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Evaluation of a global ocean
reanalysis generated by a global
ocean data assimilation system
based on a four-dimensional
variational (4DVAR) method
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Ichiro Ishikawa1 and Shogo Urakawa1

1Meteorological Research Institute, Japan Meteorological Agency (JMA/MRI), Tsukuba, Japan,
2Numerical Prediction Development Center, Japan Meteorological Agency (JMA/NPDC), Tsukuba,
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Japan Meteorological Agency (JMA) started to use a new global ocean data

assimilation system for the operational seasonal predictions in February 2022.

The system is composed of two subsystems with non-eddy-permitting (lower)

and eddy-permitting (higher) resolutions. The lower-resolution subsystem

adopts a four-dimensional variational (4DVAR) method to optimize the

temperature and salinity fields, and the data-assimilated fields are downscaled

into the higher-resolution subsystem using incremental analysis updates. The

impact of introducing the 4DVAR method in the new ocean data assimilation

system is investigated through the comparison of a regular reanalysis run of the

system using the 4DVAR method with another run using a three-dimensional

variational (3DVAR) method. A comparison of the temperature fields before

the downscaling between the two reanalysis runs indicates that the 4DVAR

method can more e�ectively reduce the misfits between the model field and

assimilated observation data. However, the increase of the temperature root

mean square di�erence (RMSD) relative to independent Argo float data, along

with the larger variance, for the run with the 4DVAR method reveals that

the 4DVAR method adjusts the temperature field more significantly but the

adjustments are inconsistent with the independent data due to insu�cient

model physics and resolution. The increase of the RMSD is mitigated after

the assimilated fields are downscaled into the higher-resolution subsystem.

The 4DVAR method reduces the bias and RMSD of temperature relative to

the independent data along the thermocline, as well as near the surface, in

the equatorial vertical section, which is expected to a�ect the prediction of El

Niño-Southern Oscillation (ENSO).

KEYWORDS

four-dimensional variational (4DVAR) method, ocean data assimilation system,

coupled prediction, seasonal forecast, ocean initialization, Argo float
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1. Introduction

Japan Meteorological Agency (JMA) started to use a new

global ocean data assimilation system, MOVE/MRI.COM-

G3 in February 2022. The system is a component of the

JMA’s Coupled Prediction System 3 (CPS3; Hirahara et al.,

in press), and provides oceanic initial conditions for the

coupled atmosphere-ocean general circulation model which also

composes CPS3. The prediction results of the coupled model

are used for the JMA’s seasonal forecasts. In addition, the

predicted sea surface temperature (SST) field is provided to

the atmospheric Global Ensemble Prediction System (GEPS;

JMA, 2022) for the predictions of 1 week to 1 month lead time

in JMA.

MOVE/MRI.COM-G3 is composed of the non-eddy-

permitting (lower-resolution) subsystem MOVE-G3A, and the

eddy-permitting (higher-resolution) subsystem, MOVE-G3F.

Temperature, salinity, and sea surface height observations

are directly assimilated into MOVE-G3A through a four-

dimensional variational (4DVAR) method, and the data-

assimilated temperature and salinity fields are downscaled into

MOVE-G3F through incremental analysis updates (IAU; Bloom

et al., 1996). The 4DVAR method and the downscaling strategy

mostly follow those applied to JMA’s operational systems for

ocean forecasting around Japan (Usui et al., 2015; Hirose et al.,

2019).

A feature of MOVE/MRI.COM-G3 is its use of the

4DVAR method. Several weather centers operate global

ocean data assimilation systems to provide oceanic initial

conditions in their coupled predictions. However, to our

best knowledge, 4DVAR methods are not used in those

systems. For example, NEMOVAR (Weaver et al., 2005) in

the configuration based on a three-dimensional variational

(3DVAR) method with first-guess at appropriate time (FGAT)

is used in the European Center for Medium-Range Weather

Forecasts (Zuo et al., 2019), the UK Met Office (Waters

et al., 2015), and the Australian Bureau of Meteorology

(Hudson et al., 2017). The US National Center for Environment

Prediction adopted a weakly coupled atmosphere-ocean data

assimilation system for seasonal forecasting, and the system

employs a 3DVAR data assimilation scheme for the ocean

component (Xue et al., 2011). The Local Ensemble Transform

Kalman Filter is also used in the coupled forecast system

of the US National Aeronautics and Space Administration

(Hackert et al., 2020).

A 4DVAR method is expected to generate analysis fields

more consistent with the ocean physics than 3DVAR methods

because it can use an ocean model as physical constraints. In

particular, if only the initial fields, atmospheric forcing, and

uncertain parameters used in physical parameterizations are

adjusted with observations in a long assimilation window using

a 4DVAR method, a model trajectory which totally follows

the model physics and is consistent with the observations

can be obtained for the window. In addition, using a long

assimilation window has an advantage that wider range of

observations can be used to obtain analysis values at each time

and location.

Because of these reasons, ocean state estimation has been

performed using 4DVAR methods with long assimilation

windows of 1 year to several decades (e.g., Mazloff et al., 2010;

Forget et al., 2015; Köhl, 2015; Osafune et al., 2015). The coupled

ocean-atmosphere 4DVAR system developed by the JAMSTEC

K-7 group also applies 9-month assimilation windows (Sugiura

et al., 2008). Ocean states estimated by these approaches have

been also used for the seasonal-to-decadal coupled predictions

on a research basis (e.g., Pohlmann et al., 2009; Mochizuki et al.,

2016). However, use of long assimilation windows does not allow

to provide oceanic initial conditions in the near real-time at

short (preferably 1-day) interval, and therefore not suitable for

operational coupled predictions.

In the numerical weather predictions, atmospheric initial

conditions are provided by the sequential implementation of

4DVAR analysis with short (typically six-hour) assimilation

windows. Relatively short assimilation windows are also used

in 4DVAR systems for coastal and regional seas (e.g., Moore

et al., 2011; Hirose et al., 2019). In the context of seasonal

predictions, a study by Vialard et al. (2003) and Weaver

et al. (2003) applied a 4DVAR method with 10- and 30-day

assimilation windows to a non-eddy-permitting model, and

assessed its advantage over a 3DVAR method with respect to

the reproducibility in the tropical Pacific. They demonstrated

that the 4DVAR method reduces misfits from the assimilated

data in comparison with the 3DVAR method. However, the

feasibility of 4DVAR methods with short assimilation windows

for ocean initialization for coupled predictions has not yet been

fully explored.

