation can occur in situations
warmer than body temperature but its effectiveness is limited by humidity. Thus, room temperature and humidity are important for managing a patient’s heat stress.
For simplicity, we combine these terms as “the cooling environment”.

The cooling environment of a room is dependent on that environment throughout the building, the surrounding city and the climate generally. Humidity is difficult to
reduce passively and is a product of passive cooling in the larger urban environment. The thermal masses of buildings and cities create prolonged, elevated ambient
temperatures that reduce the effectiveness of temperature control systems within individual rooms and homes, which have to work against continued radiation of
heat from the thermal mass as well as simply reducing air temperature in a room. Each of these levels of thermoregulation are control systems that work on different
temporal and spatial scales and involve different types and scales of decision processes. The interaction between them is illustrated in Figure 1 and described in
Table 1.

The management of an individual patient is dependent on, inter alia, historical developments of the ambient conditions in the building (months to years), the ambient
conditions in the city (years to decades), the ambient climate (multi-decades to centuries) and his or her family/social support systems. Although history in buildings,
cities and climate are not likely to have considered the issue of risks of heat stroke, they are still systems to which controls can be applied, i.e. the use of feedbacks
to make adjustments to the conditions. Feedbacks in these control systems outside the home will not benefit the immediate conditions of the patient but will benefit
the management of risks of heat strokes in future patients. In terms of decision systems, the outer control systems are more diffuse, less determinate, both in the
controller and in the mechanisms for control. The controllers involve more people with varying social and family connections to the patient, more backgrounds,
expertise, and experiences, and may be less likely to have continuity of people over the course of an iteration of feedbacks. The mechanisms for control become less
likely to be a single action from a choice among actions (top down) but more likely to be many diverse actions (top down and bottom up) along interacting pathways
with feedbacks increasingly occurring in a haphazard and diffuse manner. This diffusivity creates the perception that the outer systems are not control systems when
in fact they are just unavailable for many people, or, when available, are under-utilized and misunderstood when not considered as control systems to manage risk.

Importantly, there is no single approach that could be prescribed to manage the risk of heat stroke in the patient. It would be easy to suggest all homes have highly
efficient, high powered air conditioners. However, this is dependent on the owners having funds to purchase and operate such machines, the building and city having
reliable power systems to service spikes in and/or prolonged use of the air conditioners, and that the climate is such that it does not cause power outages at these
times through lightning strikes.

so, we aim to provide a framework in which the context for
decision-making can be better understood and the tools better
utilized. The second part is about the decision process, presenting
phases of and approaches to the process. In particular, we
then catalog several decision-making tools in ways that should
enable individuals, communities, organizations and government
departments and agencies identify a small number that may suit
their needs in relation to climate change adaption andmitigation.
We aim to help problem-solvers and their advisors become
“intelligent customers” of decision analysis. We make no claims
that our advice is objective in any sense; any catalog requires
judgement to classify each item. However, we hope that we have
written this paper in a way that catalyses a “pause for thought”
so that users will better understand the various ways to make a
decision utilizing a suite of available methods and tools. Lastly,
we provide some insights from our experience on the road ahead
for managing the climate challenges.

FRAMING DECISION-MAKING

Approaches to Making Decisions
The majority of our decision-making is informal, barely
structured with little explicit deliberation and made in ways of
which we may be barely conscious; of course, the majority of our
decision-making concerns things such as when to eat lunch or

the route to take across a station concourse. Consideration of
the consequences of different outcomes may be barely noticeable.
The degree to which risks may be considered depends on
how “lucky one feels”, which is an important motivator as to
whether systematic approaches are used (risk aversion) or not
(risk tolerant). In this case, risk aversion is less about fear and
avoidance but more about determining that the consequence
of a risk being realized cannot be tolerated. More systematic
approaches may be something like needing to get to a meeting on
time and considering the timeliness of different options for routes
across the city. For significant decisions and in a professional
context, we usually seek to make our decisions more formally,
more “rationally” (“blind luck” is not an option), and in an
auditable way, perhaps supported by some form of decision
analysis and evidence. In groups we deliberate and seek to resolve
differences of views. In organizations and governments there
are formal governance rules and constitutions determining the
decision processes, authorities and accountabilities; but alongside
these, informal discussions inevitably take place, influencing
the outcome.

That any form of decision analysis necessarily imposes some
form of consistency and rationality upon the explicit modeling
of the objectives and uncertainties is often not appreciated.
Moreover, the consistency and rationality assumed by some
approaches may contradict those assumed by others, making
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FIGURE 1 | Nested-control system managing the risk of an elderly patient experiencing a heat stroke during home care. Coupled inner systems of thermoregulation in
the patient and the cooling system in the home can be regularly monitored and adjusted by a carer. The home environment is impacted by the ambient temperature
and humidity of the building, which is the next outer control system. In turn, the building is affected by two further control systems - the temperature and humidity of
the city, which is influenced by the regional climate. The identified risk (red line) in the patient thermometer is when the patient’s temperature increases to a critical level
at which heat stroke would occur. The cooling system is regulated by the difference in the room temperature and the target temperature (blue-arrow control system).
Orange arrows indicate the primary direction of “passive” influence of temperature and humidity from the outer control systems to the inner control systems. Red
arrows indicate the “active” feedbacks between these systems when the risk (probability of a temperature causing heat stroke) is unsatisfactory—adjusting the target
temperature on the cooling system and the performance of the cooling system are unable to maintain satisfactory room conditions. Factors to consider in each control
system are shown in small text. The carer, tenants of the building, building owners, city governors and international governors play critical roles in linking the different
control systems through bottom-up and top-down processes.

the use of some tools incompatible with the use of others.
Thus users need to check that they not only understand
but agree with the assumptions underpinning those methods
that they adopt, or they may be misled by or misuse the
results. A very important aspect that distinguishes methodologies
of decision analysis is whether they seek to be objective
or instead render subjective judgements explicit, taking into
consideration diverse values and uncertainties. That said, the
application of any method, whether its assumptions fit with
the users’ perspectives or not, stimulates discussion and focuses
attention on understanding the issues, and that alone can be
enormously beneficial.

Informal decision-making may not naturally satisfy many
of the assumptions made by a decision analytic method. The
simplistic response is that informal decision-making is about
securing an outcome that may not be easily justified, and
that formal decision-making embodies principles to ensure that
important decisions are made soundly and rationally. However,
in practice, informality and formality run side by side and
can be more harmonious, making it not quite so easy to

make such a ready distinction (Hodgkinson and Starbuck,
2008; Gregory et al., 2012; French and Argyris, 2018). At
the individual level, Kahneman, Tversky and many others
have investigated the differences between informal and formal
decision making (Kahneman and Tversky, 1974; Morton and
Fasolo, 2009; Kahneman, 2011; Montibeller and Winterfeldt,
2015). For many years this work was discussed under the
general heading of heuristics and biases, recognizing that
informal decision-making uses “quick and dirty” heuristics
to make choices, but at the risk of biasing choices on
average away from what various principles of rationality
would suggest. More recently, the terminology has changed to
talking about:

System 1 Thinking intuitive, somewhat superficial and on
the fringes of consciousness leading to
potentially flawed or biased choices;

System 2 Thinking explicit, more analytic patterns of thought,
auditable, leading the more consistent and
rational decisions.
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TABLE 1 | Example Attributes of the nested-control systems influencing the risk of an elderly patient experiencing a heat stroke during home care (lists are not exhaustive).

Patient body Home Building City Climate

Controller
(decision-maker)

Carer (external)
Hypothalamus in the
brain of the patient
(internal)

Target temperature
determined by carer
(external)
Thermostat (internal)

Tenants (internal;
bottom up)
Corporate body
governing building
(external; top down)

Legislature (top down)
residents (bottom up)

Multinational
agreements (top down)
National, regional
governments (top
down and bottom up)
Citizens (bottom up)

Mechanism for control Sweating
Skin exposure to air
Drinking water bathing

Air movement for
evaporation
Cooling air

Building modifications
and cooling options
Tenant contribution to
cooling building

Modifying city and
street scapes for
reducing thermal
accumulation, storage
Requirements for future
buildings and
infrastructure

International
agreements
Regulations
Individual actions to
reduce greenhouse
gases

Indicators for action Core body temperature
Skin color
Sweating
Body hydration

Temperature
Humidity
Air flow

Building:
• Ambient temperature

and humidity
• Thermal content and

radiative energy
potential

• Surface reflectance
to prevent
heat absorption

City and street scape:
• Ambient temperature

and humidity
• Thermal content and

radiative energy
potential

• Surface reflectance
to prevent
heat absorption

Regional trends in
climate and extreme
events
Conditions in cities

Time frame for actions Minutes Minutes to Hours Months to Years Years to Decades Decades to Century

Dependencies Patient health, weight
Availability of suitable
water

Capacity of cooling
system to achieve
requirements
Security of power
supply

Building materials,
cladding and insulation
Security of
power supply

Building and
infrastructure materials,
cladding, surface
texture and color,
insulation.
Vegetation and open
water Security of power
supply

Regional environment
and physical
climate/weather
processes

Whether there is a true dichotomy here is moot and there are
many other subtleties discussed in the literature (Shleifer, 2012;
Evans and Stanovich, 2013). However, this simple distinction is
sufficient for our purposes. Decision analysis seeks to encourage
System 2 Thinking, helping decision-makers, their advisors and
stakeholders each individually think through and reflect on the
issues. However, it is easy in discussions and specifically in
articulating probability and value judgements, to slip into System
1 Thinking. Better methodologies and tools have elicitation
processes for nudging and challenging participants to think
carefully and explicitly when giving judgements, but weaker ones
simply take the responses and build them into the analysis.

