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United Kingdom, 2Water Engineering and Management, School of Engineering and Technology,

Asian Institute of Technology, Klong Luang, Pathum Thani, Thailand

The interannual El Niño-Southern Oscillation (ENSO) and the Boreal Summer

Intraseasonal Oscillation (BSISO) strongly modulate sub-seasonal to seasonal

rainfall variability, leading to dry extreme rainfall events (DEREs) over Northeast

(NE) Thailand. In this study, the ability of climate models to simulate the

ENSO-BSISO-induced DEREs and associated synoptic features are evaluated

using self-organizing maps. Observed DEREs occur most frequently during

ENSO Neutral and La Niña conditions, when enhanced convection is located

over central India and the Bay of Bengal. The intensity of observed DEREs

are strengthened during El Niño when enhanced convection is observed over

the western Pacific region. The climate models exhibit a diverse frequency of

DEREs during ENSOphases, with somemodels showing better skill than others.

On intraseasonal time scales, observed DEREs are favored when enhanced

BSISO convection in phases 3–5 is located over the Bay of Bengal and the

western Pacific region. Five models out of the 19 examined capture the

observed pattern during BSISOphases 4 and 5, while only threemodels capture

the BSISO phase 3 behavior. Composite maps of observed DEREs during

the combined BSISO and ENSO conditions indicate that BSISO convection

increases (decreases) DERE frequency during El Niño and Neutral (La Niña)

phase(s). Climatemodels can simulate the occurrence of dry events associated

with the combined BSISO and ENSO phases, but they do so in di�erent

BSISO phases.
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1. Introduction

Dry extreme rainfall events (DEREs), including decreases in frequency and intensity

of rainfall and prolonged drought episodes, are a natural phenomenon, but their impact

is dangerous to physiological wellbeing (Vicente-Serrano et al., 2010; Abatan et al., 2017;

Abiodun et al., 2019). From time immemorial, DEREs has been a threat to humanity

and impacts can be measured in economic terms. Furthermore, the devastating impact

of DEREs has been manifested in terms of losses of environment and socioeconomic

activities including vegetation and peatlands due to extreme fire outbreaks, depletion

of air quality, water resources diminution, agricultural production, and health risk of
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lives—humans and wildlife (Prapertchop et al., 2007; Page

and Hooijer, 2016). In more recent times, several vulnerable

countries in Southeast Asia (SEA) including Thailand have been

inundated by DEREs (Mongkolsawat et al., 2001; Danny, 2011;

Pavelic et al., 2012), with water resources management and

agriculture being the worst hit. The Ministry of Agriculture

and Cooperative of Thailand estimated that the 2012 drought

over Northeast (NE)—a region where farming of cassava, rice,

and livestock rearing amongst others is a major occupation—

affected about 0.1 million hectares of land of which 0.08 million

hectares were rice fields (Faisal et al., 2014; and references

therein). The 2015 severe drought left unprecedented hardship

in its wake. The agricultural damage, valued at 3.6 billion

USD (119 billion Thai baht), ominously reduced Thailand’s

economic growth rate by about 0.85% [Center for Economic

and Business Forecasting (CEBF), 2016]. This El Niño-Southern

Oscillation-induced drought also forbade the local inhabitants

to celebrate the traditional and famous Songkran water festival.

Variability of the DEREs over Thailand is no doubt associated

with perturbation of the climate through the global-scale modes

of climate variability and by climate change. Danny (2011)

indicated that “the impacts of climate change on Thailand are

already serious and will likely create or exacerbate a number

of additional problems during the next few decades.” Therefore

researchers, policy decision-makers, and the government need

to have an improved understanding of how to adapt and

mitigate the impact of climatic mode and climate change-related

extremes over this region.

Dry extreme rainfall events over SEA are modulated by

several atmospheric phenomena at various temporal scales

ranging from intraseasonal to interannual. In particular, the

El Niño-Southern Oscillation (ENSO) and the Boreal Summer

Intraseasonal Oscillation (hereafter; BSISO), the focus of this

study, are two of the major atmospheric climate modes that

influence sub-seasonal to seasonal rainfall variability over the

region (Räsänen and Kummu, 2013; Muangsong et al., 2014;

Xavier et al., 2014). ENSO is an atmospheric-oceanic mode

of variability on interannual time scales that is known to

play a dominant role in controlling the climate variability of

tropical and subtropical areas, with significant weather impacts

(Todd et al., 2018; Roy et al., 2019; Pillai et al., 2021). The

BSISO, which is characterized by 10–20-day and 30–60-day time

scales, is known to play an important role in determining the

intraseasonal variability of the Asian summer monsoon system

(Li et al., 2015; Hsu et al., 2016; Lee et al., 2017; Yang et al., 2020;

Abatan et al., 2021).

These two climate modes individually affect the climate

variability at different temporal scales over several regions of

the Asia continent, leading to changes in the characteristics

(intensity and frequency) of extreme rainfall-induced droughts

and floods (Juneng and Tangang, 2005; Villafuerte II and

Matsumoto, 2015; Hao et al., 2018; Supari et al., 2018).

Meanwhile, the impact may vary from one country to another

depending on the ENSO—El Niño, La Niña, and Neutral—and

BSISO phases. Several studies have been conducted to examine

the relationship between ENSO and climate over Thailand

(e.g., Muangsong et al., 2014; Limsakul and Singhruck, 2016;

Sriwicha et al., 2016; Bridhikitti, 2019). Focusing on the Mekong

River Basin and using multiple statistical methods, Räsänen

and Kummu (2013) showed that the hydrology of the Mekong

is significantly influenced by ENSO. A strong link between

annual precipitation variations and the decay of an ENSO phase

is observed. Limsakul and Singhruck (2016) noted that total

and extreme precipitation in Thailand are remotely influenced

by the large-scale climate phenomena in the Pacific Ocean.

During the period from 1955 to 2015, the region experienced

downward trends in consecutive wet days, which is consistent

with a drying pattern in consecutive dry days (CDD). The study

showed that the annual number of days with CDD is shorter

than normal during La Niña years and the cool phase of the

Pacific Decadal Oscillation, and vice versa during El Niño years.

This is consistent with other studies such as Singhrattna et al.

(2005) and Buckley et al. (2007) who showed that drought

in Thailand is associated with El Niño events. However, it

is noted that the impact of ENSO on rainfall variability is

more diverse and complex, in particular, when it co-exists with

other modes of climate variability (Peralta-Hernández et al.,

2009; Prasanna et al., 2020). In a study of ENSO diversity

and observed rainfall over southern peninsular India during

the Northeast monsoon, Prasanna et al. (2020) noted that the

rainfall anomalies over the region do not always produce above-

normal (below-normal) rainfall in all cases of pure El Niño

(La Niña) events. Whereas, in the case when El Niño (La

Niña) events co-occurred with positive (negative) Indian Ocean

Dipole, positive rainfall anomalies are observed. Shimizu et al.