In this study, we aim to demonstrate the benefits of

introducing a 4DVARmethod to a global ocean data assimilation

system with the resolution and the length of the assimilation

windows applicable for operational coupled predictions. We

conduct a 4DVAR reanalysis run with 10-day assimilation

windows using MOVE/MRI.COM-G3, and compare the result

with the 3DVAR version of the reanalysis run. The quality of the

two reanalysis runs will be assessed through the consistency of

the temperature fields at the surface and 100m depth, and in the

equatorial vertical section with objective mapping of sea surface

temperature (SST) and Argo float profiles.

The rest of this paper is organized as follows: Section 2

introduces the configuration of MOVE/MRI.COM-G3; Section

3 describes the setup of the two reanalysis runs and the

statistical metrics used to evaluate the analysis fields; Section

4 compares the two reanalysis runs and examine the effects of

introducing the 4DVAR method; Section 5 provides a summary

and remaining discussion.
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TABLE 1 Main specification of the ocean models used in MOVE-G3A and MOVE-G3F.

MOVE-G3A MOVE-G3F

Code sets MRI.COM Version 4 (Tsujino et al., 2017)

Coordinate system
Horizontal: tripolar grid (North Pole: 64◦N-80◦E, 64◦N-100◦W)

Vertical: rescaled height coordinate system (Adcroft and Campin, 2004)

Horizontal resolution
Meridional: 0.3◦ (9.6◦S−9.6◦N)−0.5◦ (south of 10◦S, north of 10◦N) Meridional: 0.25◦

Zonal: 1.0◦ Zonal: 0.25◦

Nominal vertical levels (m) 1, 3.5, 6.5, 10, 15, 22, 30.5, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 212.5,

230, 250, 272.5, 300, 330, 362.5, 400, 440, 485, 540, 600, 665, 740, 820, 905, 1,000, 110, 1,212.5, 1,350, 1,500,

1,650, 1,812.5, 2,000, 2,475, 2,725, 3,000, 3,300, 3,600, 3,900, 4,200, 4,550, 4,975, 5,500, 6,150 (60 levels)

QUICK (Leonard, 1979) SOM (Prather, 1986)

Tracer advection and diffusion Iso-neutral mixing (Redi, 1982) Biharmonic horizontal diffusion

Eddy-induced advection (Gent and McWilliams, 1990; Visbeck et al., 1997)

Vertical mixing Generic length scale model (Umlauf and Burchard, 2003)

Bottom boundary layer
Nakano and Suginohara (2002) Not applied

Applied to 50–70◦N, 0–60◦W, and south of 60◦S

Sea ice model Five category, thermodynamic formulation (Mellor and Kantha, 1989), the elastic-viscous-plastic dynamic formulation

(Hunke and Lipscomb, 2006), ridging and rheology scheme

Atmospheric forcing
JRA-3Q-provisional (Kobayashi et al., 2021)

Bulk formula of Large and Yeager (2004)

2. System configuration of
MOVE/MRI.COM-G3

2.1. Lower-resolution subsystem:
MOVE-G3A

2.1.1. Forward and adjoint models

The lower-resolution subsystem, MOVE-G3A, generates

ocean analysis fields mainly based on a 4DVAR method

using a global ocean model and its adjoint model. The

main specification of the original (forward) model used in

the subsystem is summarized in Table 1. The forward and

adjoint models adopt a tripolar grid (Murray, 1996) over

the global domain with a zonal resolution of 1◦ and the

meridional resolution of 0.3◦-0.5◦ with refinement near the

equator. They have 60 vertical layers and a bottom boundary

layer (Nakano and Suginohara, 2002). The nominal depths

of 24 upper layers are 1, 3.5, 6.5, 10, 15, 22, 30.5m and

every 10m between 40 and 200m, and that of the lowest

layer is 6,150m. Those models are constructed with the

original and adjoint codes of the MRI Community Ocean

Model (MRI.COM) Version 4 (Tsujino et al., 2017). The

codes are basically the same as those used in JMA’s current

operational system for ocean forecasting around Japan (Hirose

et al., 2019), but MOVE-G3A uses different options due

to the difference of the grid coordinate and the lower

horizontal resolution.

The forwardmodel uses theQUICK tracer advection scheme

(Leonard, 1979). The second-order moments scheme of Prather

(1986), applied in the higher-resolution subsystem, is not used

in MOVE-G3A because it considerably increases the quantity

of data that must be stored in memory to execute the adjoint

model. In the forward model, the layer thicknesses vary small

because the rescaled height coordinates system (Adcroft and

Campin, 2004) is applied, and diffusion and viscosity coefficients

vary due to physical parameterizations, including iso-neutral

mixing (Redi, 1982) and eddy-induced advection (Gent and

McWilliams, 1990; Visbeck et al., 1997) parameterizations and

the vertical mixing scheme based on the generic length scale

model (Umlauf and Burchard, 2003). A five-category sea-ice

model, based on the thermodynamic formulation of Mellor

and Kantha (1989) and the elastic-viscous-plastic dynamic

formulation of Hunke and Lipscomb (2006) with a ridging and

rheology scheme, is also incorporated. The forward model uses

atmospheric forcing estimated from a provisional version of

the Japanese Reanalysis for Three-Quarters of a Century (JRA-

3Q-provisional; Kobayashi et al., 2021) using the bulk formula

of Large and Yeager (2004). JRA-3Q is the new atmospheric

reanalysis dataset generated in JMA.

The tangent linear model is generated by linearizing

the ocean model under some approximations for avoiding

instability and singularity as done in Fujii et al. (2008). For

example, the deviations of the vertical layer thicknesses and

sea ice parameters from its background state caused by the
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perturbation of the model prognostic fields are ignored. We

also ignore the change of the zonal and vertical diffusion

coefficients determined by the iso-neutral mixing and eddy-

induced advection parameterizations and the vertical mixing

scheme due to the perturbation, and the sensitivities of sea-ice

parameters. In contrast, the operator equivalent to the exact

transpose matrix of the tangent linear model is composed as

the adjoint model. The consistency of the tangent linear and

adjoint models is validated by checking that (L1x)T (L1x) =

1xT
(

LTL1x
)

is satisfied, where 1x denotes the perturbation

of the prognostic fields, and L and LTare tangent linear and

adjoint models.