Most decisions are made by groups and there are informal and
formal aspects to their interactions and deliberation. Sometimes
a decision is reached by simple discussion and consensus, or
maybe an informal vote. Other times, “horse-trading” and other
agreements can connect decisions (“. . . and you vote with me
next time”). Less democratically, there may be a dominant
leader who influences agreement with their views. Business,
organizational and political/government decision making are
bound by more formal governance structures and constitutions,
which prescribe who can take part, what interactions are
allowed, how stakeholders may have their voice heard, voting
systems, etc. In many societies, decision-making has become
more inclusive with stakeholders and the public being consulted

formally (Bayley, 2008; Renn, 2008; Rios Insua and French, 2010).
This is particularly true in the environmental domain in which
many modern techniques of stakeholder engagement, public
participation and deliberative democracy have been developed
(Beierle and Cayford, 2002; Gregory et al., 2012). Alongside such
inclusive deliberations, inevitably informal discussions are also
influential. In businesses and organizations, these may be no
more than “water-cooler” conversations; but the advent of social
media has allowed much wider, often very influential discussion
to take place for all types and scales of decision-making. To
parallel the distinction between System 1 and 2 Thinking, French
and Argyris (2018) have introduced the terminology:

System 1 Societal Deliberation informal discussion with no
formal governance between
decision-makers, stakeholders,
experts, and others concerning
a decision;

System 2 Societal Deliberation formal deliberations and
decision-making set within
explicit governance structures
and constitutions which define
who may take part, their
responsibilities, authorities
and accountabilities.
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FIGURE 2 | Number of journal articles (per decade) on decision-making and risk management found in the literature database SCOPUS in each decade for seven
climate-related risks, with the number specifically related to “climate change” indicated. Journal Articles were found by searching abstracts using the search “ABS
({risk assessment} OR {risk management} OR {decision making} OR {control system} OR {decision system}) AND (risk)”, where the risk was Fishery (extended search
term – “fishery OR fisheries”), Drought (“drought”), Flood (“flood management OR flood mitigation”), Wildfire (“wildfire OR wild fire”), Coast (“coast”), Urban (“urban
environment”), or Health (“public health”).

Decision analysis is aimed primarily at supporting System
2 Societal Deliberation helping those charged with the
responsibility of taking the decision to do so in an informed,
auditable and explicit way. It should, however, recognize the
information sources provided by System 1 Societal deliberation
such as social media, from which the decision-makers can
learn about stakeholder values and other perspectives on
the issues, thus ensuring that they are aware of breadth and
depth of the issues that they face. Indeed, decision analysis
can help in using its tools to communicate the decision-
makers’ reasoning to their stakeholders, particularly in the
formulation and implementation stages of decision-making
(French et al., 2005; Morton et al., 2009). In more inclusive
decision-making, decision analysis can articulate discussions
between decision-makers, stakeholders and experts, drawing
the System 1 Societal Deliberations into the formal System
2 process (Mustajoki et al., 2004; Gregory et al., 2012;
French and Argyris, 2018). It is important to recognize
that broad processes which support this transition to System
2 Thinking and Social Deliberation are context dependent
and depend on the skills of the analysis teams rather than
something that can be achieved in an almost mechanical way
alongside the modeling, computations and analysis. Effective
decision analysis requires many more diverse skills than
some mathematical and algorithmic introductions to decision
analysis suggest.

Modeling and Decision Analysis
Decision analysis requires two forms of modeling. First, there
is a need to model the external context and the physical issues
being addressed; in our case, some climate change impacts. Such
modeling is descriptive of the context and can be validated
empirically if there are data available, though in many examples
of risk management and mitigation, preventive actions are
needed before full data may become available. Such models
are constructs of two or more entities and the relationships
and influences between them. In managing risks, the model
may simply be: “if we choose to undertake this action to
ameliorate the unacceptable risk, then these consequences will
arise because of these reasons.” This model may be founded on
the professional judgement of decision makers and their experts
or more empirically-based. Options for actions may be further
elaborated by alternative beliefs or observations relating actions,
the system being managed, and the consequences. The model can
be made more robust by assembling knowledge relating to:

• What are the drivers of the risk and how might it
be ameliorated?

• What makes the risk unacceptable?
• How specific does the action need to be described in order to

fully understand the consequences?
• How does the action interact with the system to

deliver consequences?
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BOX 2 | Illustrative model for managing the risk of damage from extreme �oods.

Climate change is increasing the likelihood of extreme flooding and, therefore, increasing the risk of accumulated damage from floods in low lying communities (Tabari,
2020). A number of actions through governments may ameliorate this risk in a low-lying area, either through mitigation (reducing greenhouse gas emissions), direct
interventions (reducing exposure by increasing flood water storage, building levee banks or moving low-lying communities to higher ground), reducing vulnerability of
exposed communities (reducing the effects of exposure in buildings and infrastructure or increasing capacity to recover), or creating incentives or a policy/regulatory
environment that stimulates individual or private sector investment in reducing exposure and vulnerability.

Figure 3 presents an illustrative model of the management world and the real world in which human and natural systems interact. The management world is what
is known and can be controlled, including human actions (interventions, impacts, activities, incentives, regulation, policy—and, among stakeholders, acceptance of
that policy), while the real world remains unknown except for the observations that are made of it. These observations may be perceptions/perspectives, monitoring
of important aspects of the human and natural systems relevant for management, or developments in understanding of these systems. The intersection of the
management and real worlds are through human actions and observations.

The relationships of different subsystems in both worlds are illustrated using a digraph methodology, where two subsystems (“nodes”) are linked via an “edge”
or interaction. In this example, the strength of the interaction relative to other interactions is indicated by the width of the line, and its certainty by the length of the
dashes. An arrowhead or a circle indicates whether the interaction is a positive or negative correlation, i.e. if the magnitude of one subsystem or variable increases
then the other will increase if the correlation is positive or decrease if it is negative, and vice versa. This relationship and the strength of interaction is the exposure.
The size of the arrowhead or circle can be used to indicate vulnerability and its shade an indication of certainty. In framing the process for managing a climate-related
risk, knowledge can be used to map such a digraph, with methods available to explore what might happen to all the nodes in the system if you “press” one or more
nodes by a directional change—increase or decrease.

A mapping process such as this is useful, at least, during the “sense making” phase for helping decision-makers and stakeholders alike to better understand the
nature of the problem and the degree of knowledge and uncertainty that need to be addressed for making robust decisions (Melbourne-Thomas et al., 2013). Not
included in this illustration are the potential interactions with other human and natural subsystems or with managing other risks. These can be readily developed in
such a diagram to explore and consider whether such interactions need to be addressed.

These questions may be explored with heuristic models, network
(pathway) models, statistical models, dynamic mathematical
models or a mixture of types, depending on the available
knowledge and data. Some approaches to decision analysis are
limited to specific types of models, while others are more flexible.
The robustness of a model for decision making is determined by
the degree to which an action will be systematically chosen for the
task and correctly ameliorate risks as expected. Box 2 illustrates
the development of a model highlighting some connections
of different parts of the management and Earth Systems in
managing the risks of damage from flooding.

The second form of modeling related to the decision-makers’
and stakeholders’ beliefs, values and objectives. These are more
subjective and do not allow empirical validation. Moreover, the
modeling is not descriptive in the sense that beliefs, values
and objectives exist fully and explicitly before the modeling
process begins. Rather the process of elicitation helps the
participants reflect on what they are truly seeking to achieve
and constructs the detailed objectives for the analysis (Keeney,
1992; Lichtenstein and Slovic, 2006; French, 2021). This form
of modeling is particularly focused on helping the participants
move from System 1 Thinking toward System 2 Thinking as
it generally introduces rationality conditions that help their
values become more consistent. Such modeling is known
as prescriptive rather than descriptive modeling. Comparing
and deliberating on different prescriptive models may also be
important in Social Deliberation if some stakeholders hold to
dogma that conflicts with current established approaches. While
good decision-making depends on sound empirical description
of the context, the process of reaching a decision and consensual
acceptance of the selected course of action are not necessarily
helped by effectively informing some of the stakeholders that
they are “simply wrong” (French and Argyris, 2018), so the

deliberations around prescriptive models need to be carefully and
sensitively facilitated.

There is much emphasis currently on evidence-based
decision-making and we would certainly echo this, but with
a careful interpretation. Evidence and the knowledge that it
supports is often encoded in descriptive models. We only have
direct observations about the past. Decision-making is about
planning for the future and so to use observations, we must
make judgements about its relevance to the future: do we believe
that things will continue in this way or that? Moreover, in many
cases relating to risk management, what evidence we have is
partial, if indeed we have sufficient data to claim any validated
evidence at all. This inevitably means that there is a tension
between scientific advisors, who want more time to accumulate
and validate evidence, and the decision-makers, who need to
make urgent decisions to mitigate risks. Decision analysts need
to appreciate this tension in managing the deliberations between
decision makers, their scientific experts and stakeholders.