(2017) showed that precipitation anomaly associated with ENSO

events can be weakened or strengthened when MJO and ENSO

co-occur. Their study shows that the frequency of dry extreme

precipitation is higher during only-neutral events. However, the

higher number of extreme events did not result in more intense

extremes. On the other hand, they showed that the intensity of

dry precipitation extremes during El Niño years is affected by

the MJO. These studies indicate that rainfall variability exhibits

diversity in ENSO activity. There are other climatic oscillations

such as Interdecadal Pacific Oscillation that co-occur with ENSO

to modulate rainfall variability (Power et al., 1999; Salinger et al.,

2001; Weir et al., 2021); though not a focus of this study.

Previous studies have highlighted the connections of BSISO

with rainfall extremes over Asia. Wet precipitation extremes

are associated with the BSISO phase and amplitude (e.g., Hsu

et al., 2016; Lee et al., 2017). Lee et al. (2017) examine the

connection between BSISO modes and extreme rainfall over

Asia concluding that, over some land regions, increases in

the probability of extreme precipitation exceeding the 90th

percentile are strongly modulated by BSISO activity (phase

and amplitude). Consistently, Ren et al. (2018) showed that

Frontiers inClimate 02 frontiersin.org

https://doi.org/10.3389/fclim.2022.1031226
https://www.frontiersin.org/journals/climate
https://www.frontiersin.org


Abatan et al. 10.3389/fclim.2022.1031226

the probability of extreme rainfall events greater than the 90th

percentile during summer over southeastern China is strongly

dependent on BSISO phases, with the probability distribution

function skewed toward higher values during BSISO phases 4

and 8 in southern China. The active BSISO phases promote

high rainfall extremes through the intensification of moisture

convergence and upward moisture transport (Hsu et al., 2016).

These studies demonstrate the linkage between BSISO and

rainfall extremes.

Most of the studies highlighted above have focused on the

influence of the individual climate modes on rainfall variability.

There is still a knowledge gap on the combined influence of the

two dominant modes on dry extremes. Also, the response of

DEREs over Thailand to BSISO is not known. Understanding

the combined impacts of ENSO and BSISO on extremes is

critical to providing information on planning, adaptation, and

mitigating the risk of extremes when they occur. However,

adaptation information on climate change hinges on consistent

information that is often obtained from the state-of-the-art

general circulation models (GCMs) simulation (Abiodun et al.,

2019). Hence, our study will gather information on BSISO-

and ENSO-induced DEREs over NE Thailand (Figure 1) from

the Coupled Model Intercomparison Project Phase 6 (CMIP6;

Eyring et al., 2016).

The analysis of the compound effect of ENSO and large-

scale climate modes has been reported elsewhere (Cherchi and

Navarra, 2013; Singh et al., 2021). For example, the influence of

the Madden-Julian Oscillation on the characteristics of summer

extreme precipitation events over northern South America

during the ENSO episodes was the focus of the study by Shimizu

et al. (2017). However, the current study aims to examine the

differential role as well as the combined influence of BSISO and

ENSO phases on DEREs during summer over NE Thailand. To

do this, we analyze the observed and simulated rainfall and large-

scale variable datasets. Details of the datasets and methodology

are presented in Section 2, results of the analysis are presented in

Section 3, and conclusions are presented in Section 4.

2. Data and method of analysis

2.1. Rainfall and large-scale fields:
Reanalysis and simulations

This study uses a rainfall dataset from the gauge-based

products (hereafter; observation or observed) and simulation

output, while the dynamic variables are from the reanalysis

product and simulation output. The gauge-based rainfall dataset

is from the Global Precipitation Climatology Project (GPCP)

version 1.3 Huffman et al., 2001. This global scale daily

resolution rainfall product is available from 1997 to 2014 at a

spatial resolution of 1.0◦. The GPCP is a blend of rain-gauge

observations and satellite infrared measurements. The second

rainfall observation dataset is from the Asian Precipitation

Highly Resolved Observational Data Integration Towards

Evaluation of Water Resources (APHRODITE). APHRODITE

provides high high-resolution precipitation datasets that are

created primarily by collecting and analyzing rain-gauge

observation data across Asia (Yatagai et al., 2012). The dataset

has been developed by the Research Institute for Humanity and

Nature (RIHM) and the Meteorological Research Institute of

Japan Meteorological Agency (MRI/JMA) and is available for

all land areas in Asia from 1951 to 2015 at a spatial resolution

of 0.25◦. The credibility of these datasets to represent rainfall

characteristics over Asia has been documented in previous

studies (e.g., He et al., 2019; Kim I. et al., 2019; Kim K. et al.,

2019; Abatan et al., 2021; Khadka et al., 2022).

The reanalysis large scale fields used for the composite of

physical dynamics associated with observed extreme rainfall

events comes from the European Centre for Medium-Range

Weather Forecasts Reanalysis v5 (ERA5; Hersbach et al., 2020).

ERA5 is available on 37 pressure levels from 1979 to date and

on a spatial resolution grid of 0.25◦ × 0.25◦. The atmospheric

datasets consider here are, zonal (U) and meridional (V) winds

at 850- and 250-hPa levels, and outgoing longwave radiation

(OLR) at the top of the atmosphere.

This study uses 19 GCMs from the CMIP6 historical

experiments to characterize the combined impact of ENSO and

BSISO on dry extreme rainfall events over NE Thailand. The

daily data from the first ensemble member of each of the 19

CMIP6 models are considered based on the accessibility of the

required variables needed for this study. The models’ native

grid resolution and the institute names are listed in Table 1.

To facilitate a comparison of analysis among all the models,

observation, and reanalysis, all the variables are interpolated to a

1◦ × 1◦ horizontal resolution using the bilinear interpolation

method. This study analyses data for the period of May–

October 1997–2014.

2.2. Methods

2.2.1. Oceanic Niño index computation

The Oceanic Niño index (ONI), which is used as a measure

of ENSO variability, is computed following the procedures

described below. Since the ONI is based on monthly data,

the monthly SST and monthly long-term mean are first

computed from the daily values. From these two datasets, the

monthly SST anomaly is computed. Next, we define the ONI

following the NOAA’s operational definition. The definition,

which characterizes the El Niño, La Niña, and Neutral years, is

based on the 3-month running mean of SST anomaly spatially

averaged over the east-central tropical Pacific (Niño 3.4 region;

120◦-170◦W and 5◦S−5◦N). Finally, we define El Niño (La

Niña) year when the ONI is greater (less) than+0.5 (−0.5) for at
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FIGURE 1

Map of Northeast Thailand detailing the outline of the provinces, the river basin, and its location relative to Thailand on the inset map (top left

corner).

least three consecutive overlapping months. Otherwise, the year

is defined as a neutral year.