2.1.2. 4DVAR method

In MOVE-G3A, a 4DVAR analysis is performed through

iterative integrations of forward and adjoint models in an

assimilation window of 10 days, and analysis increments are

applied to the temperature, salinity, and sea ice concentration

(SIC) fields in the first half (5 days) of the assimilation

window (Figure 1). The increments are gradually added to

the corresponding prognostic fields during the integration of

the forward model in the application period according to the

following equation,

xt+1 = M(xt)+ d̂/L, (1)

where M is the nonlinear model operator, xt is the prognostic

fields, t is the counter of the time step, d̂ is the analysis

increments, and L is the number of the time steps in

the application period. The increments are estimated from

the observation data in the second half of the assimilation

window (i.e., the observation window is between the sixth and

tenth days of the assimilation window). The SIC increments

are determined through a 3DVAR analysis at first and the

temperature and salinity increments are estimated later through

the 4DVAR analysis. The SIC increments are applied in the

model integrations during the 4DVAR analysis. Here, sea ice

parameters other than SIC and the sea surface air temperature

and humidity, which are used for the calculation of the

atmospheric forcing, are also modified depending on the SIC

correction using a method generally based on Toyoda et al.

(2016).

The temperature and salinity increments are expressed

by a linear combination of coupled temperature and salinity

vertical Empirical Orthogonal Function (EOF) modes set for

each subdomain of the model domain, as in Fujii and Kamachi

(2003a). That is, the vertical profiles of the temperature and

salinity increments at each horizontal grid point, dp, is written

as follows,

dp = bp +
∑

n

∑

m
an,pwn,m,pλn,mSpun,m, (2)

where n and m are the indices of subdomains and EOF modes,

un,m and λn,m are the EOF mode and the square root of

the corresponding eigen value, wn,m,p is the amplitude of the

EOF modes, bp denotes vertical profiles of temperature and

salinity biases, and Sp is the diagonal matrix whose diagonal

components are the standard errors of temperature and salinity

at each depth. Each subdomain is overlapped at the boundary to

avoid discontinuities in the analysis increment fields and an,p is

the weight of each subdomain at the point. Here, un,m, λn,m, Sp,

are prescribed from past observations included in World Ocean

Database 2018 (Boyer et al., 2018) and Global Temperature

and Salinity Profile Program (GTSPP; Hamilton, 1994) and the

climatological fields in the World Ocean Atlas 2018 (Locarnini

et al., 2019; Zweng et al., 2019). The biases updated in the

previous analysis by the method of Balmaseda et al. (2007)

are used as bp (see also Fujii et al., 2009). Then, wn,m,p is the

parameter adjusted by the 4DVAR method. The transformation

of (2) is performed at the grid points of the analysis grid in

a polar coordinate system different from the model grid, and

then transformed to the model grid. The conversions can be

summarized in a single equation as follows:

d = T (b+ SU3Aw) = Tb+Gw, (3)

where, d denotes the temperature and salinity analysis increment

fields in the model grid, T denotes the conversion from the

analysis grid to the model grid, b denotes the bias fields in

the analysis grid, S is the diagonal matrix with standard errors

of temperature and salinity at each grid point as diagonal

components, U is a matrix composed of the column vectors in

which un,m is given to the components corresponding to each

horizontal grid point and zero is given to the rest, and 3 and

A are diagonal matrices whose components are λn,m and an,p,

respectively, w is the vector of wn,m,p, and G=TSU3A.

The amplitudes of the EOF modes are determined by

minimizing the following cost function J in the 4DVARmethods,

J = Jb + JT,S + J1h, (4)

where

Jb =
1

2
w
T
B−1w+

1

2

(

η − ηb

ση

)2

, (5)

JT,S =
1

2

(

Hx− y
)T

R−1 (

Hx− y
)

, (6)

J1h =
1

2

(

1h− y1h

)T
R−1

1h

(

1h− y1h

)

. (7)

The first term Jb is the constraint to the background, and B

is the correlation matrix of w in which the correlation between

different modes is set to zero and the horizontal correlation

between the same mode follows a Gaussian function of the
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FIGURE 1

Schematic figure of the data assimilation process of MOVE/MRI.COM-G3.

distance between two points. The parameter η is the globally

uniform sea level adjustment associated with the uncertainty

of the change of freshwater amount in the global ocean, and

it is estimated along with w. Estimation of η in the previous

analysis is used as the background value, ηb, and ση is the

prescribed standard error of ηb. The second term JT,S is the

constraint to temperature and salinity observations including

gridded SST data, where y is the vector of temperature and

salinity observations, R is its error covariance matrix. Here,

x = M (d) = M (Gw+ Tb) , (8)

where M is the operator to generate four-dimensional

temperature and salinity fields by integrating the forward model

with applying d as the analysis increments. The observation

matrix H denotes the conversions from the four-dimensional

fields to each observation. The third term J1h is the constraint

to the Sea Level Anomaly (SLA) observations, where y1h is

the vector of SLA observations, and R1h is its error covariance

matrix. Here, 1h is the SLA calculated from x and written as

1h = D (x) − hm + 1hc + η1, (9)

where D is the operator denoting the calculation of the sea

surface dynamic height at the observation points from four-

dimensional temperature and salinity fields, and hm denotes

mean dynamic height. The vector 1hc denotes the correction to

the dynamic height anomaly in order to account for the increase

in the freshwater amount in the global ocean due to global

warming and the seasonal variation of pressure at the reference

depth for the dynamic height calculation (2,000m) presented by

Kuragano et al. (2014). The vector 1 is the vector whose elements

are all 1’s.