A tension exists between observations, evidence, models
about the future and effective risk management related to
climate change; what constitutes evidence in climate-related
risk management? In the last three decades, the Drivers-
Pressures-State change-Impact-Response (DPSIR) framework
has grown to underpin evidence-based management (Patrício
et al., 2016). At its heart, is the need to attribute change to a
driving cause; attribution of climate change to greenhouse gas
emmissions from human activity has been a central theme of
the Intergovernmental Panel on Climate Change (Bindoff et al.,
2013). The application of DPSIR is usually at small spatial scales
(10,000 km2 at most) (Patrício et al., 2016) with a view that
impacts can be detected and, once detected, restoration would be
possible within a similar time frame. Such an approach implies
that failure to not have a significant impact can be easily detected
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FIGURE 3 | Example system managing risk of accumulated damage (red circle) of low level areas prone to flooding in the real world (Box 2). Each of the subsystems
in the real world have a dynamic affected by internal drivers as well as the external inputs and outputs from other subsystems. The relationships (edges) between
subsystems (nodes) and their effects on each other are mapped using a digraph. An end of an edge has an arrow (positive relationship), circle (negative relationship) or
neither (no relationship), which indicates how the abutting subsystem will change when the subsystem at the other end of the edge changes. A positive relationship
means the affected subsystem will change in the same direction as the impacting subsystem, and a negative relationship means the affected subsystem will change in
the opposite direction. These subsystems may also be influenced by other Earth subsystems, human activities and/or management systems not illustrated here.
Knowledge of the real world is constrained to the three black arrows. Interventions of the management system in the real world are through actions, which may in
themselves be subsystems.

and rectified. In climate change, this is equivalent to accepting
that an overshoot of a target global mean temperature would not
be a disaster and that the climate can be restored before disastrous
effects would arise. Yet, we know that the effects of greenhouse
gases emitted now will take many decades before their effects
will be diminished. Managing this risk requires decisions on
actions well in advance of observations demonstrating impacts.

Timeliness for action in risk management is an important
factor not usually associated with DPSIR analyses. Uncertainty
in both descriptive and prescriptive modeling increases the
risks of failure. Evidence, therefore, needs to comprise not only
observations of the state of the system but consider their power
for detecting change and attributing it to the causes, as well as the
degree to which models can help manage future risks.
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Lastly, we are aware that the prescriptive modeling and
analysis used to support decision-making can be interpreted
naively as algorithmic computations on simple, often linear
models without concern for the wider processes that these
calculations support. To be frank, one of us has seen many
naïve analyses performed by quantitatively adept scientists which
have not truly supported the socio-political processes that
surround any complex decision and which consequently have not
really informed the decision-makers and stakeholders. Effective
decision analysis uses the prescriptive modeling to articulate
the deliberations between the participants building a shared
understanding of the issues and each other’s perceptions and
values. It is through that shared understanding that a decision
emerges, not simply from the maximization of some objective
function. So in the next sections we emphasizemany such “softer”
socio-political issues that need to be reflected upon and brought
into the deliberations in developing appropriate decision analyses
for a set of issues.

Contextual Issues
Decisions are affected by many contextual factors beyond the
formality and constraints of the processes used (see French
and Geldermann, 2005; Hodgkinson and Starbuck, 2008; French
et al., 2009 for a wider discussion of contextual issues) and can be
explicitly incorporated in the analyses leading to and supporting
decisions. Some important issues to consider are:

• The “decision-maker” may be an individual, a group sharing
responsibility, a community, an organization or other legal
entity, a government or, in some senses, by society itself.

• The degree of “system understanding” of the risk to be
managed, including the root causes and drivers of the risk
(cause and effect), and the way the risk and its consequent
effects manifest and encoded by the descriptive model of
the system.

• The range of possible options for managing risk may vary
between a few alternatives and effectively an infinite number.

• There can be many other players involved: stakeholders who
will share in the potential impacts in diverse ways; experts who
can advise on possible actions, other risks and consequences;
and the decision analysts who develop the decision modeling
and use this to help articulate deliberation.

• Culture is an important element, especially in relation to the
recognition of subjectivity in the discussions and whether this
should be modeled and made explicit. Stakeholders’ response
to risk and uncertainty hasmany cultural influences (Hofstede,
1984; Thompson et al., 1990; Douglas, 1992). Since climate
change is a global issue, variation in local culture canmean that
a decision tool and approach appropriate to a set of issues in
one regionmay be inappropriate for seemingly the same issues
in another.

• The time and other resources available before a decision
must be made can constrain the range of investigations and
modeling used.

• The range and depth of uncertainties involved are very
important (see Subsection Types of Uncertainties).

• The values and objectives driving the decision may differ
between options too. In the private sector, the profit motive
and shareholder value may not override other criteria, but
financial objectives have high weight; whereas the public sector
have more altruistic objectives reflecting responsibilities to,
e.g., the public, maintaining society and the environment (see
Subsection Values and Objectives).

Box 2 develops these concepts as part of a control system, using a
simplified example ofmanaging the risks associated with flooding
based on a model of how the management and Earth system
might work. The contextual issues that arise in mitigating and
adapting to climate change are important in determining suitable
decision processes and tools. Firstly, the threatened impacts are
global, but with many regional and continental differences in the
scale and type of impact. Different areas of societal and business
activity will be affected differently. A wide range of stakeholder
interests will need to be considered in almost all cases, including
those of humanity itself. There are ethical and moral issues
to consider alongside more prosaic objectives. The breadth of
uncertainties, many of which are deep and difficult to assess, is
huge. While less so than in previous decades, climate science
is controversial, and consensus will be hard to achieve across
all stakeholders.

Types of Uncertainties
Situations of Uncertainty
The breadth of uncertainties can be overwhelming. Courses
of action are broadly constrained by the knowledge readily
available and the familiarity present in a situation. Identifying
the general situation with respect to uncertainty will direct DM
planning from the beginning and facilitate communication on
what is required.

Cynefin is a way of categorizing decision contexts (“spaces”)
according to the decision-makers’ and their experts’ knowledge
of cause and effect and hence their ability to model the
system (Snowden, 2002; French, 2013) (see also the community
of practice—https://www.cognitive-edge.com/). If a context is
known or knowable, then it will be possible usually to build
sophisticated models and make sound predictions; but if the
context is complex and chaotic only the simplest of models
will be possible. Courtney (2003) and others have characterized
uncertainty simply on the quality and precision of models that
can be built and developed, a very similar categorization to
Cynefin. We have chosen to go with the Cynefin formalism since
it seems clearer to us to think of knowledge of cause and effect
in general terms, rather than when knowledge is specifically
expressed as a formal model.

Cynefin recognizes four broad cases (Figure 4):

Known contexts, in which the only uncertainties relate to
stochastic effects, i.e. randomness; cause
and effect are broadly understood to within
natural variation and randomness.

Knowable contexts, in which one has models and good scientific
understanding, but there is a need for data
to determine certain parameters.
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FIGURE 4 | Cynefin.

Complex contexts, in which there is considerable lack of
knowledge. Causes and effects are known,
but not precisely how they are related,
making prediction of the consequences of
a decision difficult and very uncertain.
Uncertainties here may be deep.

Chaotic contexts, in which hardly anything is known; possible
causes and effects are both unidentified.

There is a fifth area in Figure 4, relating to disordered contexts,
i.e., those contexts which have yet to be classified. While
disordered contexts may be important in other applications
of Cynefin, one of the first tasks in problem formulation is
to understand and classify the context so the disordered area
quickly becomes irrelevant to decision analysis. Moving from the
Chaotic Space through the Complex and Knowable Spaces to
the Known Space, our knowledge and understanding move from
deep uncertainty to certainty. Epistemology from sense-making
through inference to full knowledge can be described very simply
against the backdrop of Cynefin (French, 2013). Various decision
analytic techniques are available for the Known, Knowable and
Complex Spaces, but in the Chaotic Space decision-making is a
matter of trial and error; or, if there is time, defer any decision
and investigate the situation to see if one can learn enough to
move the context into the Complex Space. An outcome of this
approach is to provide greater openness as to the scale of the
problem relative to the knowledge base, which then promotes
more obvious courses of action.

Types of Uncertainty
Decision-makers can face many forms of uncertainty. Many
typologies have been developed to describe these, each focusing
on one or more characteristics (Knight, 1921; Berkeley and
Humphreys, 1982; French, 1995b; Paté-Cornell, 1996; French
et al., 2020). Discussions of uncertainties often focus on the
external world within which the problem is being faced, and
for which we describe three types of uncertainties—stochastic,
epistemic (structural) and analytical. We also describe two

important uncertainties internal to the decision process—
ambiguity and values—relating to the decision-makers’ and
stakeholders’ perceptions and valuations of the world. These five
uncertainties are:

Stochastic: relating to physical randomness and natural
variability. These are typically modeled with
probability and simulations (Morgan, 2008).

Epistemic relating to a lack of knowledge or understanding
about the external world and the mechanisms
underpinning relevant phenomena. Epistemic
uncertainty is addressed by statistical analysis, be
it frequentist in which standard errors, p-values,
confidence intervals etc. give some indication of its
scale, or Bayesian in which epistemic uncertainty is
fully modeled through probability (Jeffreys, 1961;
Barnett, 1999; Christensen et al., 2011; Spiegelhalter,
2019).

Analytical relating to the approximations and model choices
that are made in conducting an analysis. This form
of uncertainty is often overlooked. Firstly, models are
never full and true representation of reality; there
is always modeling error. Secondly, computation
is never without error and large-scale climate and
environmental models have many approximations
built into them and the algorithms used to do the
calculations. Analytical uncertainties can be analyzed
probabilistically, but often only bounds are used
(Hennig et al., 2015).

Ambiguity relating to a lack of specificity in the description of
some system or impact. Inevitably in deliberations
about climate change among a plethora of
stakeholders, terminology is not used in unique
ways and ambiguities and imprecision arise leading
to uncertainty. This is not a form of uncertainty that
should be modeled. Rather it should be resolved by
discussion and agreement on terms.

Value relating to a lack of clarity on how to value an impact.
For instance, all the stakeholders and decision-
makers concerned may agree that climate change
adaption measure should ensure the sustainability of
local agriculture, but be unclear about the precise
meaning of this phrase. Again there is no benefit
in modeling such uncertainties. They need to be
resolved by discussion and agreement (Keeney, 1992;
French, 1995b; French et al., 2020).