2.2.2. BSISO index computation

The computation of the BSISO index is as follows. The

intraseasonal signal is first isolated from the daily OLR andU850

by subtracting the daily climatological cycle. Next, we apply

Lanczos bandpass filtered weights to obtain the 30–60-day OLR

and U850 anomalies. These anomalies are thereafter normalized

by their respective area-averaged standard deviation over the

Asian summer monsoon region (10◦S−40◦N, 40◦E−160◦E)

during boreal summer (May to October) for the period 1997 to

2014. Finally, the two anomaly datasets are combined to form a

single series in readiness for the BSISO index computation. The

combined empirical orthogonal function (CEOF), a multivariate

statistical tool that is often used for research analysis in many

fields to characterize the dominant modes of climate variability

at both spatial and temporal (principal component; PC) scales,

is then applied to the daily averaged 30–60-day filtered OLR and

U850 anomalies to compute the multivariate BSISO index. Here,

the first two leading modes of CEOFs (hereafter; PC1 and PC2)

are considered to represent the spatio-temporal evolution of the

BSISO; consistent with Abhik et al. (2016). The BSISO index is

characterized by both amplitude and phase. These features are

computed, respectively, from the PCs as: amplitude = (PC12 +

PC22)1/2 and phase = arctan (PC1/PC2). The BSISO life cycle

can be categorized into two groups; inactive (amplitude < 1.0)

and active (amplitude> 1.0), with the inactive group dominated

by phase 0 while the active group can further be categorized

into eight phases of equal angular extent. Further information

on data processing and BSISO index calculation can be found in

the literature (for instance; NCAR Climate Data Guide website1;

North et al., 1982; Lee et al., 2013; Li and Mao, 2019; Yang et al.,

2019).

2.2.3. Dry extreme rainfall events index
computation

To facilitate the analysis of dry extreme rainfall events, we

define a rainfall index conditioned on daily rainfall anomaly

over NE Thailand (Figure 1; 13◦N−20◦E, 100◦E−106◦E). To

do this, we first compute the daily anomalies by subtracting the

long term daily mean from the daily value, using 1997–2014

as the base period. For example, the anomaly for September 1

is obtained as the difference between the data for September 1

1 https://climatedataguide.ucar.edu/climate-data-tools-and-

analysis/empirical-orthogonal-function-eof-analysis-and-rotated-

eof-analysis
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TABLE 1 Nineteen selected CMIP6 climate models used for the analysis in this study.

Number ID Institution ID Source ID Model resolution (Lat × Lon)

Model 1 A CSIRO-ARCCSS ACCESS-CM2 1.25◦ × 1.87◦

Model 2 B CSIRO ACCESS-ESM1-5 1.25◦ × 1.87◦

Model 3 C AWI AWI-ESM1-1-LR 1.86◦ × 1.87◦

Model 4 D CCCma CanESM5 2.80◦ × 2.80◦

Model 5 E NCAR CESM2 0.94◦ × 1.25◦

Model 6 F NCAR CESM2-FV2 1.89◦ × 2.50◦

Model 7 G CMCC CMCC-CM2-HR4 0.94◦ × 1.25◦

Model 8 H CMCC CMCC-CM2-SR5 0.94◦ × 1.25◦

Model 9 I CMCC CMCC-ESM2 0.94◦ × 1.25◦

Model 10 J CNRM-CERFACS CNRM-CM6-1 1.40◦ × 1.40◦

Model 11 K CNRM-CERFACS CNRM-CM6-1-HR 0.50◦ × 0.50◦

Model 12 L CNRM-CERFACS CNRM-ESM2-1 1.40◦ × 1.40◦

Model 13 M EC-Earth-Consortium EC-Earth3 0.70◦ × 0.70◦

Model 14 N NOAA-GFDL GFDL-CM4 2.00◦ × 2.50◦

Model 15 O IPSL IPSL-CM6A-LR 1.27◦ × 2.50◦

Model 16 P MIROC MIROC6 1.40◦ × 1.40◦

Model 17 Q MPI-M MPI-ESM1-2-LR 1.85◦ × 1.87◦

Model 18 R MPI-M MPI-ESM1-2-HR 0.93◦ × 0.93◦

Model 19 S HAMMOZ-Consortium MPI-ESM-1-2-HAM 1.87◦ × 1.87◦

and the long term mean for September 1. Then, we compute

the daily time series of spatially averaged rainfall anomalies

over the region. This rainfall index is ordered in ascending

order and we determine the 10th percentile threshold. Dry

extreme rainfall days are classified when the daily rainfall index

is lower than the selected threshold. The composite analyses for

anomalous dry rainfall days and associated atmospheric fields

are shown in Figure 2. It is expected that there would be a

large inter-model spread of the frequency of extremes, thus we

assess the degree of model agreement. First, we compute the

model ensemble mean. Then we define the ensemble mean to

be robust when more than 80% of the models individually agree

on the sign of the change of the ensemble mean. We choose

this threshold for consistency with literature (e.g., Nikulin

et al., 2018; Abiodun et al., 2019; Akinyemi and Abiodun,

2019).

2.2.4. Self-organizing maps

This study also uses a self-organizing map (SOM) analysis to

evaluate the simulated DEREs. SOM is a clustering methodology

tool based on a non-linear artificial neural network that is

widely employed in climate and synoptic climatology studies

(Hewitson and Crane, 2002; Sheridan and Lee, 2011) for

pattern classification based on their similarities (Cavazos, 1999;

Guèye et al., 2011; Wolski et al., 2018). Hence, it reduces the

dimensionality of a large dataset into nodes that represent

the major patterns of the data. In the literature, SOM has

been applied to meteorological parameters and climate variables

to map and analyze their spatial distribution (e.g., Cavazos,

2000; Gutowski et al., 2004; Guèye et al., 2011; Omar and

Abiodun, 2021). A detail review of some of the fundamental

aspects of SOMs and their applications appears in Sheridan

and Lee (2011). The SOM algorithm can be found in Kohonen

(1995; 2001; software available at http://www.cis.hut.fi/research/

som_lvq_pak.shtml), while detailed SOM documentation can

be found in Kohonen (1995) and Johnson et al. (2008). The

SOM_PAK 3.2 software is available at the Helsinki University of

Technology website (http://www.cis.hut.fi/research/som_pak).

In this study, we separately use four different anomalous

dry extreme event rainfall datasets as input data into the

SOM_PAK 3.2 software. All the observed and simulations for

the dry events make up the first datasets. The second and

third dry extreme event rainfall datasets consist of observed

and simulations associated with only-ENSO and only-BSISO,

respectively. The last group of datasets consists of observed

and simulations associated with the combined ENSO and

BSISO phases.

A common feature in SOM analysis is the number of SOM

nodes. However, there is no restriction on the number of nodes
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FIGURE 2

Dry spells composite anomalies of (A) observed and (B–T) simulated rainfall (shaded) and associated wind field at 850mb level (vectors) for the

May–October season during the period 1997–2014. The wind field overlaid on (A) is from ERA5 reanalysis. The value of the

Root-Mean-Square-Error (rmse; top right corner) and Spearman correlation [(R); bottom left corner] of rainfall anomaly are obtained against

GPCP as the reference observation. The median value (m) of the rainfall anomaly over the study domain is indicated at the bottom right corner.