The gradient of the cost function alongw is calculated by the

following equations:

∇w J = B−1w+GTMT
∇x J, (10)

where

∇x J = HTR−1 (

Hx−y
)

+DTR−1
1h

(

1h−y1h

)

(11)

and GT ,M
T
,HT , andDT denote the adjoint operators of G,M,

H, and D. The inclusion ofM
T
in the left-hand side of Equation

(10) means that the backward integration of the adjoint model is

required to compute the gradient of the cost function. Then, the

gradient of the cost function along η is written as follows:

∇ηJ =
η − ηb

ση
2

+ 1TR−1
1h

(

1h−y1h

)

. (12)

In addition, modifications to avoid the density inversion and

extremely low temperature and to perform a variational quality

control are applied to the cost function (Fujii et al., 2005; Usui

et al., 2011).

The cost function is minimized by a quasi-Newton Method

(Fujii and Kamachi, 2003b; Fujii, 2005). In the minimization,

the computation of the cost function, including the integration
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of the forward model, and the computation of the gradient,

including the backward integration of the adjoint model

is repeated.

After a 4DVAR analysis is completed, a subsequent 4DVAR

analysis is conducted using the 10 days from the center of the

previous assimilation window as the new assimilation window.

The second half of the assimilation window in a 4DVAR analysis

is thus overlapped with the first half of the subsequent 4DVAR

analysis, and the 4DVAR analysis fields in the second half of

the assimilation window are updated again by the subsequent

4DVAR analysis. In this study, we consider the 4DVAR analysis

fields in the second half of the assimilation window before

updated by the subsequent 4DVAR again as the analysis fields

for MOVE-G3A because the subsequent analysis uses observed

data up to 5 days into the future, and therefore lags behind the

real-time by more than 5 days.

2.2. Higher-resolution subsystem:
MOVE-G3F

Temperature and salinity analysis fields in MOVE-

G3A (the 4DVAR analysis fields in the second half of the

assimilation window) are downscaled into the higher-

resolution system, MOVE-G3F, through IAU (Figure 1).

The configuration of the model used in MOVE-G3F (See

Table 1) are the same as those of the forward model in

MOVE-G3A, except for a few items listed below. First, the

horizontal resolution is 0.25◦ × 0.25◦. Second, the bottom

boundary layer is not applied. Third, the SOM tracer advection

scheme is applied instead of the QUICK scheme. Fourth,

biharmonic horizontal diffusion parametrization is applied

in place of the parameterizations of iso-neutral mixing and

eddy-induced advection.

In the downscaling, a prediction by the higher-resolution

model for the second half of the assimilation window (i.e.,

the 5 days from the sixth to tenth days) of MOVE-G3A

is conducted from the downscaled analysis fields at the end

of the previous assimilation window. The increments are

then calculated by subtracting the means of the predicted

temperature and salinity from the means of temperature and

salinity analyzed by MOVE-G3A. Finally, these increments

are gradually added to MOVE-G3F for the 5 days through

Equation (1). The higher-resolution model fields at the end

of the assimilation window that is consequently calculated

by the downscaling are used as oceanic initial conditions for

coupled model predictions. The analysis increments of SIC

are also estimated through the same 3DVAR analysis as in

MOVE-G3A, and gradually added to the model along with the

temperature and salinity increments. Other sea ice parameters

are also adjusted for the SIC increments by the same method as

in MOVE-G3A.

3. Experimental setting and metrics

3.1. Setting of reanalysis runs

In this study, we conduct two reanalysis runs, named

the 4DVAR and 3DVAR Runs, and examine the impact of

introducing the 4DVAR method by comparing the accuracy

of the temperature fields in the reanalysis runs. The 4DVAR

Run is the reanalysis run of MOVE-G3 (including MOVE-G3A

and MOVE-G3F) with the operational configuration described

in the previous section, and therefore the run applies the

4DVAR method to assimilate observation data into the MOVE-

G3A model.

Meanwhile, the configuration is changed for the 3DVARRun

as follows. First, Equation (8) is replaced by

x = xb + Pd, (13)

where xb is the four-dimensional temperature and salinity fields

over the assimilation window predicted from the result of the

previous analysis, and P is the matrix that transforms a three-

dimensional field vector into a four-dimensional field vector that

persists in that three-dimensional field. The integration of the

forward and adjoint models is removed by this replacement,

and thus it becomes a 3DVAR analysis. Second, the assimilation

window is shortened to 5 days with assimilating observation data

in the whole assimilation window, and the optimized increments

d are gradually added to the model temperature and salinity

fields according to Equation (1) during the whole assimilation

window. The SIC 3DVAR analysis is also performed and the SIC

increments are applied to the model along with temperature and

salinity increments. The subsequent assimilation window is then

started from the end of the previous window and therefore the

windows are not overlapped with each other. The downscaling

by MOVE-G3F is conducted in a regular manner in both the

4DVAR and 3DVAR Runs.

Both reanalysis runs start from January 1, 2004 with the

same initial values and continues through December 31, 2014.

Common observation data including temperature and salinity

profiles, satellite SLA data, and gridded SST and SIC data are

assimilated in the reanalysis runs. The temperature and salinity

profiles are collected from World Ocean Database 2013 (Boyer

et al., 2013) and GTSPP. The SLA data are obtained fromAVISO

multimission products for TOPEX/Poseidon, Jason-1/2, Envisat,

GFO, CryoSat, Altika, and HY-2A (AVISO, 2015). The gridded

SST and SIC data are drawn from Merged satellite and in situ

Global Daily Sea Surface Temperature (MGDSST) produced by

JMAwith the 0.25◦ resolution (Kurihara et al., 2006; Matsumoto

et al., 2006). Temperature and salinity profiles of Argo floats

whose last digit of the World Meteorological Organization ID

is 8 or 9 (i.e., ∼20% of Argo data) are withheld from the

assimilation in both reanalysis runs, and used for evaluating

the accuracies of their temperature fields as independent data.
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FIGURE 2

Bias and RMSD of the MOVE-G3A SST for the 4DVAR and 3DVAR Runs relative to MGDSST. (A) Bias in the 4DVAR Run. (B) Bias in the 3DVAR Run.

(C) RMSD in the 4DVAR Run. (D) Di�erence of the RMSDs between the 4DVAR and the 3DVAR Runs. Blue colors in (D) mean that the RMSD is

smaller for the 4DVAR Run. Units in ◦C.

The distribution of the independent Argo data is similar to the

distribution of all Argo data, as confirmed in Fujii et al. (2015).