Decision tools and processes can address all five uncertainties,
though many concentrate on just one or two. For instance,
confining attention to ambiguity and value uncertainties and
ignoring stochastic and epistemic uncertainties can help focus
discussion sufficiently to clarify goals and objectives and support
deliberation between wider stakeholder groups and decision-
makers. Partitioning and classifying the components of any
uncertainty into these five wide categories is a matter of
judgement; but the process of doing so catalyses discussion and
helps ensure that all uncertainties are noted in any analysis,
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TABLE 2 | Types of uncertainty that can arise in different aspects of an analysis supporting a decision on mitigation or adaption.

Type of Uncertainty

Stochastic Epistemic Analytical Ambiguities Value

Nature of the hazard Frequency Magnitude Model and computational
accuracy

Interpretation of goals
and objectives

Consequences of the
hazard

Variable outcomes of
mechanisms

Pathways;
Mechanisms; Other
human causes

Model and computational
accuracy

Importance of potential
consequences

A
sp

ec
ts

of
a
de

ci
si
on

Net effects of
adaptation actions

Variable outcomes of
mechanisms

Pathways; Mechanisms Model and computational
accuracy

Time until hazard of
concern

Variability giving rise to
conditions of concern

Magnitude Model and computational
accuracy

Implementation of
actions

Implementation errors;
project delays

Funding mechanisms Obligation; compliance Importance of action
relative to other
activities

Correction and/or
further adaptation

Variable outcomes of
mechanisms

Pathways;
mechanisms correct
identification of need

Model and computational
accuracy

Understanding of need Importance of potential
consequences;
Importance of action
relative to other
activities

Responsibility to make
decision

Attitudes of
decision-maker

Legal, economic and
social frameworks

Responsibility
Interpretation of the law

Scope of action Natural boundaries of
effects of action

Scale of jurisdiction

even if some are subsequently ignored in order to focus
on others.

Any of these uncertainties can be too deep to be modeled
and analyzed or resolved by deliberation within the time and
resources available for a decision. This may happen because
data are very sparse, expert disagreements very wide or, in the
case of value uncertainties, ethical issues extremely complex and
controversial. In such cases, however the uncertainties should
be dealt with in principle; the depth of disagreement between
experts and stakeholders, the lack of data, and the need to make
a decision relatively quickly mean that in practice methods that
can deal with deep uncertainties will need to be adopted until the
uncertainties can be resolved (Walker et al., 2013; Marchau et al.,
2019; French, 2020). We discuss this further below.

Table 2 helps relates these different types of uncertainties
to some of the challenges that arise in facing up to a
climate change issue. For instance, consider specific hazards
(row 2). Uncertainties may concern (i) the frequency with
which an extreme weather condition occurs; (ii) how large
a change in the weather extremes will occur; (iii) how well
we can predict the weather pattern; (iv) what the goals and
objectives would be in adapting to the new pattern and (v)
how serious the effects would be in terms of these goals and
objectives.

Uncertainty does not just relate to what might happen
(i.e. stochastic, epistemic and analytical uncertainties); but also
to how well potential impacts can be described and valued
(i.e. ambiguity and value uncertainties). This can be true
at organizational and governmental levels as much as for
individuals; and may be particularly the case when the scale
of an issue in space or time is large, as is usual in climate

change contexts. Issues that extend over regions or countries
or over long timespans have strong tendencies to be set in
complex socio-political and economic contexts in which values
are uncertain and hotly debated, making them complex or even
chaotic contexts for decision-making, however straightforward a
technical solution might seem.

The balance between how particular decision analyses address
uncertainties relating to the external world and those relating
to the values driving the decision making is important. Some
analyses partially ignore uncertainties relating to the former
in order to focus on conflicts in the values held by different
stakeholders and help structure debate; others build very
sophisticated models of the external world to predict potential
consequences, but in doing so lose transparency and risk
becoming untrustworthy black boxes to many stakeholders.
There are no methods which guarantee to balance such conflicts
and provide a oath through such complexities, but skilled
decision analysts have the professional facilitation skills that can
help find a resolution (Phillips, 2007; French et al., 2009).

Values and Objectives
Decisionmaking is driven by values, by what the decision-makers
want to achieve. Values are necessarily subjective, but in societies
that seek to avoid explicit subjectivity in their decision-making,
economics and financial theory provide ways of costing many
climate change impacts in a broadly objective manner; but there
are some “intangible” impacts such as the loss of a historic site or
natural estate, or the cultural impact of moving communities that
are difficult to cost. The ability to assess intangible impacts, albeit
subjectively, is one of the characteristics that distinguish different
schools of decision analysis.
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FIGURE 5 | Setting the three decision making phases into a wider context of a control system. The left-hand side of the graphic corresponds with the human
processes of conceptualizing, modeling, analyzing and deliberating on the issues; the right-hand side to the real world and society. In a well-developed simple control
system, the “Science, Data, and Knowledge” are measurements (feedbacks, monitoring) of the real world, the “sense making” will have been previously simplified to
one or more target objectives, the “analysis and exploration” process is simplified to estimating the difference between the state of the system and the target/desired
state, and the “interpretation and implementation” process is simplified to pre-agreed actions to move the system from its current state to the target state.

Although we have discussed contextual issues and
uncertainties first, good decision making in practice follows
value-focused thinking. Keeney (1992) describes this as “first
deciding what you want then figuring out how to get it.” This
runs counter to the more usual alternative-focused approach:
namely first identifying some alternatives, then deciding between
them. However, value-focused decision making is more creative,
not being confined to a set of pre-defined alternatives. Moreover,
being aware of the objectives of a decision analysis at the outset
means that analytic effort can be focused on what matters,
avoiding irrelevancies and providing the means by which any
options can be evaluated for their contribution to a solution. In
particular, since climate change, environmental and economic
models can be very computationally expensive to analyse,
value-focused thinking can direct effort to calculating what
matters; the scale of the effort required to address the problem
can be more easily identified.

Economic and financial methods provide one way of exploring
values and objectives: e.g. cost-benefit methods seek for each
alternative to evaluate the total cost of implementation and
consider it relative to the cost of potential impacts that
the alternative ameliorates (Boardman et al., 2017; OECD,
2018). More generally, value and utility methods offer ways
of assessing both tangible and intangible costs and benefits,
albeit relying more of subjective or, at least, less objective
inputs (Keeney, 1992; Keeney and Raiffa, 1993; Bedford et al.,
2005).

In passing, we note that many perspectives on rational
decision-making separate the Science from the Values that need
to be balanced in making a choice. By “Science” we mean the
knowledge and investigations that can be brought to bear on
resolving the issue and addressing the uncertainties. By “Values”,
we mean the decision-makers’ objectives that the ultimate
choice seeks to meet. Of course, in any democratic society
addressing climate change issues, the decision-makers should
draw stakeholders’ objectives into the ones that they use in the
analysis (Renn, 2008; Rios Insua and French, 2010).

THE DECISION-MAKING PROCESS

In control systems, a decision process will have in mind to
update the controls in a regular feedback process. Simple control
systems will have only one control with a pre-determined target
for adjusting the control based on a measurement of the state
of the system – as in the thermostat in our example. More
diffuse controllers such as for the climate system, may use
many different actions including new actions as differences
between the state of the system and the target are measured,
considered and responded to. If a risk has only been identified
for the first time, then part of the decision process in this
first instance will be to determine not only the actions to
ameliorate the risk but also whether, and when, to assess
in the future the success, failure or other impacts of the
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actions and whether subsequent adjustments or new actions
are needed.

Phases
Almost every writer on decision analysis has summarized the
decision-making process as a cyclic iteration of several phases
(see the many citations to decision analysis in this paper).
Here we use three broad phases, which are adequate for
our purposes:

Sense-Making and Modeling: Before any auditable, rational
decision-making can begin, it is necessary to identify issues,
values, objectives, uncertainties, stakeholders, possible actions
and their consequences, engage with stakeholders and consult
experts as needed, and determine the scope and boundaries
of the subsequent analyses. Only when substantial progress
has been made on these, is it possible to build a quantitative
model and conduct any analysis. This is also a time when the
interaction between different risks and decision processes can
be mapped, the relative importance of each identified, and the
need for integration in their ongoing management.

Analyzing and Exploring: Once a model is built and/or
appropriate existing data and knowledge services are
identified, exploration and analyses are undertaken in relation
to the study’s objectives, options and generally building an
understanding. Sensitivity and robustness analyses may –
should – supplement the decision analysis, setting bounds
on some of the residual uncertainty. During the process,
the model and information should be validated as much
as possible against available data and the decision-makers’,
experts’ and stakeholders’ perceptions. The detail and
application of this phase is very much dependent on the
Cynefin context in which the problem starts out, and, if
needed, howmuch time may be available to move the problem
from one context to the next.

Interpreting and Implementing: The results and guidance
offered by the analysis need to be interpreted into real world
actions. This requires that the decision-makers and analysts
make a judgement whether the analysis is adequate or, in
technical terminology, requisite for the decision, guiding them
to a consensus on the way forward (French et al., 2009).
They need to judge whether the model, the analysis and the
conclusions are fit for their purposes. Once made, they will
also need to communicate the decision to stakeholders and
implement the actions.

Figure 5 relates the three phases to the use of data from the
real world, and choosing from available options to meet the
policy objectives. The left-hand side of the graphic corresponds to
the discussions, deliberations, analyses and studies that support
the decision making. The right-hand side relates to the real
world, which is always too complex to be perfectly modeled or
analyzed. We emphasize that the real world includes not just
relevant changes in climate, but human society, the environment,
business, industry and agriculture and all the systems that need
be considered in developing policies in mitigation and adaption.