The values on (A) are for GPCP vs. Aphrodite. Only statistically significant rainfall composites are shown. The black arrows are statistically

significant at the 95% level while the slategrey arrows are not.

to retain in SOM. The decision on the number of nodes to use

for the pattern classification lies with the user. For instance,

Leloup et al. (2007) use 10× 10 SOM arrays to examine decadal

changes in ENSO. Abiodun et al. (2016) use a 3 × 4 SOM to

evaluate the simulations of widespread extreme rainfall events

in the Western Cape, South Africa. Cavazos (1999) stated that

using a few SOM patterns results in the identification of only

the primary and dominant modes of the atmosphere, hence

the loss of the continuity of the atmospheric events. Similarly,

Gutowski et al. (2004) states that small arrays of maps (e.g.,

2 × 4) may allow rapid SOM generation but results in the

poor discretization of the pattern space spanned by the input

fields. In their study, they note that a 4 × 6 SOM depicts

the primary patterns of observed precipitation. Hence, for this

study, we use a 2 × 3, 3 × 3, and 3 × 3 SOM array of

maps for the first, second, and third datasets, respectively.

Using pattern correlation and root-mean-square-error (RMSE)

statistics, we classify some of the SOM nodes that exhibit similar
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TABLE 2 Statistics of observed and simulated rainfall anomalies over

the study domain.

Data ID Statistic

m r rmse

GPCP OB −8.5 – –

APHRODITE AP –XX XX XX

ACCESS-CM2 A −8.2 0.81 2.1

ACCESS-ESM1-5 B −7.9 0.69 2.6

AWI-ESM1-1-LR C −5.4 0.77 2.0

CanESM5 D −7.6 0.90 1.4

CESM2 E −10.0 0.83 2.4

CESM2-FV2 F −10.0 0.87 2.1

CMCC-CM2-HR4 G −7.3 0.75 1.8

CMCC-CM2-SR5 H −7.1 0.90 1.3

CMCC-ESM2 I −6.9 0.90 1.3

CNRM-CM6-1 J −5.2 0.73 2.1

CNRM-CM6-1-HR K −4.9 0.63 2.5

CNRM-ESM2-1 L −5.9 0.62 2.4

EC-Earth3 M −5.9 0.76 1.9

GFDL-CM4 N −8.2 0.87 1.5

IPSL-CM6A-LR O −3.7 0.82 3.1

MIROC6 P −5.9 0.79 2.0

MPI-ESM1-2-LR Q −5.6 0.74 2.1

MPI-ESM1-2-HR R −5.7 0.72 2.0

MPI-ESM-1-2-HAM S −5.9 0.73 2.1

spatial patterns, as indicated by their high correlation and low

RMSE values.

3. Results

3.1. Climatology of DEREs and associated
atmospheric large-scale features

The spatial patterns of the observed and simulated

DEREs and the associated large-scale features are examined

and compared using various statistics including correlation

coefficient (r), median (m), and root-mean-square-error (rmse).

The composite anomalies of observed boreal summer DEREs,

consisting of all ENSO and BSISO phases, for the period 1997–

2014 show an intense and significant widespread dry condition

(Figure 2A). This pattern is supported by a significant wet

condition over the Bay of Bengal (BoB). The whole region of

Southeast Asia and the adjacent oceanic areas are characterized

by reduced rainfall anomalies, with the maximum negative

rainfall intensity over Northeast Thailand. A similar anomalous

rainfall characteristic pattern is depicted by the land-only

Aphrodite rainfall data with a correlation of 0.87 and a rmse

of 1.6mm day−1 (figure not shown; Table 2). The median

value of anomalous rainfall over the study domain is −8.5mm

day−1 (GPCP) and −3.9mm day−1 (Aphrodite), respectively.

Although the correlation between the two observations is high,

the intensity of the Aphrodite rainfall anomaly is slightly weaker

than that of the GPCP rainfall anomaly as indicated by the rmse

value and the median statistic. This error metric indicates the

existence of uncertainty in the observational datasets, whichmay

be due to the differences in their calibration.

In comparison with the GPCP dataset, the CMIP6 models

can reproduce the spatial distribution of the significant negative

rainfall anomalies, but with variations in magnitude and spatial

extent (Figures 2B–T). This is evident by the statistics with the

correlation that ranges from 0.62 to 0.90, the median value that

ranges from −3.7 to −10.0, and rmse that ranges from 1.3 to

2.6mm day−1, respectively. IPSL-CM6A-LR and CNRM-CM6-

1-HR have the lowest median value, as well as the size of the

significant cluster in contrast to other models.

To identify the models that reproduce the features of the

anomalous rainfall which are as close to GPCP as possible, we

subject all the datasets in Figure 2 to a 2 × 3 SOMs nodes

analysis. The SOMs group the rainfall patterns into different

nodes (Figure 3 and Table 3). Based on their similarities, these

nodes can further be categorized into three main patterns. The

first pattern consists of nodes 1, 4, and 5 (red band), the second

pattern consists of nodes 2 and 3 (blue band), and the third

pattern consists of only node 6 (brown band). It is noted that

the corner nodes can sometimes have similar patterns (Abiodun

et al., 2020) as indicated in the case of nodes 1 and 4.

The first pattern is characterized by a northwest-southeast

(zonally) oriented negative rainfall anomaly over the northern

part of India and the BoB (Southeast Asia and the Pacific

Ocean), respectively. A positive rainfall anomaly is found over

the equatorial ocean with a slight northward extension over

the Indian Ocean. These rainfall patterns consist of rainfall

distributions from seven CMIP6 models (Figure 3B; AWI-

ESM1-1-LR, CNRM-CM6-1, EC-Earth3, MIROC6, MPI-ESM1-

2-LR, MPI-ESM1-2-HR, MPI-ESM-1-2-HAM). The second

pattern, unlike the first pattern, is characterized by a dipole

rainfall pattern. Here, a large part of India, BoB, and the

equatorial Indian Ocean are dominated by positive rainfall

anomalies while negative rainfall anomalies dominate the other

regions. These rainfall patterns consist of the rainfall distribution

from the GPCP and seven other CMIP6 models (Figure 3B;

CanESM5, CMCC-CM2-SR5, CMCC-ESM2, CNRM-CM6-1-

HR, CNRM-ESM2-1, GFDL-CM4, and IPSL-CM6A-LR) with

the lowest error values (rmse = 1.3–2.5) and high correlation (r

= 0.62–0.90). The third rainfall pattern is similar to the second

pattern, except for the appearance of a strip of negative rainfall

anomalies along 5◦N, separating the positive anomalies over
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FIGURE 3

SOMS maps of Figure 2 for dry spells composite anomalies of (A) observed and (B–T) simulated rainfall. The top panels (A) show the

classification of the rainfall patterns while the bottom panels (B) show the number of data that contribute to the rainfall patterns in the nodes in

the top panels. The alphabet tag in the bar represents the code of the models that make up the bar (Table 1).

TABLE 3 Pattern correlation (top) and root-mean-square-error (bottom) between SOMs nodes of the composite of rainfall anomalies in Figure 3A.