SST data below −0.5◦C in MGDSST are also discarded in order

to prevent undesirable sea ice melting.

3.2. Metrics for accuracy of temperature
fields

This study compares the accuracy of the temperature fields

at the surface (i.e., SST) and 100-m depth in the two reanalysis

runs. As the metrics for accuracy, we calculate biases and

root mean square differences (RMSDs) relative to MGDSST

or Argo float data for the daily mean temperature fields in

the 10-year period of 2005–2014. For the biases and RMSDs

relative to MGDSST, data for times and locations where sea

ice is present are excluded from the calculation, considering

the low reliability of SST data in MGDSST near sea ice. The

biases and RMSDs relative to Argo float data are calculated

for each 5◦ (meridional) × 10◦ (zonal) box using the data

observed within the box, and they are calculated separately for

the assimilated and the independent Argo float data. In addition,

the ratio of the standard deviation (root mean square difference

from the mean) of the fields in the reanalysis runs to that of

the independent Argo float data (hereafter, relative standard

deviation) is calculated for each 5◦ × 10◦ box to assess how well

the actual variance is represented in the reanalysis runs.

4. Results

4.1. Impacts of 4DVAR on the
temperature fields of the
lower-resolution subsystem

In this subsection, we investigate the impacts of introducing

the 4DVAR analysis by comparing the temperature fields of
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FIGURE 3

Bias (A) and RMSD (B) of SST data from MGDSST, and di�erences of bias absolute values (C) and RMSDs (D) of the MOVE-G3A SST for the 4DVAR

Run from those for the SST data from MGDSST. The biases and RMSDs are calculated using the assimilated Argo float data as the reference. Blue

colors mean that the bias absolute value or the RMSD is smaller for the 4DVAR Run. Units in ◦C.

the lower-resolution subsystem MOVE-G3A in the 4DVAR and

3DVAR Runs. First, the accuracy of the SST fields is evaluated

using MGDSST as the reference data. Here, it should be noted

that MGDSST is assimilated in the reanalysis runs and is,

therefore, not independent data.

Figure 2A shows that in the 4DVARRun, the bias is generally

smaller than 0.02◦C in the tropical and subtropical regions

except in the central and eastern equatorial Pacific, where a

negative bias area down to −0.06◦C spreads. In contrast, in

the 3DVAR Run (Figure 2B), the negative bias in the eastern

equatorial Pacific is more significant, and positive values spreads

over wide areas in the western tropical Pacific and eastern

tropical Indian Ocean. Noticeable negative biases also appear

in the subtropical North Atlantic and the Arabian Sea in the

3DVAR Run. The bias is, thus, significantly reduced in the

4DVAR Run, especially in the tropical areas. Meanwhile, the

warm bias over the Antarctic Ocean common in the two

reanalysis runs, is mostly caused by not assimilating low SST

data from MGDSST. Figure 2C shows that in the 4DVAR Run,

the RMSDs are smaller than 0.5◦C in most areas except around

strong current systems, in the Arctic Ocean, and in some coastal

seas. Figure 2D then shows that the RMSDs of the SST analysis

values relative to MGDSST are smaller for the 4DVAR Run in

most areas except for the Arctic Ocean and some coastal seas.

Evaluation using the assimilated Argo float data as the

reference also demonstrated that the distribution and variation

of near-surface temperature are well recovered by the 4DVAR

Run. Figure 3A indicated that the bias ofMGDSST relative to the

assimilated Argo data is negative for the Southern Ocean except

around the Antarctic coast and the North American side of the

Arctic Ocean, and positive for the rest of the ocean including the

North Pacific, the North Atlantic, and the north-western part of

the Indian Ocean. This feature is generally consistent with the

bias of the NOAA/NESDIS/NCEI Daily Optimum Interpolation

SST (DOISST), version 2.0 (Huang et al., 2021), although the

positive bias is more notable in MGDSST. On the other hand,
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FIGURE 4

Bias and RMSD of the MOVE-G3A temperature at the surface and 100m depth in for the 4DVAR Run relative to the assimilated Argo float data.

(A, B) Bias at the surface and 100m depth. (C, D) RMSD at the surface and 100m depth. Units in ◦C.

MOVE-G3A SST field in the 4DVAR Run has a warm bias in the

most area relative to the assimilated Argo float data (Figure 4A).

Thus, the bias in the 4DVAR Run does not directly reflect the

bias of MGDSST. Figure 3C, depicting the difference of the

absolute value of the SST bias in the 4DVAR Run from the

absolute value forMGDSST, indicates that the bias in the 4DVAR

Run is smaller than that for MGDSST in the most area except

for the subtropical South Atlantic, the eastern subtropical South

Pacific, and Antarctic coastal seas. It should be noted that the

Argo float data are not used in the production of MGDSST.

Assimilating the Argo float data properly reduces the SST bias

in the 4DVAR Run.

The distribution of RMSD for the MOVE-G3A SST relative

to the assimilated Argo float data in the 4DVAR Run (Figure 4C)

is similar to the distribution of the RMSD against MGDSST

(Figure 2C), and also to the distribution of RMSD of MGDSST

against the assimilated Argo float data (Figure 3B), with large

values around strong current systems and in some coastal seas.

The difference of the RMSD relative to the assimilated Argo

float data between the 4DVAR Run and MGDSST (Figure 3D)

shows that the SST estimates of the 4DVAR Run are closer

to observations than MGDSST in the tropical Indian Ocean,

western tropical Pacific, and western tropical Atlantic where

SST distribution is relatively smooth, while the 4DVAR Run

is less accurate in mid-latitude zones with more eddy activity.

This results suggests that the benefit of assimilating the Argo

float data is canceled by the insufficient model resolution in the

eddy-active areas.

Comparison of the bias absolute value and RMSD for

the MOVE-G3A SST against the assimilated Argo float data

between the 4DVAR and 3DVAR Runs, as well as the statistics

using MGDSST as the reference data, suggests that the 4DVAR

scheme more effectively reduces the misfit of the SST field

to the assimilated observations. The SST bias is reduced for

the 4DVAR Run in most areas except for the North Atlantic

(Figure 5A). The RMSD is also found to decrease in large
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FIGURE 5

Di�erence of bias absolute values and RMSDs of the MOVE-G3A temperature relative to the assimilated Argo float data between the 4DVAR and

3DVAR Runs. (A, B) Di�erence of bias absolute values at the surface and 100m depth. (C, D) Di�erence of RMSDs at the surface and 100m

depth. Blue colors mean that the bias absolute value or the RMSD is smaller for the 4DVAR Run. Units in ◦C.

part of the ocean, especially in the equatorial Pacific, Southern

Indian and Atlantic Oceans, around the Kuroshio and Gulf

Stream (Figure 5C).