Generally, the three phases of decision-making proceed from
the top to the bottom of the graphic and are indicated by
the bulleted lists, but we recognize that analyses, discussions
and deliberation will iterate backwords and forwards as
understanding of the issue grows. The “decision-maker” at the
bottom of the graphic is to be understood as the person or,
more likely, group, who are responsible and accountable for
the decision under the appropriate governance structure. We
emphasize that the interactions of this decision-maker with the
real world include appropriate consultations and engagement
with stakeholders.

This apparently linear approach from problem to decision
implies risk management is organized, that all risks are identified
and the processes set in train are carried out with some order,
including the monitoring of success. Yet this is obviously rarely
the case. Invariably, the process iterates within and between
phases as thinking about one issue catalyses further thoughts
about other issues or reflections during one phase indicate
that other issues should have been considered in an earlier
one. Further, problems may be latent, arising at seemingly
random times, decisions postponed, and attention of scarce
resources diverted to other purposes some way during the
process. Moreover, many risks will be interrelated, and will be
dealt with on differing timelines and urgencies. Being mindful of
these relationships between risks and between their management
process can help reduce tensions between them, take advantage
of synergies in activities and processes, and avoid inadvertent
negative consequences between risks.

Simplistically, decision analytic studies tend to be conducted
in one of two modes (Franco and Montibeller, 2010).

• The expert mode in which the analysts work away from the
decision-makers, experts and stakeholders, consulting them
individually or groups as necessary to gather information.
Such studies are common in addressing problems in the
Cynefin Known and Knowable spaces. Because such problems
occur commonly, well-structured models are relatively easy
to build. The analysts’ task is mainly to run sophisticated
computer codes to explore and analyse the system.

• The facilitated modeling mode in which analysts and
decision-makers, accompanied maybe by some experts and
stakeholders, meet in one or more workshops to “solve” the
problem. Such studies are common in tackling contexts lying
in the Cynefin Complex and Chaotic spaces. Initially the
emphasis is on understanding the perceptions of the group
on what is happening and identifying possible strategies that
may be taken up in response, and on the values that will drive
their decision-making. Later, quantitative models are built in
the presence of the group to capture these and numerical
inputs elicited for those quantities that cannot be inferred
from “objective” data. The group see and explore the analysis
together, before deciding on a course of action.

This rough dichotomy is an oversimplification; many studies
involve elements of both. Large projects dealing with complex
issues, and integrating across related risks, may begin with
several facilitated workshops to explore and identify issues,
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creating a series of questions. These questions are then
explored through sophisticated modeling studies carried out
in the expert mode. Later, there may be a return to
facilitated modeling to share what has been learnt and
evaluate possible strategies, providing guidance to the decision-
makers. Some or all of the workshops might be conducted
as face-to-face events or remotely (Coakes et al., 2002;
French et al., 2009; Nunamaker et al., 2014; Pyrko et al.,
2019).

Approaches to Decision Analysis
Decision analyses comprise many families of techniques, some
with sufficient philosophical and methodological underpinnings
to be called a “school”; while others are more collections
of techniques with enough common qualities to be grouped
together. We have categorized seven broad classes of techniques
that support decisionmaking and give details of each approach in
Table 3, identifying how they relate to the general considerations
in our earlier discussion.

Bayesian Methods
Bayesian methods provide a structured approach to assembling
information around the consequences of choices, either
by modeling, analysis of multiple scenarios or structuring
deliberation. They can address all types of uncertainties, and
are underpinned by axiomatic theoretical bases and powerful
computational methods. These most assuredly form a school
built on a coherent set of assumptions and philosophical
perspectives. Methods can draw in both hard data and expert
knowledge weighing them together appropriately. They use
the same Bayesian statistical approaches that lie at the heart of
many machine learning and artificial intelligence algorithms.
Intuitive, graphical interfaces such as decision trees, belief
nets and influence diagrams make the methods relatively
transparent. Bayesian methods emphasize the auditable, building
of consensus. They make explicit the biases (subjectivity) of
information, stakeholders and the decision-maker. Traditionally,
Bayesian methods use probability to represent uncertainty,
multi-attribute utility functions to represent preference and then
maximize expected utility to identify an “optimal” decision. As
such they apply in the Known and Knowable Spaces. However,
the use of multiple scenarios, sensitivity analysis and exploratory
decision conferences enable the methods to be applied in the
Complex Space (Keeney and Raiffa, 1993; French and Rios Insua,
2000; Smith, 2010; Howard and Abbas, 2016; French, 2020;
Workman et al., 2021) (See Table 3a for further details).

Decision-Making Under Deep Uncertainty
Deep uncertainty relates to circumstances in which data are too
sparse, experts in too much disagreement or time is too short
to model the uncertainty. As such, decision-making under deep
uncertainty (DMDU) methods are focused on working in the
Complex Space. Approaches here emphasize robustness (“no
regrets” options) and the use of scenarios, and often link well with
scenario-focused robust Bayesian studies. Indeed, DMDU studies
draw in many other approaches to decision analysis, using them
to identify robust rather than optimal strategies. DMDU analyses
can help decision makers to think contingently and build a more

wide-ranging recognition of the risks (Walker et al., 2013; Maier
et al., 2016; Marchau et al., 2019; French, 2020; Workman et al.,
2021) (See Table 3b for further details).

Decision Process and Risk Management Tools
The process of decision-making can be very complex, extending
over time and involving many parties. A range of tools and
techniques have grown up to help manage the decision-making
process and support risk management and the implementation of
the chosen strategy. Some tools organize data and analyses, often
being built on a geographic information system. Others manage
processes, organizing workflows. Some have inevitably expanded
in function to support decision-making itself, even though their
primary focus might be on, say, implementation and monitoring
risks. They apply in all the Cynefin Spaces. Such tools are
closely related to knowledge management systems; knowledge
management processes and decision process management differ
more in terminology than in substance (Dalkir, 2005; French
et al., 2009; Jashapara, 2011) (See Table 3c for further details).

Economic and Financial Approaches
Many of the tools involved in analyzing decisions stem from
economic theory and accounting practices: e.g., cost benefit
analysis, which seeks to price out all aspects of the consequence
of a strategy, or real options theory, which seeks to value
financial investments allowing for their risks and the contingent
buying and selling. Such methods are perceived as objective
when dealing with tangibles, but are more controversial in their
valuing of intangibles. Since these methods model uncertainties
with probabilities and then work with expectations, they share
much in common with Bayesian methods. However, many
applications of cost-benefit analysis omit any detailed treatment
of uncertainty. Because of the detailed data requirements of these
methods, their application is limited to the Known and Knowable
Spaces, though there have been some investigations of using real
options in the face of deep uncertainty (Neely and de Neufville,
2001; Bedford et al., 2005; Pearce et al., 2006; Hallegatte et al.,
2013; Buurman and Babovic, 2016; Boardman et al., 2017) (See
Table 3d for further details).

Interval Methods
Because of concerns that the statistical accuracy of some data
is unknown and that decision-makers and experts cannot
make numerical judgements accurately, analyses have been
suggested which accept ranges for numerical inputs. While
avoiding accuracy issues, weakening the arithmetic also may
weaken other foundational assumptions, including some basic
principles of rationality. Different types of uncertainty can often
be confused, and the analyses can contradict basic probability
theory. Interval models of semantic, and imprecision can be
useful in exploring ambiguity and value uncertainty, though
modeling rather than resolving such uncertainties does not
necessary help in decision-making. Some interval methods can
be thought of more as sensitivity techniques applied to other
decision analytic approaches. Typical approaches here relate to
the fuzzy or possibility theory, and evidential reasoning. Interval
methods can be applied in the Known, Knowable and Complex
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TABLE 3 | Characteristics of the main approaches to decision analysis with respect to their Cynefin context, the manner in which they can be used to address different uncertainties, where they may be used in different
phases of the decision-making process, the resources required, and some case studies for further exploring how they might be used.

(a) Bayesian Methods (Keeney and Raiffa, 1993; Smith, 2010; Gelman et al., 2013; Reilly and Clemen, 2013; Howard and Abbas, 2016; Marchau et al., 2019)

Uncertainties Cynefin

Stochastic, epistemic,

analytical

Ambiguity, Value Known Knowable Complex Chaotic

All can be modeled
probabilistically, perhaps
supplemented by sensitivity
analysis (Rios Insua, 1999; Rios
Insua and Ruggeri, 2000; Iooss
and Saltelli, 2017). Deep
uncertainties can be investigated
via scenarios (French, 2020).

Uncertainties resolved or
reduced by discussion, then
values modeled by
multi-attribute values and utilities
(Keeney, 1992; Keeney and
Raiffa, 1993; Gregory et al.,
2012). Residual uncertainties
explored via sensitivity analysis.

Any stochastic uncertainties
modeled probabilistically;
otherwise, deterministic
modeling with sensitivity analysis.
Value functions tend to be used
more than utility functions
(Keeney and Raiffa, 1993;
Goodwin and Wright, 2014).

Epistemic uncertainties updated
via Bayesian statistics/machine
learning, then remaining
stochastic uncertainties modeled
probabilistically. Full Bayesian
decision modeling possible
(French et al., 2009; Smith,
2010; Howard and Abbas,
2016).

More exploratory analysis (Gelman,
2003) to understand behaviors with
less complex Bayesian modeling
support by sensitivity and robustness
studies. (Rios Insua, 1990; French,
2003)
Scenario focused decision analysis to
cope with deep uncertainties (French,
2020). Careful deliberations to
construct values and utilities (Keeney
and Raiffa, 1993; Gregory et al.,
2012).