Nodes 1 2 3 4 5 6

Pattern correlation

1 1.000

2 0.975 1.000

3 0.958 0.989 1.000

4 0.981 0.929 0.915 1.000

5 0.985 0.983 0.987 0.964 1.000

6 0.939 0.972 0.994 0.910 0.982 1.000

Root-Mean-Square-Error

1 0.00

2 0.41 0.00

3 0.66 0.40 0.00

4 0.38 0.71 0.85 0.00

5 0.39 0.40 0.36 0.52 0.00

6 0.91 0.71 0.35 0.98 0.54 0.00

The bold values indicate the nodes with higher pattern correlation and lowest rmse that are grouped together.
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India and those in the equatorial region. These nodes belong

to ACCESS-CM2, ACCESS-ESM1-5, CESM2, CESM2-FV2, and

CMCC-CM2-HR4 (Figure 3B), with rmse and correlation that

ranges from 1.8 to 2.6 and 0.69 to 0.87, respectively. From the

foregoing, all models capture the significantly reduced rainfall

anomaly (Figure 2), and some of them have features that are

highly correlated with GPCP. The similarities between the

observed and simulated rainfall features suggest that the models

can reproduce the large-scale features inducing extremes over

NE Thailand.

In support of the above, we analyze the composite anomaly

of the low- and upper-level winds and OLR during the

DEREs (Figure 4). Figure 4A indicates that the negative rainfall

anomalies (Figure 2) are associated with strongly suppressed

convection (positive), with the maximum anomalous center

over the study region; an indication of the subsidence of

the air column over Thailand and an ascending motion

elsewhere. This assertion is supported by the strong low-level

anticyclonic circulation (Figure 2A) and the upper-level cyclonic

circulation (Figure 4A) centers over Thailand. Consistent with

the ERA5 reanalysis, the strong suppression of convection

and the accompanied circulations are also simulated by the

models (Figures 4B–T) but with some biases. The variability

in correlation and rmse results between ERA5 and simulated

OLR can attest to the models’ good performance (r = 0.50–

0.93, rmse = 3.5–14.3). All the models capture the low-

level anticyclonic circulation (Figure 2) and the upper-level

convergence associated with the suppressed OLR (Figure 4).

Despite this, slight differences among the models are apparent.

There is also a modest spread in the median OLR, with median

values that range from 25.1 to 41.6W m−2. Nevertheless,

CMIP6 models in this study perform very well at simulating the

basic features of the anomalous OLR and associated circulation

features inducing dry extreme rainfall events over NE Thailand.

3.2. Frequency distribution of DEREs
associated with ENSO and BSISO

The bar chart of the number of days of DEREs is constructed

to highlight the frequency of extreme events for each category

of ENSO and BSISO phases (Figures 5–7). For the only-ENSO

(Figure 5), the Neutral years associated with inactive BSISO

(phase 0) appear to favor the frequency of observed DEREs

over NE Thailand. Of the 144 event days, the Neutral phase of

ENSO accounts for 75 events (52%). This is followed by the

La Niña phase with 54 events (38%) while the El Niño phase

has the least events 14 (10%). There is a large variability in

the simulated frequency distribution of DEREs, with the values

ranging from 9 to 55 during El Niño, 11 to 75 during La Niña,

and 22 to 139 during Neutral years, respectively. During ENSO-

Neutral conditions, about 58% (11 of 19) of the models agree

with the observation that the frequency of DEREs is higher

during this ENSO phase than in other ENSO phases. Whereas

only 1 of the 19 models (5%) has the same order as observed

frequency. For the frequency of observed DEREs during active

BSISO, there are 176 events distributed among the 8 BSISO

phases (Figure 6). The highest number of events occur during

BSISO phase 4 (34) and the least during BSISO phase 2 (14).

The simulated frequency of DEREs ranges from 130 to 260.

The frequency distribution of DEREs over NE Thailand during

the combined influence of ENSO and active BSISO phases are

presented in Figure 7. The observed frequency ranges from 1 to

19, with the highest number of events during BSISO phases 4

and 8 of the Neutral year (Figures 7D, H). The CMIP6 models

show considerable inter-model variability of the frequency of the

DEREs. The composite analysis of these events will be presented

in the following sections.

3.3. Composite anomalies of DEREs
associated with only ENSO conditions

Figures 8A–C (top panel) shows the composite anomalies

of observed rainfall, OLR, and 850mb wind vectors associated

with ENSO phases—namely only-El Niño, only-La Niña, and

only-Neutral—and inactive BSISO during the dry extremes

over Northeast Thailand. Statistically significant reduced rainfall

composites over NE Thailand during the three phases of ENSO

are linked with strong suppressed convection and subsidence–

induced anticyclonic circulation. For the only-La Niña and only-

Neutral events, statistically significant positive rainfall anomalies

over central India and BoB associated with enhanced convection

coexist with the reduced rainfall over NE Thailand. However,

the dry extreme rainfall composite for the only-El Niño case is

characterized by weak non-widespread convection over India

and BoB. These features suggest that extreme dry events over NE

Thailand can be maintained by enhanced convection over India

and BoB during only-La Niña and only-Neutral events, while

it can be maintained by enhanced convection over the western

Pacific Ocean during the only-El Niño phase. The ensemble

composites of simulated rainfall anomalies are presented in

the bottom panel of Figures 8D–F. The CMIP6 models show

the ability to simulate the observed ENSO-induced rainfall

anomalies, but the magnitudes are weaker. There is a strong

agreement among the simulations over Thailand, where at least

80% of the models agree on the sign of the negative rainfall

anomalies than elsewhere. The models did not show agreement

on the weak positive rainfall anomalies over India and the BoB.

To further examine the fidelity of the models to depict the

characteristic features of anomalous rainfall for the only ENSO

conditions, we analyze the dry extreme rainfall composites using

3× 3 SOMs nodes (Figure 9). As expected of the SOM grouping,

nodes 1, 3, 7, and 9 depict different rainfall patterns, while
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FIGURE 4

As in Figure 2, but for (A) ERA5 and (B–T) simulated OLR (shaded) and associated wind fields at 250mb level.

the other nodes depict a similar rainfall pattern to either of

these four edge nodes. Through pattern correlation and rmse

statistics (Supplementary Table S1), this 3 × 3 SOMs nodes can

be grouped into 4 rainfall clusters, red, blue, green, and brown

bands, respectively.

The first pattern (red band) consists mainly of anomalous

rainfall dominated by only-La Niña (Figure 9A; node 1) and

only-Neutral composites (Figure 9A; node 4). These nodes

are characterized by a zonally elongated negative rainfall

anomaly centered along latitude 15◦N, with the exception of

the equatorial Indian Ocean. The second pattern (blue band)

is dominated by mainly only-El Niño composites as shown in

the bottom panel (nodes 7). The frequency distribution indicates

that 9 CMIP6 models capture the features of the observed

anomalous rainfall pattern for the only-El Niño composite. The

third pattern (green band; nodes 5, 8, and 9) features a tri-pole

rainfall pattern with a vertical strip of positive rainfall anomalies

separating the negative rainfall pattern to the western part of

India and the one centered over Thailand. This group is a mix of

all the ENSO phases, but with ENSONeutral rainfall dominating

nodes 5 and 9. The fourth group (brown band; nodes 3 and

6) is, to some extent similar to the third pattern, but with a

dipole rainfall pattern. This group is mainly dominated by only-

La Niña composites with the largest extreme frequency in node

3, where 4 simulations show the ability to capture the observed

rainfall pattern quite well. These patterns are consistent with

Figure 3 (nodes 2 and 3). The last node in Figure 9 is node

2. The spatial distribution of rainfall anomaly in this node is

a bit different from the neighboring and other nodes. Here,

the positive rainfall pattern is constrained over mainland India.