As for temperature at 100m depth, the 4DVAR Run has

a smaller bias in slightly more boxes, especially in the central

tropical Pacific and the western tropical Atlantic, where the bias

is smaller bymore than 0.1◦C (Figure 5B). The RMSD (shown in

Figure 4D) has decreased by more than 0.01◦C over a wide area,

except in the tropical Indian Ocean, western tropical Pacific, and

around sea ice (Figure 5D). Thus, the temperatue at the 100m

depth are also better constrained by observation data in the

4DVAR Run.

The distribution of the difference between the 4DVAR

and 3DVAR Runs of the bias absolute values relative to the

independent Argo float data (not shown) is very similar to that

of the difference of the absolute values from the assimilated Argo

float data for both surface and 100m depth (Figures 5A, B), and

indicating positive impact of introducing the 4DVAR method.

However, the RMSD relative to the independent Argo float data

for the 4DVAR Run is larger than that for the 3DVAR Run

in many boxes (Figures 6A, B). In particular, a relatively large

increase in RMSD due to the application of the 4DVAR method

can be seen in the tropical Indian Ocean both at the surface and

at the 100m depth. The RMSD computed using the independent

Argo float data, thus, does not clearly confirm the advantage of

using the 4DVAR method.

It should be noted that in the 4DVAR Run, the relative

standard deviation and hence the variance of the temperature

are generally larger than in the 3DVAR Run both at the surface

and at 100m depth (Figures 6C, D). Thus, the 4DVAR Run

better represents the variance of the temperature field, which

is typically underestimated in lower-resolution systems such as

MOVE-G3A, by adjusting model fields more significantly to fit

the observation data. The larger RMSD in the 4DVAR Run,

however, indicates that the adjustment is not well consistent with

the real ocean at the locations where observation data are not

assimilated probably due to insufficiency of the model resolution

and physics.
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FIGURE 6

Di�erence of the RMSDs and the relative standard deviations of the MOVE-G3A temperature relative to the independent Argo float data between

the 4DVAR and 3DVAR Runs. (A, B) Di�erence of the RMSDs at the surface and the 100m depth. (C, D) Di�erence of the relative standard

deviations at the surface and 100m depth. Blue colors mean that the RMSD is smaller for the 4DVAR Run in (A, B), and that the relative standar

deviation is larger for the 4DVAR Run in (C, D). Units in ◦C.

4.2. Impacts of 4DVAR on the
temperature field after downscaling

Next, we investigate the effect of the 4DVAR method on

the temperature field downscaled to the 0.25◦ resolution by

MOVE-G3F. Figures 7A, B show the bias of the MOVE-G3F

SST relative to MGDSST in the 4DVAR and 3DVAR Runs.

Comparing Figure 7A with Figure 2A, warm biases not seen

in the MOVE-G3A SSTs appear in the MOVE-G3F SSTs after

downscaling in the western tropical Pacific and eastern tropical

Indian Ocean. In addition, the cold bias is intensified in the

eastern equatorial Pacific, and small cool biases are dominant

in other tropical and subtropical regions. The SST bias is,

thus, increased by the downscaling. However, a comparison

of Figures 7A, B shows that the bias of the MOVE-G3F

SST for the 4DVAR Run is still smaller than that for the

3DVAR Run.

The distribution of RMSD relative to MGDSST in the

MOVE-G3F SST in the 4DVAR Run (Figure 7C) shows

little difference compared to that for the MOVE-G3A SST

(Figure 2C). Comparing the RMSD of the MOVE-G3F SSTs for

the 4DVAR and 3DVAR Runs (Figure 7D), the RMSD is smaller

for the 4DVAR Run and the difference is larger than for the

MOVE-G3A SSTs.

Figures 8A–D depict the differences of the bias absolute

values and RMSDs of temperature relative to the independent

Argo data between before and after the downscaling in the

4DVAR Run. As for SST, the bias increases in the western

tropical Pacific and the equatorial IndianOcean, but decreases in

many other areas. The RMSD also decreases in a relatively large

part of the ocean although it increases in the equatorial Pacific

and the Southern Ocean. Thus, downscaling usng the higer-

resolution system MOVE-G3F improves the reproducibility of

SST by resolving finer-scale variability. In contrast, a loss of
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FIGURE 7

Bias and RMSD of the MOVE-G3F SST for the 4DVAR and 3DVAR Runs relative to MGDSST. (A) Bias in the 4DVAR Run. (B) Bias in the 3DVAR Run.

(C) RMSD in the 4DVAR Run. (D) Di�erence of the RMSDs between the 4DVAR and the 3DVAR Runs. Blue colors in (D) mean that the RMSD is

smaller for the 4DVAR Run. Units in ◦C.

the physical balance by the downscaling seems to reduce the

accuracy of the temperature fields at 100m depth. The areas

where bias for the 100m temperature decreases and increases

are comparable, while the RMSD for the 100m temperature

increases in more areas, such as the equatorial Pacific and the

Southern Ocean.

The differences of the RMSDs before and after the

downscaling are also depicted for the 3DVAR Run in Figures 8E,

F. These figures indicate that the increase in RMSD in the

tropical regions and around the Kuroshio and the Gulf Stream

at the surface and 100m depth due to the downscaling is

larger for the 3DVAR Run. The less increase in RMSD due

to downscaling in the 4DVAR Run is presumably due to

better physical balance of the MOVE-G3A field than in the

3DVAR Run.