Formal modeling impossible.
Much exploratory work to identify
potential causes and effects.
Little if any complex analysis.

Decision making process Resources required Case studies

Sense-making and modeling Analyzing and exploring Interpreting and

implementing

Construction of hierarchical models, belief nets
(Sperotto et al., 2017; Phan et al., 2019),
decision trees (Keeney and Raiffa, 1993) and
influence diagrams (Keeney and Raiffa, 1993;
Reilly and Clemen, 2013), supplemented by
many soft elicitation techniques help build
models for quantitative analysis (Gelman, 2003;
Bendoly and Clark, 2016).

Bayesian updating and expected
utility analysis, supplemented by
robustness and sensitivity
analyses (Rios Insua, 1999; Rios
Insua and Ruggeri, 2000; French
et al., 2009; Smith, 2010; Reilly
and Clemen, 2013; Howard and
Abbas, 2016)

Use of graphical models and
sensitivity plots can help explain
reasoning for strategy to
stakeholders and implementers
(Bendoly and Clark, 2016).

Bayesian decision analytic models can be applied
with increasing complexity and sophistication to any
given problem. Coherence between different levels
of sophistication can be maintained. Thus the
resources can be tailored to the time and support
available for the analysis. The most sophisticated
analyses are computationally demanding.

Baker and Solak, 2011;
Catenacci and Giupponi, 2013;
Richards et al., 2013, 2016;
Åström et al., 2014; Alexeeff
et al., 2016; Sperotto et al.,
2017, 2019; Jäger et al., 2018;
Phan et al., 2019
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TABLE 3 | Continued

(b) Decision-making under deep uncertainty (DMDU) (Hallegatte et al., 2013; Weaver et al., 2013; Marchau et al., 2019)

Uncertainties Cynefin

Stochastic, epistemic,

analytical

Ambiguity, value Known Knowable Complex Chaotic

Methods are designed for deep
epistemic uncertainties. Some
can deal with stochastic
uncertainties. Analytical
uncertainties seldom accounted
for.

Some DMDU methods draw on
MCDA methods and thus
consider ambiguity and value
uncertainties. In any case,
DMDU methods support wide
deliberation with stakeholders.

Not applicable because deep
uncertainty is absent

Not applicable because deep
uncertainty is absent

The complex and chaotic spaces are
home to deep uncertainties. DMDU
tools and more particularly processes
are relevant here. The emphasis on
robustness is very relevant. The tools
themselves are relatively simply
structured but are effective at
stimulating discussion.

Deep uncertainties are rife in the
chaotic contexts. DMDU
emphases on robustness and
possible scenarios can stimulate
creative discussions of ill
understood issues.

Decision making process Resources required Case studies

Sense-making and modeling Analyzing and exploring Interpreting and

implementing

Some of the simpler DMDU tools complement soft
elicitation tools and can help to identify relevant
scenarios and help formulate problems.

Many Bayesian or MCDA tools
can be used here but with
DMDU’s additional emphasis on
robustness and the exploration
of several/many scenarios.

DMDU with its emphasis on
robustness encourages
contingency planning in
implementation with careful
monitoring to identify emerging
risks.

Some of the simpler models do not require
substantial resources, but the application of parallel
sophisticated analyses in several scenarios can be
computationally demanding. Also the emphasis on
discussion of robustness can be demanding on the
time of problem-owners, experts and stakeholders.

Lempert and Groves, 2010; Hall
et al., 2012; Weaver et al., 2013;
Taner et al., 2017; Brown et al.,
2019; Groves et al., 2019;
Workman et al., 2021
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TABLE 3 | Continued

(c) Decision process management (Raz and Michael, 2001; Dalkir, 2005; Burstein and Holsapple, 2008; Jashapara, 2011; Bonczek et al., 2014; Sauter, 2014; Holsapple et al., 2019)

Uncertainties Cynefin

Stochastic, epistemic,

analytical

Ambiguity, value Known Knowable Complex Chaotic

Not designed to address
uncertainties involved in the
decision itself, but may handle
project risks in the decision
process, especially
implementation.

Not usually addressed, since
ambiguities and value
uncertainties will be addressed in
the decision making itself, but
may use those values in risk
management of implementation.

Simple project management
tools may be sufficient here.

Project management and risk
management tools apply easily
here.

Project management and risk
management tools may be used
but attention needs to be paid to
risks that are complex in nature
with little knowledge of precise
relationships between cause and
effects.

Project management and risk
management tools may be used
but attention needs to be paid to
risks that are complex in nature
with little knowledge of precise
relationships between cause and
effects.

Decision making process Resources required Case studies

Sense-making and modeling Analyzing and exploring Interpreting and implementing

Process, project, knowledge elicitation
and risk management tools help identify
how to structure decision-making
process. Decision process tools can
capture details for implementation and
document process for audit trail.

Tools help structure decision-making
process and ensure timely involvement of
problem owners, stakeholders and
experts. Knowledge management tools
can capture details for implementation and
document process for audit trail.

Project management tools plan
implementation and risk management
tools identify what to monitor during
implementation. Knowledge management
tools maintain audit trail and track
reasoning for choices made during
implementation

Decision process management tools can
reduce resources needed in the
decision-making process. However, this
assumes that the tools are already installed on
local information systems and that the analysis
team is experienced in using them. Otherwise,
resource is needed to understand and train in
the use of the tools.

Park et al., 2012; Papathanasiou
et al., 2016; Biehl et al., 2017;
Parding et al., 2020

(Continued)

Frontiers
in
C
lim

ate
|w

w
w
.frontiersin.org

1
7

July
2022

|Volum
e
4
|A

rticle
754264

https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://www.frontiersin.org/journals/climate#articles


C
onstable

etal.
C
lim

ate-R
isk

D
ecision-M

aking

TABLE 3 | Continued

(d) Economic and financial methods (Howell et al., 2001; Pearce et al., 2006; Boardman et al., 2017; Atkinson et al., 2018)

Uncertainties Cynefin

Stochastic, epistemic,

analytical

Ambiguity, value Known Knowable Complex Chaotic

Cost-benefit methods usually
deal with uncertainty via
expectations with little attention
to probability distributions; real
options methods tend to treat
uncertainty in much more
sophisticated ways. Both
methods, when applied fully
have many points of contact with
Bayesian methods (Neely and de
Neufville, 2001; Bedford et al.,
2005)

These methods reduce all value
and preference information to
financial equivalents. The key
issues is to find a market in
which all outcomes may be
valued financially. Modern CBA
methods use much more subtle
techniques for this than those
applied in the last century
(Bedford et al., 2005; Saarikoski
et al., 2016).

Although CBA and many
financial methods work in theory,
the complexity makes it seldom
worth the effort.

The methods may be applied to
evaluate complex projects but
CBA tends to “average out”
rather than analyse uncertainty.

The recognition of the need to
treat deep uncertainties using
real options has been
investigated (Hallegatte et al.,
2013; Buurman and Babovic,
2016)

Formal modeling impossible.
Much exploratory work to identify
potential causes and effects.
Little if any complex analysis.

Decision making process Resources required Case studies

Sense-making and modeling Analyzing and exploring Interpreting and implementing

In themselves, these methods do not
support sense-making and modeling,
though discussions of how to value
impacts, both tangible and intangible
can be catalytic in understanding the
issues.

These tools focus mainly on analysis and
evaluating the costs and benefits of
various options. They are not designed to
be used interactively so are more often
deployed and communicated via reports
than interactive workshops.

Since CBA methods do not emphasize the
analysis of uncertainties and risks, they are less
suited for use in developing and
communicating an implementation plan. Real
options with their emphasis on contingency are
much more suited (Fischhoff, 2015).

Cost benefit analysis for complex
projects is a major undertaking with
much data collection needed to value
outcomes. Real options also require
data on risks and uncertainties. Both
may have high computational needs.

Manocha and Babovic, 2017; de
Ruig et al., 2019
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TABLE 3 | Continued

(e) Interval methods (Shafer, 1976; Pedrycz et al., 2011)

Uncertainties Cynefin

Stochastic, epistemic,

analytical

Ambiguity, value Known Knowable Complex Chaotic

There are issues of operational
definition of quantities in some
methodologies. Some simpler interval
methods have no concept of
conditionality so cannot model
learning effectively, but there are
some very sophisticated theories of
evidence that can. Interval methods
can also provide sensitivity analyses
for Bayesian and MCDA methods
(Shafer, 1976; Rios Insua, 1990)

Some methods can be simplistic
with quantities not being
operationally defined. The
evidential reasoning approach to
MCDA allows exploration of the
relative weights on different
criteria or between levels in
criteria (Xu, 2012; Zhang et al.,
2017)

Methods can be applied here
without major issue, possibly
because the simple, repetitive
nature of the problem allows
access to much data and the
possibility of tuning the methods
to the application.

Since the methods often capture
rather than explore and resolve
ambiguity and value
uncertainties, they can hide
issues. Also the lack, in some
cases, of operational definitions
may mean that some
quantification is dubious.
Evidential reasoning methods
can help analyse conflicting
objectives (French, 1995b; Xu,
2012)

The recognition of the need to
treat deep uncertainties using
real options has been
investigated (Hallegatte et al.,
2013; Buurman and Babovic,
2016)

The ability to deal with ambiguity
may be helpful in poorly
understood situations, but the
emphasis on capturing ambiguity
may ultimately slow the building
of understanding.