Of the three ENSO conditions, the rainfall pattern in this

node is largely contributed by the only-La Niña composites. In
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FIGURE 5

Number of days of dry extreme rainfall events for ENSO phases during inactive BSISO.

FIGURE 6

Number of days of dry extreme rainfall events for active BSISO phases.

general, Figure 9 confirms that DEREs over NE Thailand that is

associated with both only-La Niña and only-Neutral conditions

are induced by enhanced convection over India and BoB, while

those associated with only-El Niño condition is teleconnected to

enhanced convection in other regions.

3.4. Composite anomalies of DEREs
associated with active BSISO phases

To shed light on our understanding of the modulation of

BSISO on DEREs over NE Thailand, Figure 10 presents the

spatial distributions of observed rainfall anomalies associated

with only-BSISO phases. During phase 1, significant positive

rainfall anomalies associated with enhanced convection

exist over central India and parts of the equatorial Indian

Ocean (EIO), while significant negative rainfall anomalies

and suppressed convection dominate the Southeast Asia

region with an eastward extension over the western Pacific

Ocean (WP). The convection weakens over both central India

and the equatorial Indian Ocean as the suppressed rainfall

progress eastward in phase 2. At this point, a weak positive

rainfall anomaly appears over the western part of the BoB,

in conjunction with a southwesterly circulation. At phase 3,

a drastic change in convection is observed. The convection

over the EIO and the Maritime Continent is replaced by

significantly weak suppressed convection, while the convection

over the western part of the BOB significantly intensity and

expands eastward covering the whole basin. At the same

time, a sickle shape-like enhanced convection appears over

the WP Ocean replacing the earlier suppressed convection.
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FIGURE 7

(A–H) Number of days of dry extreme rainfall events for ENSO and active BSISO phases.

FIGURE 8

(A–F) Dry spells composite anomalies of observed rainfall (shaded), OLR (contours), and wind fields at 850mb level (vectors) for ENSO phases

and inactive BSISO for the May–October season during the period 1997–2014. The dotted areas signify statistically significant rainfall

composites. The black arrows are statistically significant at the 95% level while the slategrey arrows are not. The bottom three panels is the

ensemble mean of simulated rainfall anomalies. The dotted areas show where at least 80% of the models agree on the sign of change of the

ensemble mean.

The processes going on over these oceanic regions lead to

the maintenance of the suppressed convection residing over

Thailand. During phase 4 of the BSISO, the positive convective

areas weakens and gives way to large areas of significantly

reduced rainfall anomalies. In a comparison of this phase

with phase 5, a slight difference in their evolution is observed.

For example, in phase 5 the convection over the BoB and the

WP Ocean re-appear with an intensification over WP Ocean
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FIGURE 9

(A) The 3 × 3 SOMs distribution of dry spells composite rainfall anomalies over NE Thailand in the ENSO condition during inactive BSISO phase

[top panels; (A)], and the frequency distribution of data for each ENSO phase in the SOMs nodes [bottom panels; (B)]. The alphabet tag in each

ENSO bar represents the code of the models that make up the bar (Table 1).

and the magnitude of the anomalous rainfall also decreases.

Also, the positive convection over Southeast Asia assumes a

clear Northeast-southwest tilt. During phase 6, the enhanced

convection over the WP Ocean rapidly decays and the northern

part of the suppressed convection and the core of the significant

negative rainfall over the equatorial region begins their zonally

northward propagation. The northward propagation continues

progressively during phase 7 with the appearance of a very weak

positive rainfall over EIO and strong positive convection over

Thailand. As BSISO propagates to phase 8, the EIO and the

Maritime Continent’s enhanced convection rapidly intensifies

significantly. This leads to further northward propagation and

the reduction in the areas of the suppressed convection. At

this phase, the rainfall feature is very similar to that of phase 1.
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FIGURE 10

(A–H) Composite evolution of anomalies of observed dry extreme rainfall events (shaded), OLR (blue and red contours; W m−2), and 850 hPa

wind (gray vectors, m s−1) for the May-October season during the period 1997–2014 during active BSISO phases. The OLR contour starts at ±10

Wm−2 at an interval of 10 Wm−2. Only the significant vector anomalies are shown with solid black arrows while the statistically significant

rainfall anomalies are indicated with dots. The significance statistic is at the 95% confidence level.

The spatial evolution of rainfall during active BSISO suggests

that DEREs over NE Thailand are strongly favored when the

BoB and the Pacific region are characterized by enhanced

convection leading to strong subsidence over NE Thailand

during phases 3–5. Consistent with Figure 8, the evolution of

the simulated ensemble mean of anomalies of DEREs during

the BSISO phases is depicted in Supplementary Figure S1. The

ensemble mean shows the characteristic anomalous suppressed

convection centered over Thailand, where at least 80% of the

CMIP6 models in this study show a strong model agreement

in the simulations of extreme rainfall events associated with

BSISO phases. The mean rainfall value averaged over the study

domain, NE Thailand, ranges from−7.0 to−7.34, with the least

intensity during phases 3 and 5. There are also differences in

the magnitude and spatial spread of anomalous positive rainfall

from one phase to another.

The individual simulated rainfall anomalies associated with

only-BSISO phases are evaluated through a 3 × 3 SOMs

distribution (Figure 11). Based on their spatial similarities, the

rainfall patterns are grouped in the SOMs algorithm and the

composites can be categorized into 5 patterns using statistics

(Supplementary Table S2). Observed rainfall anomalies during

phases 1 and 2 are grouped in the same node (Node 7) and

banded together with some simulated rainfall patterns (blue

band). No simulation closely matches the observed rainfall

anomaly during phase 1, but 3 simulations give a good

representation of the observed rainfall pattern during phase 12.

The patterns of observed anomalous rainfall during the DEREs

associated with only-BSISO phases 3, 4, and 5 are located in

Nodes 1 and 2. These nodes are all ordered into onemain pattern

(red band). Of all the simulations in this group, 3, 2, and 3

CMIP6 models, respectively, accurately capture the observed

rainfall pattern during phases 3, 4, and 5 (see Table 1). As

indicated in Figure 10, there is a clear difference in the observed

rainfall pattern between phases 6 and 7 and phase 8. This is

also indicated in the SOMs space where the anomalous rainfall

patterns associated with phases 6 and 7 are located in the same

node (Node 3), while that associated with phase 8 is located in

Node 8, respectively. FromNode 3, we find that 7 CMIP6models

can perfectly simulate the observed rainfall pattern during phase

7, while only one model can reproduce the observed pattern

during phases 6 (Node 3) and 8 (Node 8).