As a result, the degradation of the MOVE-G3A temperature

fields evaluated with the RMSD relative to independent Argo

float data that occurs when introducing the 4DVAR Method is

mitigated after downscaling. As for SST, although the RMSD

of the MOVE-G3A field is generally larger for the 4DVAR Run

(Figure 6A), the RMSD of the MOVE-G3F field in the western

and eastern tropical Pacific, tropical Atlantic, eastern tropical

Indian Ocean, western North Pacific and near the east coast of

US and the Argentine coast is reduced compared to the 3DVAR

Run (Figure 9C). In addition, the reduction of the RMSD of

temperature at the 100m depth by the 4DVAR method is

enhanced after the downscaling in the central equatorial Pacific

andKuroshio extension area and along the Gulf Stream although

the RMSD still increases in the 4DVAR Run over a wider area

of the ocean even after the downscaling (Figure 7D). It should

be noted that the 4DVAR Run reproduces a larger variance

of temperature at the surface and 100m depth compared with

the 3DVAR Run in the most area even after the downscaling

(Figures 9E, F). Although the larger variance tends to increase

the RMSD, the RMSD is nevertheless smaller for the 4DVAR

Run in several locations, including the western tropical and

North Pacific surface layer and the central tropical Pacific at 100

m depth.

In addition, the 4DVARmethod reduces the SST bias relative

to the independent Argo float data in most areas except the
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FIGURE 8

Di�erence of the bias absolute values and the RMSDs relative to the independent Argo float data between the MOVE-G3A and MOVE-G3F

temperature in the 4DVAR and 3DVAR Runs. (A, B) Di�erence of the bias absolute values at the surface and 100m depth in the 4DVAR Run. (C,

D) Di�erence of the RMSDs at the surface and 100m depth in the 4DVAR Run. (E, F) Same as (C, D) but for the 3DVAR Run. Blue colors mean

that the bias absolute value or the RMSD is smaller for the MOVE-G3F temperature. Units in ◦C.

North Atlantic before the downscaling, and the reduction is

maintained after the downscaling (Figure 9A). The areas of

decreasing the bias of the MOVE-G3F temperature at 100m

depth in the 4DVAR Run is also pronounced than the areas of

increasing the bias (Figure 9B), as it is before the downscaling

(not shown).
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FIGURE 9

Di�erence of the bias absolute values, RMSDs, and relative standard deviations of the MOVE-G3F temperature relative to the independent Argo

float data between the 4DVAR and 3DVAR Runs. (A, B) Di�erence of the bias absolute values at the surface and 100m depth. (C, D) Di�erence of

the RMSDs at the surface and the 100m depth. (E, F) Di�erence of the relative standard deviations at the surface and the 100m depth. Blue

colors mean that the bias absolute value and the RMSD are smaller for the 4DVAR Run in (A–D), and that the relative standar deviation is larger

for the 4DVAR Run in (E, F). Units in ◦C.

Distributions of the bias and the RMSD of the MOVE-G3F

temperature relative to the independent Argo float data in the

equatorial vertical section for the 4DVAR Run are shown along

with the bias absolute value and the RMSD differences between

the 4DVAR Run and 3DVAR Runs in Figures 10A–D. Relatively

large bias and RMSD can be seen along the thermocline in the
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FIGURE 10

(A, B) Bias and RMSD of the MOVE-G3F temperature at the equatorial vertical section (average of two boxes within 5◦S−5◦N) in the 4DVAR Run.

3DVAR Run Di�erence of the bias absolute values and RMSDs of the MOVE-G3F temperature between the 4DVAR and 3DVAR Runs at the

equatorial vertical section. The biases and RMSDs are relative to the independent Argo float data. Blue colors in (C, D) mean that the bias

absolute value or the RMSD is smaller for the 4DVAR Run. Units in ◦C.

4DVAR Run. There are extremely large negative bias (down

to −3.5◦C) and RMSD (up to 4.7◦C) at the eastern edge of

the Pacific, possibly due to insufficient representation of the

Galapagos Islands and coastal upwelling. Another large negative

bias (down to −1.0◦C) and RMSD (up to 2.9◦C) are seen at

the western edge of the Atlantic. Except for those locations,

the largest bias (0.8◦C) exists at the thermocline in the central

equatorial Pacific and the RMSD is no larger than 2.4◦C.

Then, the difference of the bias absolute values indicates that

the 4DVARmethod reduces the bias at relatively many locations

such as near surface and around the thermocline. The RMSD is

also reduced around the thermocline in the equatorial Pacific, as

well as in the near surface layer. The reduction of the bias and

the RMSD around the thermocline by introducing the 4DVAR

method is expected to have a positive impact on ENSO forecasts.

5. Summary and discussion

This paper first described the ocean models and the data

assimilation and downscaling methods employed in the JMA’s

new global ocean data assimilation system for the coupled

predictions, MOVE/MRI.COM-G3. The system is composed of

the lower-resolution subsystem, MOVE-G3A, and the higher-

resolution subsystem, MOVE-G3F. MOVE-G3A has zonal and

meridional resolutions of 1.0◦ and 0.5◦, and adopts a 4DVAR

method with a 10-day data assimilation window to optimize the

increments added to the temperature and salinity fields of the

oceanmodel within the first 5 days using observation data within

the second 5 days. Then, the data-assimilated temperature and

salinity fields in MOVE-G3A are downscaled into MOVE-G3F

with a resolution of 0.25◦ through IAU.
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FIGURE 11

Di�erence of RMSDs of the MOVE-G3A temperature relative to the independent Argo float data between the 4DVAR and NS4DV Runs. (A)

Di�erence of the RMSD at the surface. (B) Di�erence of the RMSDs at 100m depth. Blue colors mean that the RMSD are smaller for the 4DVAR

Run. Units in ◦C.

Then, the impact of introducing the 4DVAR method was

investigated through the comparison of a regular reanalysis run

of MOVE/MRI.COM-G3 (4DVAR Run) with a reanalysis run

using a 3DVAR method instead of the 4DVAR method (3DVAR

Run). Before the downscaling, the bias and RMSD of SST

and 100-m-depth temperature relative to the assimilated data

(MGDSST and the assimilated Argo float data) at the surface

and 100m depth were smaller in most parts of the ocean for

the 4DVAR Run, which indicates that the 4DVAR method can

more effectively reduce the misfits between the model field and

observation data. This result is consistent with the former study

of Weaver et al. (2003). However, when the independent Argo

float data are used as the reference, the RMSDs of the SST

and 100m depth temperature increased in more than half of

the areas in the 4DVAR Run. An increase in the variance of

the temperature in the 4DVAR Run implies that the 4DVAR

method adjusts the temperature fields more significantly but the

adjustments are inconsistent with the independent observation

data due to insufficient model physics and resolution.