Decision making process Resources required Case studies

Sense-making and modeling Analyzing and exploring Interpreting and implementing

The emphasis on modeling ambiguity may
help structure a model initially, but the lack
of structures to model and explore
complex interdependencies may inhibit the
ability to build a valid representation of the
issues.

If there is substantial data available then
even the simplest of these methods can
produce useful results. But with small
quantities of data, their data analysis may
be too inefficient. Evidential reasoning
MCDA can be insightful on the preference
side.

The emphasis on linguistic uncertainty
may in some cases it may mask some of
the issues. (French, 1995b)

Many methods are rather simple in application and
require only moderate resources, but they may face
issues in scaling up to major complex problems.

Gilbuena et al., 2013; Kim and
Chung, 2013; Batisha, 2015;
Yang et al., 2018
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TABLE 3 | Continued

(f) Multi-criteria decision analysis (MCDA): full ranking and optimal seeking (Bell et al., 2001; Belton and Stewart, 2002; Bouyssou et al., 2006; Zopounidis and Pardalos, 2010; Tzeng

and Huang, 2011; Velasquez and Hester, 2013; Kumar et al., 2017)

Uncertainties Cynefin

Stochastic, epistemic,

analytical

Ambiguity, value Known Knowable Complex Chaotic

These methods tend to focus on
balancing and resolving
conflicting objectives and include
little or no analysis of stochastic
and epistemic uncertainties.
Interactive methods that use
complex objective functions do
need to consider convergence
criteria for analytic uncertainties.

Many methods here use
multi-attribute value functions
and focus on using weights to
explore different emphases on
conflicting objectives. One very
popular method is AHP (Saaty,
1980), though this has issues in
scaling up to evaluate more than
a handful of policies.

Usually in the known context, the
objective function is well
understood; but in cases where it
is not, interactive multi-objective
programming can offer a way
forward (Klamroth et al., 2018).

If the objective function is not
well understood, then these
methods can be useful and can
be extended to stochastic
programming, but epistemic
uncertainties are not really
addressed (Gutjahr and Pichler,
2016).

Methods can explore conflicting
objectives, but seldom are able
to address deep epistemic
uncertainties, unless combined
with scenarios (Stewart et al.,
2013; Marchau et al., 2019;
Durbach and Stewart, 2020).

Formal modeling impossible.
Much exploratory work to identify
potential causes and effects.
Little if any complex analysis.

Decision making process Resources required Case studies

Sense-making and modeling Analyzing and exploring Interpreting and implementing

There is growing experience in combining
soft elicitation with tools to formulate
problems (Marttunen et al., 2017). Many
MCDA tools naturally encourage
discussion and deliberation on developing
appropriate value structures. However,
exploration and formulation of stochastic
and epistemological uncertainties is less
developed (Durbach and Stewart, 2020)

Emphasis is usually on analyzing and
exploring, resolving conflicting objectives.
MCDA Methods come into their own at
this stage of the process. Sensitivity tools
and intuitive graphical displays exist for
many of the methods (Gunawan and
Azarm, 2005; Boardman et al., 2017).

Use of graphical models and sensitivity
plots can help explain reasoning for
strategy to stakeholders and implementers
(Bendoly and Clark, 2016).

The more exploratory methods can be quite light in
terms of computational resource, but require
interactions with decision makers and stakeholders
in workshops. Methods with use complex
stochastic mathematical programming can be
computationally demanding and require substantial
data.

Konidari and Mavrakis, 2007; de
Bruin et al., 2009; Streimikiene
and Balezentis, 2013; Haque,
2016
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TABLE 3 | Continued

(g) Multi-criteria decision analysis (MCDA): partial ranking (Roy, 1996; Bell et al., 2001; Belton and Stewart, 2002; Bouyssou et al., 2002, 2006; Behzadian et al., 2010;

Zopounidis and Pardalos, 2010; Tzeng and Huang, 2011; De Smet and Lidouh, 2013; Velasquez and Hester, 2013; Figueira et al., 2016; Govindan and Jepsen, 2016)

Uncertainties Cynefin

Stochastic, epistemic,

analytical

Ambiguity, value Known Knowable Complex Chaotic

Modeling of all forms of
uncertainty including epistemic
uncertainty is not the primary
objective of these methods.
Stochastic uncertainty may be
included as probability
distributions but there is no
formalism for learning to address
epistemic uncertainties. (Hyde
et al., 2003; Behzadian et al.,
2010; Gervásio and Da Silva,
2012)

Partial ranking or out ranking methods
seek, first of all, to identify dominance
between options and preference
relations that can be agreed
somewhat objectively. Thus first they
eliminate suboptimal alternatives
before seeking a fuller ranking.
Ambiguity and value uncertainty may
also be quantified (Behzadian et al.,
2010; Figueira et al., 2016; Govindan
and Jepsen, 2016).

Usually in the known context, the
objective function is well
understood; but when it is not,
outranking methods can identify
a partial ranking without need
too many interactions with
problem-owners.

Since epistemic uncertainties are
not fully addressed, these
methods can only help in relation
to conflicting objectives, but
robustness to uncertainties will
need addressing (Hyde et al.,
2003)

Outranking methods may be
combined with scenarios to
explore and analyse decisions
under deep uncertainty. (Hyde
et al., 2003; Durbach, 2014)

Formal modeling impossible.
Much exploratory work to identify
potential causes and effects.
Little if any complex analysis.

Decision making process Resources required Case studies

Sense-making and modeling Analyzing and exploring Interpreting and implementing

Graphical representations of partial
orders are useful in model
formulation, and the emphasis on
exploring what can be said objectively
about dominance relations can build
a kernel of consensus between
decision-makers and stakeholders.

ELECTRE and PROMETHEE
implementations of outranking
approaches have many tools for
exploring partial relations and
analyzing agreements and the
reasoning behind these.

The analysis of dominance can
provide a sound footing for building
risk registers to aid implementation.
Understanding the kernel of
consensus can also aid
communication.

If an outranking algorithm is essentially
combinatorial in its approach then for complex
problems there may be computational
problems. Some of the methods may require
less interaction with decision-makers and
stakeholders if they can deduce many partial
relations from objective data.

Markl-Hummel and Geldermann,
2014; El-Zein and Tonmoy,
2015; Xenarios and Polatidis,
2015; Michailidou et al., 2016
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TABLE 3 | Continued

(h) Soft elicitation (Rosenhead and Mingers, 2001; Shaw et al., 2006, 2007; Ackermann, 2012; Bendoly and Clark, 2016)

Uncertainties Cynefin

Stochastic, epistemic,

analytical

Ambiguity, value Known Knowable Complex Chaotic

Soft elicitation tools are available
to elicit problem-owners’ and
experts’ perceptions of these
uncertainties and, more
particularly, dependences and
independences between them.
Exploratory data analysis is also
relevant (Steed et al., 2013;
Bendoly and Clark, 2016).

There are tools to catalyse
deliberations and help
problem-owners and
stakeholders clarify their
meanings and contextualize their
values to the specific issues
being considered. (Keeney,
1992)

Usually problems falling into
known contexts are
well-understood and there is little
need to elicit or structure models
to perform analyses.

Problems falling into knowable
space are usually well structured
and problem owners’ values are
also well understood. However,
there may be a need to explore
error structures in preparation to
estimate parameters in the
models. (Gelman, 2003; Steed
et al., 2013; Fekete and Primet,
2016)

Many soft elicitation tools were
developed for complex contexts:
’wicked’ problems with deep
uncertainties: e.g., soft systems,
cognitive maps and similar tools to
elicit perceptions of relationships
between entities and
problem-owners’ and stakeholder’s
values (Keeney, 1992; Rosenhead
and Mingers, 2001)

Soft elicitation tools and
processes can be use to
catalyse creative thinking about
poorly understood contexts.

Decision making process Resources required Case studies

Sense-making and modeling Analyzing and exploring Interpreting and implementing

Soft elicitation tools provide much support
to sense-making, formulating problems
and identifying relevant issues to be
addressed (Shaw et al., 2006, 2007;
Ackermann, 2012)

Soft elicitation is not relevant to
quantitative analysis and evaluation per se,
but can support the exploration of
residuals to understand the quality of the
models and detect further factors to be
addressed.

The results of soft elicitation provide the
dimensions for communication by
identifying the issues that are important to
stakeholders and building understanding
in those implementing the policies.

Physical resources requirements are
relatively slight: sometimes post-its and a
white board can be sufficient, though
modern visual analytics can require
substantial computing resource. However,
the demands on the time of
problem-owners, stakeholders and
experts can be significant

Massingham, 2010; Butler et al., 2016;
Bosomworth et al., 2017; Prober et al.,
2017; Symstad et al., 2017
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Spaces (Shafer, 1976; French, 1984, 1995a; Pedrycz et al., 2011;
Xu, 2012) (See Table 3e for further details).

Multi-Criteria Decision Analysis
A term covering many approaches: indeed, Bayesian, DMDU
and interval methods are sometimes considered multi-criteria
decision analyses (MCDA). Some MCDA seek an optimal or best
strategy; others form partial rankings, eliminating weak strategies
but not discriminating fully between the better ones. Many
MCDA methods eschew dealing with uncertainties and focus
on modeling and exploring conflicting objectives and balancing
these. Some methods have a rather pragmatic basis, although
the European School of Multi-Criteria Decision Aid have much
firmer philosophical foundations. There areMCDAmethods that
are appropriate to each of the Known, Knowable and Complex
Spaces, though any method may be limited to just one of these
spaces. MCDA techniques are especially useful in working with
senior decision-makers in setting policy and broad objectives,
and in processes of stakeholder engagement (Roy, 1996; Roy and
Vanderpooten, 1996; Belton and Stewart, 2002; Bouyssou et al.,
2006; Zopounidis and Pardalos, 2010; Velasquez and Hester,
2013; Korhonen andWallenius, 2020) (SeeTables 3f,g for further
details).