3.5. Composite anomalies of rainfall
associated with the combined influence
of BSISO and ENSO

The distributions of rainfall anomalies in response to the

mutual effect of active BSISO and ENSO phases (combined
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FIGURE 11

(A) The 3 × 3 SOMs distribution of evolution of rainfall anomalies over NE Thailand during the active BSISO phase [top panels; (A)], and the

frequency distribution of data for each phase in the SOMs nodes [bottom panels; (B)]. The alphabet tag in each bar represents the code of the

models that make up the bar (Table 1).

composites) are presented in Figures 12–14. We employ

correlation and rmse statistics to determine the relationships

between these patterns and those of Figures 8A–C, 10. In

the selection, we give high priority to the patterns with low

rmse and high correlation values for both the rainfall and

OLR anomalies (Table 4). Depending on the BSISO phase, the

summer intraseasonal oscillation can increase or reduce the

intensity of dry extreme rainfall anomalies over NE Thailand.

Hence, we present the percentage change of mean rainfall

between composites of only-BSISO and only-ENSO and the
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FIGURE 12

(A–H) Composite evolution of anomalies of observed dry extreme rainfall events (shaded), OLR (blue and red contours; W m−2), and 850 hPa

wind (gray vectors, m s−1) for the May–October season during the period 1997–2014 for El Niño and active BSISO phases. The OLR contour

starts at ±10W m−2 at an interval of 10W m−2. Only the significant vector anomalies are shown with solid black arrows while the statistically

significant rainfall anomalies are indicated with dots. The significance statistic is at the 95% confidence level.

combined composites in Table 5. This table will give insight into

the impact of BSISO on the intensity of the extreme rainfall over

the region.

Comparison of the composite of only-BSISO phases

(Figure 10) with those of the combined composites (Figures 12–

14) indicates that anomalous rainfall, OLR, and circulation

patterns linked with DEREs over NE Thailand during neutral

years and active BSISO phases (Figure 14) exhibit close

resemblance to that of only-BSISO phases (Figure 10), with the

highest correlation and least rmse values (Table 4). The mean

correlation values for rainfall are 0.56, 0.51, and 0.85 for the El

Niño, La Niña, and Neutral phases, respectively. On the first

hand, this similarity in patterns may suggest the response of

extreme events to the dominance of BSISO over the Neutral

ENSO phase. However, as noted from the statistics (Table 4),

the similarities in the patterns of the rainfall and convection

anomalies between the only-Neutral composite (Figure 8C) and

the combined composite (Figure 14C; Neutral years and active

BSISO phase 4), as well as with only-BSISO phase 4 (Figure 10C),

confirm that the frequency of occurrence of DEREs over NE

Thailand during Neutral years of the ENSO conditions is indeed

modulated by BSISO activity.

The combined composites echo the frequency distribution

results that active BSISO acts to increase the number of dry

extreme events; from 75 events during the only-Neutral years

(Figure 5) to 104 events during the combined period of Neutral

and active BSISO (Figure 7), with the highest event during

BSISO phases 4 and 8 (Figures 7D, H). Despite the similarity in

patterns and an increase in frequency of events, Table 5 shows,

on average, that the impact of BSISO is to weaken the intensity

of extreme rainfall during the Neutral phase of ENSO.

For La Niña years, there are similarities in patterns

for rainfall and convection anomalies between only-BSISO

composites (Figure 10) and the combined composites

(Figure 13; phase 3; RMSE = 2.4), suggesting the control

of BSISO over La Niña during this phase. There are other phases

also with RMSE values <4.0. The correlation between only-La

Niña composite (Figure 8B) and the combined composites

(Figure 13) is very weak (maximum value = 0.29) affirming the

control of BSISO on this ENSO phase. The influence of BSISO

during La Niña years is to decrease the frequency of DEREs

from 54 events during the only-La Niña years (Figure 5) to

32 events during the combined period of La Niña and active

BSISO (Figure 7). The BSISO convection anomalies appear to

contribute to a decrease in the frequency of extreme events and

an increase of the intensity of extremes (Table 5).

As for the only-El Niño, the frequency of extreme events

increases from 14 during only-El Niño to 40 in response to the
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FIGURE 13

(A–H) Same as Figure 12 but for La Niña and active BSISO phases.

FIGURE 14

(A–H) Same as Figure 12 but for Neutral and active BSISO phases.
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TABLE 4 Pattern correlation and root-mean-square error between observed rainfall anomalies in response to the compound e�ect of ENSO-BSISO

and those of only-BSISO and only-ENSO phases.

Phase Rainfall OLR

A B C A B C

r rmse r rmse r rmse r rmse r rmse r rmse

El Nino and Active BSISO phases

1 0.34 7.4 0.09 8.0 0.06 4.5 0.23 31.6 0.15 32.9 −0.05 20.5

2 0.70 3.0 0.10 4.8 0.15 3.8 0.77 10.8 0.25 19.4 0.22 17.4

3 0.52 3.3 0.08 4.4 0.14 3.5 0.42 15.9 0.28 16.1 0.11 15.5

4 0.64 3.1 0.16 4.3 0.22 3.1 0.58 13.6 0.14 18.3 0.16 13.1

5 0.54 3.4 0.11 4.5 0.10 3.5 0.59 14.3 0.01 20.5 −0.11 15.4

6 0.57 3.6 0.18 4.7 0.22 3.2 0.64 14.3 0.10 20.0 0.17 13.3

7 0.61 3.1 0.33 3.8 0.11 3.6 0.61 15.4 0.48 15.9 0.20 14.9

8 0.52 3.7 0.18 4.4 0.13 3.9 0.58 15.5 0.21 19.3 0.14 15.9

La Nina and Active BSISO phases

1 0.52 3.7 0.29 5.1 0.5 3.0 0.63 14.8 0.25 19.4 0.44 13.2

2 – – – – 0.36 3.0 – – – – 0.34 13.3

3 0.77 2.4 0.05 4.2 0.17 3.1 0.79 9.5 −0.03 18.1 0.07 13.4

4 0.64 3.0 0.15 4.2 0.10 3.1 0.52 10.8 0.11 14.4 0.08 12.4

5 0.08 8.7 0.14 8.5 0.17 3.4 −0.14 36.9 0.13 34.0 0.02 15.0

6 0.51 4.4 0.15 5.3 0.23 3.1 0.70 16.1 0.24 22.0 0.23 13.3

7 0.51 5.4 0.14 6.3 0.42 2.9 0.57 23.3 0.30 25.8 0.36 13.5

8 0.57 4.0 0.03 5.3 0.27 3.3 0.60 14.4 −0.03 20.3 0.21 13.6

Neutral and Active BSISO phases

1 0.91 1.9 0.11 4.6 0.18 3.6 0.91 7.2 0.09 18.0 0.09 15.5

2 0.78 2.2 0.23 3.6 0.36 2.8 0.84 8.1 0.32 15.0 0.34 12.7

3 0.69 2.7 0.39 3,5 0.40 2.4 0.70 10.6 0.39 14.0 0.26 10.5

4 0.82 1.5 0.35 2.6 0.45 2.2 0.84 5.5 0.31 10.3 0.36 8.5

5 0.91 1.4 0.29 3.3 0.34 2.8 0.88 5.7 0.17 13.4 0.14 11.9

6 0.87 1.4 0.39 2.8 0.38 2.6 0.82 5.9 0.35 9.9 0.27 10.9

7 0.87 1.6 0.37 3.2 0.39 2.7 0.88 6.9 0.37 13.3 0.42 11.7

8 0.95 1.1 0.14 3.8 0.19 3.3 0.94 4.3 0.16 13.5 0.18 12.3

Column A gives the statistics between the combined composites (Figures 12–14) and Figure 10 (only-BSISO phase), while column B is for Figure 8 (only-ENSO phase). Column C is for

the statistics between Figures 8, 10, respectively.