The downscaling to MOVE-G3F generally reduced the SST

RMSD relative to the independent Argo float data except in

the equatorial Pacific and the Southern Ocean, but generally

increases the RMSD of temperature at 100m depth, in the

4DVAR Run. However, the area in which the SST RMSD are

reduced by the downscaling was shrunk and the increase of the

RMSD for SST and 100-m-depth temperature was even greater

in the 3DVAR Run. As a result, the increase in the RMSD relative

to the independent Argo float data by introducing the 4DVAR

method was mitigated after the downscaling. The RMSD was

reduced for the 4DVAR Run in the western and eastern tropical

Pacific and the western North Pacific for SST, and in the central

equatorial Pacific and Kuroshio extension area for 100-m-depth

temperature. The introduction of the 4DVAR method also

reduced the bias absolute value and RMSD of temperature

relative to the independent Argo float data along the thermocline

as well as near surface in the equatorial vertical section.

However, it should be noted here that the improvement with

4DVAR is a trade-off for the extra time that 4DVAR takes over

3DVAR. On the one hand, the 3DVAR method of MOVE-G3A

requires to perform 5-day integration of the lower-resolution

model twice to obtain the analysis fields for 5 days. On the other

hand, the 4DVAR method requires about 20 iterations of 10-

day integrations of the lower-resolution model and its adjoint

model to obtain the analysis fields for 5 days, which takes 60

times longer than the 3DVAR method since the integration time

of the adjoint model takes about twice as long as the integration

of the original model. To downscale to a higher-resolution

system using either method, the higher-resolution model must

be integrated for a total of 10 days. Since the integration time

for the higher-resolution model is about 16 times longer than

for the lower-resolution model, the computation time for the

4DVAR, including downscaling, is about 4.5 times longer than

for the 3DVAR.

It should be also noted that the 4DVARmethod estimates the

analysis increments for a 5-day period using the data observed

during the following 5 days, but the 3DVAR method estimates

the increments for a 5-day period using the data obseved in the

same period. Onemight consider that the cause of increasing the

RMSD of temperature relative to the independent Argo data in

the 4DVAR Run is the shift of the observation window from the

period for which analysis increments are estimated. Therefore,

in order to examine the effect of shifting the observation

window, we conducted a supplemental reanalysis run (named

the NS4DV Run) in which the analysis increments for the
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FIGURE 12

Di�erence of RMSDs of the MOVE-G3A temperature relative to the independent Argo float data between the SW4DV and 4DVAR Runs (A, B) and

between the SW4DV and SW3DV Runs (C, D). (A, C) Di�erence of the RMSD at the surface. (B, D) Di�erence of the RMSDs at 100m depth. Blue

colors mean that the RMSD are smaller for the SW4DV Run. Units in ◦C.

5-day analysis window are estimated by the 4DVAR method

using the data observed within the same window through the

4DVAR method.

Figure 11 shows the differences of RMSDs of the MOVE-

G3A temperature relative to the independent Argo float data

between the 4DVAR and NS4DV Runs at the surface and 100m

depth. This figure indicates that the RMSD is smaller for the

4DVAR Run in most areas except at the surface and 100m depth

in the Arctic Ocean and near the Antarctic coast, and at 100m

depth in the western tropical Indian Ocean. The temperature

field is, thus, generally improved by the shift of the observation

window in the 4DVAR Run because the longer integration of

the adjoint model allows the information of observation data to

propagate over a wider area and systematic model errors do not

significantly affect the propagation.

Another possible reason for the smaller RMSD of

temperature in the 3DVAR Run is that the observation

data within the 5-day observation window were dense enough

that the benefit of using the adjoint model in the 4DVAR Run

was reduced. However, if a shorter observation window is

adopted, it may not be possible to obtain sufficiently dense

observation data from that window, and the benefits of the

4DVAR method become more significant. Therefore, we also

conduct two other supplementary reanalysis runs, the SW4DV

and SW3DV Runs: in the SW4DV Run, analysis increments for

a given day are optimized using data observed on the next day

by the 4DVARmethod; in the SW3DV Run, analysis increments

for a given day are estimated from the data observed on the

day by the 3DVAR method. The statistical parameters for data

assimilation are not changed.

Figures 12A, B indicate that the RMSD of temperature

relative to the independent Argo float data before the

downscaling is generally larger when the shorter data

assimilation window is adopted. In the SW4DV Run, the

RMSD decreases for SST in the narrow areas around the

western boundary currents, where frequent estimates of analysis
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increments seem to be effective because the lower resolution

model has large systematic errors. However, the SST RMSD

is increasing in most other areas. As for the 100m depth, the

RMSD is significantly increasing along the equator. Then,

Figures 12C, D compares the RMSDs between SW4DV and

SW3DV Runs. The SW4DV Run has a smaller RMSD of SST

in most areas except in the tropical Indian Ocean, and western

tropical Pacific. As for 100m depth, although the RMSD is

larger for the SW4DV Run in the tropical Pacific, tropical Indian

Ocean, along the Antarctic coast, and in the Arctic Ocean, but

is smaller in other areas. In particular, RMSD is significantly

reduced in the areas around the western boundary currents.

Thus, the 4DVAR method generally reduces the temperature

RMSD except at 100m depth in the tropical Pacific and

tropical Atlantic Ocean, and the benefit of the 4DVAR method,

therefore, increases when the daily assimilation window is

applied. In fact, the daily assimilation window may be applied

to the operatioal system in the future since it is easier to provide

daily analysis fields, and if this were to happen, the advantage of

the 4DVAR method would appear more clearly.

The insufficient resolution of the ocean model used for

the 4DVAR method is another highly potential reason why

the advantages of the 4DVAR method are not clearly visible.

Using a higher-resolution adjoint model, we canmore accurately

propagate the information of the observation data, and adjust

the model fields in a manner more consistent with the

independent observation data. Therefore, we plan to develop

the next-generation global ocean data assimilation system using

the 4DVAR method with higher-resolution forward and adjoint

ocean models.
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