Soft Elicitation
Soft elicitation, also known as problem structuring, is the
process of asking problem owners, experts and stakeholders

for the knowledge, perceptions, beliefs, uncertainties and values
that a model needs to embody before being populated with
numbers. Methods here help in problem formulation, structuring
understanding: e.g., cognitive maps, soft OR, soft systems,
prompts such as PESTLE and other qualitative tools. The output
of soft elicitation can lead to the building of sophisticated
quantitative models; and can also structure communications
and deliberations with stakeholders. Exploratory data analysis
and visual analytics are also relevant. Soft elicitation is, rather
obviously, focused on the sense-making and modeling phase of
decision making, but it also has enormous advantages in setting
the frame for communication between all parties and thus applies
in all three phases. Also there are many cases in which the clarity
brought by framing the issues well has obviated the need for
formal quantitative analysis. These techniques are useful in all of
the Cynefin Spaces, though they come to the fore in the Complex
and Chaotic Spaces In which sense really needs to be made
(Rosenhead and Mingers, 2001; Checkland, 2013; Steed et al.,
2013; Bendoly and Clark, 2016; Pyrko et al., 2019; French, 2021)
(See Table 3h for further details).

Identifying Decision-Making Tools
Appropriate to a Problem
No “one-size-fits-all” tool is available for managing every climate
risk or, indeed, managing the same risk but in different contexts,
urgencies or availabilities of resources. This section aims to
provide a means by which a climate risk manager may appraise

FIGURE 6 | Illustration of how a management system, including the extent of data and models, will differ between Cynefin contexts, following the example in Box 2.
Figure 3 is the Known context on the left. As uncertainty increases according to the Cynefin context (progressive panels toward the right), the ability to evaluate how
the risk is changing in the future and to assess the implications of different actions will diminish. These changes are illustrated through change in the uncertainty
around each subsystem and the linkages (see Legend in Figure 3) or even understanding what subsystems might be present. The interlinked and iterative processes
between the three phases of a management system are shown in the cloud on the left. Text in the symbols are summaries of the text from Figure 3. The application of
different approaches to decision analysis (see Section Approaches to Decision Analysis) applicable to the four Cynefin contexts are shown at bottom (solid line =

broad application, dashed line = specific methods applicable, dotted line = applicable in some aspects such as in sense-making, double-dash-long-dash line =

general useful).
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FIGURE 7 | A graphic relating case studies to (i) Geopolitical scale of a decision (ii) the commitment to the result of the case study, (iii) the decision-making bodies
concerned and (iv) the decision analytic approach used. Symbols represent three components. Colour is the decision analytic approach: red, Bayesian; brown,
Decision-Making under Deep Uncertainty; dark blue, Decision Process Management; purple, Economic and Financial Methods; light blue, Interval Methods; light
green, full ranking MCDA; dark green, partial ranking MCDA; black, Soft Elicitation. Letters are decision-making bodies: C, Community; G, Government; B,
Business/Industry; F, Finance; N, NGO; A, All categories. Numbers in square brackets are the citation: [1] Åström et al. (2014); [2] Alexeeff et al. (2016); [3] Baker and
Solak (2011); [4] Batisha (2015); [5] Biehl et al. (2017); [6] Bosomworth et al. (2017); [7] Brown et al. (2019); [8] Butler et al. (2016); [9] Catenacci and Giupponi (2013);
[10] de Bruin et al. (2009); [11] de Ruig et al. (2019); [12] El-Zein and Tonmoy (2015); [13] Gilbuena et al. (2013); [14] Groves et al. (2019); [15] Hall et al. (2012); [16]
Haque (2016); [17] Jäger et al. (2018); [18] Kim and Chung (2013); [19] Konidari and Mavrakis (2007); [20] Lempert and Groves (2010); [21] Manocha and Babovic
(2017); [22] Markl-Hummel and Geldermann (2014); [23] Michailidou et al. (2016); [24] Papathanasiou et al. (2016); [25] Parding et al. (2020); [26] Park et al. (2012);
[27] Phan et al. (2019); [28] Prober et al. (2017); [29] Richards et al. (2016); [30] Richards et al. (2013); [31] Sperotto et al. (2017); [32] Sperotto et al. (2019); [33]
Streimikiene and Balezentis (2013); [34] Symstad et al. (2017); [35] Taner et al. (2017); [36] Weaver et al. (2013); [37] Xenarios and Polatidis (2015); [38] Yang et al.
(2018).

the value of different analytic techniques for their situation. We
encourage a prospective user of these techniques to consider
the nature of the control system they are dealing with, such as
described in the box, the Cynefin context in which they find
themselves, and the types of uncertainties most conspicuous in
their case. Table 3 can then be used to assess the appropriateness,
or not, of different groups of techniques described above. The
Table lists the various forms of decision analysis, indicating
how they manage uncertainties, how they may be used in the
differentCynefin contexts, how they fit into the different phases of
decision-making and the resources needed in each use. In order
to dig deeper into whether an approach may be suitable, citations
are given to relevant literature to support our comments. In
addition, we cite some relevant case studies in the application
of the tools to climate-related risk management. We make no
claims of exhaustiveness, and recognize that in identifying these

characteristics we are making many subjective choices, but we
hope that they offer a constructive guide into the literature that
may help problem-owners and analysts find tools potentially
valuable in their context.

While once-intractable, Bayesian Methods have made huge
strides becoming computationally tractable and transparent to
non-specialist users since the last century (Edwards et al.,
2007). Moreover, developments in elicitation can be used
to address behavioral and cognitive issues that can bias
judgemental inputs (Dias et al., 2018; Turkman et al., 2019;
Hanea et al., 2020). Many of the other methods evolved
before these advances. Thus, Bayesian ideas should not be
dismissed on those grounds; the main issue in using them is
that they are explicitly subjective, emphasizing transparency,
consensus, impartiality, and correspondence to observable
reality instead of objectivity (Gelman and Hennig, 2017).
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Different cultures recognize and value subjectivity and objectivity
differently. Some demand that subjective judgements are
recognized explicitly, while others only acknowledge objective
issues explicitly.

Decisions are based on analyses of the knowledge and
information at hand to the decision-maker. The context of
the decision process described above influences what can be
done in each phase of decision making. Figure 6 illustrates how
knowledge and uncertainty of the different subsystems in the
example control system for managing the risk of consequences
of flooding (Figure 3) influence the Cynefin space that the
management problem may fall within, as well as indicating the
analytic techniques that may be available.

Decision analyses used to support decision-making on
climate-related risks shown as case studies in Table 3 were
assessed for the circumstances in which they were used. The first
dimension of the assessment was the geo-political scale to which
the decision was intended to apply—household (or individual),
community (village or neighborhood), city (including the
greater city jurisdiction), sub-national region (a state, province),
nation, trans-national regions (within a continent), international
(through global agreements, organizations and the like). This
scale differs from the type of body making the decisions, which
is reflective of whether the outcome is intended as top-down,
autonomous, or bottom-up. Here, a top-down decision is one
that applies from a body that is autonomous at higher geopolitical
scale to lower scales, whereas a bottom up decision is onemade by
a body autonomous at lower scales intended to influencing high
scale outcomes.

The second dimension relates to the contribution of the
technique to decision outcomes. These contributions relate to
phases in the decision process but, as described previously,
may not be implemented in a set sequence. The types of
contributions include:

Reviews of circumstance: problem formulation,
relationships between
factors (related to the
sense-making phase).

Theoretical studies with realistic data: qualitative, statistical,
dynamic modeling,
scenario testing (sense-
making as well as
analyzing and exploring).

Recommendation to decision-maker: appraisal of alternative
actions (interpreting).

Stakeholder consultations: occur at anytime,
could relate to
problem formulation,
risk identification,
consequences of
actions (sense-
making, analyzing and
exploring, interpreting
and implementing).

Pathway to decision-established: finalization of actions,
commitments without

final approval or enacting
regulations (interpreting).

Decision-implementation to act: final outcome and
course of action set in
train (implementing).

The results of this assessment are shown in Figure 7. Evidence
of the basis of actual decisions and whether decision-analytic
techniques were used to support the making of those decisions
is difficult to find in the peer-reviewed literature. Most of the
case studies were related to theoretical studies with realistic
data, reflecting that most literature on climate change is about
scenarios and the consequences of those scenarios. Many fewer
studies address the actual decision processes of managing
climate-related risks. Moreover, the spectrum of different types
of contribution to the decision process seem more focussed at
subnational/national levels.

CONCLUDING REMARKS

Climate change brings many profound challenges and with them
a need to manage a gamut of risks, ranging in scale from very
local to global and severity from a relatively simple need to adapt
to existential. Addressing these will involve many people, many
decision-makers, stakeholders and experts. Some situations may
have time and resources for acquiring data, opinions and to test
options; others need urgent actions. In consequence, there are
many decisions to be made and a great need for modeling and
analysis to support these decisions.

In this paper, we have sought to guide policy makers,
their advisors and the broader climate change community
(scientists, NGOs, advocacy groups) into the literature on
decision analysis and the range of tools available to support
decision-making.We have sought to emphasize the complexity of
decision-making, particularly in the context of time-constrained
risk management. We have presented existing approaches and
decision analytic tools in a way that we believe will help policy
makers find methods that are appropriate to their circumstances.
We hope that our paper stimulates their recognition of the
complexities involved in the decision-making and at the same
time offers constructive suggestions to help develop appropriate
decision analyses.
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