combined influence of active BSISO and El Niño. Despite the

increase in extreme events, the similarities between Figures 8A,

10, 12 are not easily discernible. Here, the influence of BSISO

convection results in an increase in the number of dry extremes,

but with a decrease in their intensity (Table 5; phases 1, 3, 4, 5,

6, and 7) and stronger intensity (phases 2 and 8). This result

indicates that the impact of El Niño on dry extremes does not

depend on BSISO phases. This result is consistent with other

studies over Thailand that showed that El Niño events promote

dry conditions over the region (e.g., Singhrattna et al., 2005;

Limsakul and Singhruck, 2016).

The composites of the CMIP6 ensemble mean of dry

extreme rainfall anomalies during the combined ENSO-BSISO

phases are presented in Supplementary Figures S2–S4. The

ensemble mean displays variability in the spatial patterns of

anomalous rainfall and their mean intensity averaged over

NE Thailand. For the El Niño-BSISO composites, the mean

rainfall anomalies range from −7.47 to −6.68, with the highest
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TABLE 5 Percent changes in mean rainfall anomalies between

composites of only-BSISO and only-ENSO and the combined

composites over NE Thailand.

Only-El
Niño

Only-
BSISO

Only-La
Niña

Only-
BSISO

Only-
neutral

Only-
BSISO

1 −16.19 −7.41 11.64 18.27 −8.58 −5.92

2 −4.10 −4.43 Nil Nil 11.62 3.60

3 −2.77 −1.75 1.43 1.79 −0.63 −3.14

4 −8.46 −2.10 −1.53 0.98 0.78 0.39

5 −6.90 −0.59 18.14 20.97 −0.32 −0.85

6 −5.83 −0.57 −14.93 −13.88 6.16 4.41

7 −6.00 −0.33 8.37 10.19 −0.88 −2.10

8 −2.26 −5.40 −3.23 0.06 −1.77 −1.34

intensity during phase 3. In comparison with phase 3 of

Supplementary Figure S1, where we find the least extreme

intensity, the ensemble mean suggests that BSISO convection

only acts during this ENSO phase to weaken the extreme

intensity. This shows the ability of the simulations to capture

the independence of El Niño extreme occurrences on BSISO

phases. It is noteworthy that the models show agreement in the

simulations of extreme rainfall events in all the phases, with

the exception of phase 3. The simulated ensemble mean of

dry extremes during La Niña years shows no model agreement

during phases 3 and 5. All the other phases show variations in

model agreement in the simulations of extreme rainfall over

Thailand. The ensemble mean rainfall ranges from −7.85 to

−6.96, with the highest intensity during phase 7 where the

ensemble mean is characterized by an anomalous rainfall dipole.

The ensemble dry events for the Neutral ENSO conditions

(Supplementary Figure S4) show that intense dry extreme events

can be sustained when BSISO convection resides over a large

expanse of BoB and India.

4. Conclusion

To understand the combined impact of two atmospheric-

oceanic climate modes on drought over NE Thailand, this

study examines the composite maps of DEREs associated with

individual and combined BSISO and ENSO phases. For these

analyses, daily rainfall datasets from 19 CMIP6 coupled general

circulation model simulations are used and evaluated with

GPCP to examine the performance of the models over NE

Thailand. The evaluation procedure includes the use of statistics

(rms error and pattern correlation) and the SOMs. The large-

scale circulation patterns associated with the simulated DEREs

are also evaluated with the ERA5 atmospheric variables. The

results are summarized as follows:

• The statistically significant dry spell composite anomalies

during boreal summer over NE Thailand co-exists with

the significant wet condition over BoB. The importance

of large-scale atmospheric features to extremes is

demonstrated where DEREs over the region is favored

when suppressed convection (positive OLR) is associated

with subsidence-induced anomalous circulations. The

statistics and SOM classification establish that some

CMIP6 models can capture the features of anomalous

rainfall and large-scale patterns, but with some biases. In

particular, seven models (CanESM5, CMCC-CM2-SR5,

CMCC-ESM2, CNRM-CM6-1-HR, CNRM-ESM2-1,

GFDL-CM4, and GFDL-CM4) reproduce the observed

composite of anomalous dry extreme rainfall well, as

indicated by the lowest error and high correlation values

and SOMs classification.

• Considering the only-ENSO composites, our study shows

that DEREs are favored when enhanced convection is

located over central India and BoB during only-La Niña

and only-Neutral events, whereas it is over the western

Pacific region during only-El Niño. Some groups of models

have the ability to capture the observed rainfall pattern

in the ENSO phases more than others. The CMCC and

CNRM-CERFACS capture the observed DERE during

only-La Niña, while NCAR and CNRM-CERFACS capture

the observed DERE during only-Neutral events.

• DEREs over NE Thailand is mostly maintained during

BSISO phases 3–5 when enhanced convective activities

are located over BoB and the western Pacific region.

These regions act as the source of the ascending motions

promoting the drought-induced subsidence motion over

Thailand. The intensity of mean rainfall over NE Thailand

is smallest during BSISO phase 3. The CMIP6 ensemble

mean also captures this behavior during BSISO phase 3 and

also phase 5. The SOMs classification of DEREs related to

only-BSISO phases indicates that only a few of the models

reproduce the observed rainfall patterns well during BSISO

phases 3, 4, and 5.

• The results of our analysis suggest that DEREs during

ENSO-Neutral years are modulated by enhanced BSISO

convection over BoB and the western Pacific Ocean. The

influence of BSISO convection is to increase the frequency

of occurrence of the extreme event, not the intensity. For

the La Niña phase, the BSISO convection acts to decrease

the number of extreme events and enhance the extreme

intensity. The occurrence of DEREs over NE Thailand

during El Niño years appears not to depend on the BSISO

convection, as there is no clear similarity between the

composite of anomalous rainfall during only-El Niño and

only-BSISO, and the combined composites. However, when

BSISO convection co-exists with El Niño conditions, it acts

to weaken the intensity of extreme events.
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These results offer insight into the impact of the combined

boreal summer intraseasonal oscillation and ENSO on the dry

extreme rainfall events over NE Thailand. It is demonstrated

that different phases of ENSO in conjunction with certain

phases of BSISO convection over BoB and the western Pacific

Ocean maintain extreme rainfall events. This study provides

information on the combined stressors of climate extremes

and the current state-of-the-art climate models that are useful

for adaptation measures for droughts management to improve

future water management by the stakeholders.
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