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It is important to explore the driving factors of the carbon emission intensity (CI)

for China’s planting under the dual pressures of adequate food supply and carbon

neutrality. Previous studies separately investigate the impact of technical or structural

factors on the total carbon emissions of China’s agricultural sector, but few studies

assess the comprehensive effects of these two. To this end, this paper incorporates the

production-theoretical decomposition analysis (PDA) into the logarithmic mean Divisia

index (LMDI) and decomposes the changes of CI into seven components, namely, two

technical effects, four structural ones, and one regional layout effect. Based on the

panel data of the agricultural sector for 31 provinces in China from 2001 to 2018, the

contribution rates of the seven components to the changes of China’s planting CI are

computed. The results indicate that China’s planting CI presents a downward trend

with an average annual decreasing rate of 11.4% over the whole study period. The

improvement in technical efficiency (TEFF) plays a dominant role in the decline of CI

for planting with a contribution rate of 83.19%, followed by the output structure (OS)

change (27.28%). In contrast, technical change (TECH) (8.00%) promotes the increase

of CI. Further, the effects present significant regional heterogeneities. Specifically, TEFF

contributes the highest share to the decline of CI for producing-sales balance areas

(BA), and OS plays the greatest role in the decrease of CI for main grain-sales areas

(MCA) during the entire study period. Accordingly, some policy recommendations are

put forward on how to reduce the CI of China’s planting.

Keywords: planting industry, carbon emission intensity, decomposition, LMDI-PDA, driving factors

INTRODUCTION

Global warming is one of the greatest challenges for humanity (Hoegh-Guldberg et al., 2019).
The majority of developed countries have agreed to take steps to limit and even cut down
anthropogenic carbon emissions. In this context, the reduction pathway for agricultural carbon
emissions accounting for 10–20% of the global total emissions has attracted the attention of
academia (Crippa et al., 2021). As for China, the world’s largest developing country, the rapid
development of its agricultural economy has caused massive carbon emissions. The CO2 emissions
of the agricultural sector in China reached 241.1 million tons in 2017, which is 1.5 times that in
1995 (Han et al., 2018). Thus, it is significant for the achievement of China’s carbon peaking to
investigate driving factors of CO2 emissions for the agricultural sector.
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Most of the existing literature focuses on the absolute
mitigation of total CO2 emissions. However, for a developing
country like China, the agricultural sector bears the burden of
food supply for the population of 1.4 billion. Crop farming faces
dual pressures to ensure food security while reducing its carbon
emissions. Alternatively, the reduction of CI (CO2 emissions per
unit of gross planting output) is more consistent with the current
situation of emission abatement for developing economies. Thus,
this paper aims to investigate the changes of the CI in China’s
planting and its driving factors.

Over the past two decades, the mitigation of carbon emission
from the planting industry has received extensive attention
(Huang et al., 2019; Zhang et al., 2019; Xiong et al., 2020; He
et al., 2021). Some studies investigate the driving forces of total
carbon emissions in China’s agricultural sector (Wu et al., 2019,
2021; Long and Tang, 2021; Sui and Lv, 2021). There are three
widely used decomposition approaches to explore the drivers
of CO2 emissions, namely, structural decomposition analysis
(SDA), index decomposition analysis (IDA), and production–
theoretical decomposition analysis (PDA) (Ang, 2004). The SDA
based on input–output tables (Wieland et al., 2017; Dong et al.,
2018b; Jiang et al., 2021) is not applicable in the analysis of
geoponic carbon emissions owing to the unavailability of input–
output data of the agricultural sector (Liu and Feng, 2021). In
merits of data availability and convenient analysis process, IDA,
especially the logarithmic mean Divisia index (LMDI) method,
has been widely used to identify the influencing factors of the
agricultural CO2 emissions (Wang et al., 2014; Dong et al., 2016;
Liu et al., 2017; Song and Zhang, 2017, 2019; Zhang et al., 2018;
Song et al., 2019). Some studies utilize the LMDI method to
probe the impact of structural changes on total agricultural CO2

emissions, including economic structure, agricultural output
structure (OS), energy consumption structure, and population
distribution structure (Li et al., 2020; Pakrooh et al., 2020).
However, the abovementioned analysis pays little attention to
the roles of technical changes (TECH) for CO2 emissions.
In this respect, a few studies explain energy intensity (EI),
one of the components resulting from LMDI, as a proxy of
TECH to capture the effect of technological progress on CO2

emissions. However, the index “intensity” may overestimate the
contributions of technological change due to the incorporation
of the improvement of resource allocation efficiency across
industries (Lin and Xu, 2019).

To explore the impact of technological progress and
technological efficiency on emissions, Pasurka (2006) first
conducted PDA based on the production theory. Subsequently,
Wang (2011) introduced the Shepard direction distance function
into the framework to further capture the substitution effect
between inputs. With the enhancement of the computability
of PDA, it is gradually developed to investigate the effect of
technological factors on EI changes (Zhou and Ang, 2008; Du
and Lin, 2015; Chen and Duan, 2016; Wang and Zhou, 2018).
However, the PDA model cannot give a full picture of economic
structural changes due to the symmetry of structural components
decomposed by the output distance function (Tan and Lin, 2018).
In order to take the advantages of LMDI and PDA, the existing
literature attempts to combine the two to investigate the effects

of structural changes and TECHs on CO2 emissions (Dong
et al., 2018a; Zha et al., 2019; Liu and Feng, 2021). Currently,
few studies apply this method to analyze the change of carbon
intensity for the agricultural sector.

To this end, this paper tries to incorporate PDA into the
LMDI to decompose the changes of carbon intensity for China’s
planting. Based on the panel data of the agricultural sector
for 31 provinces in China from 2001 to 2018, we calculate
the contribution rates of each component and analyze their
heterogeneities across regions. Our study is different from
previous literature in three ways. At first, differing from the
existing studies focusing on either the impact of technological
progress or that of output restructuring, we investigate the
simultaneous effects of the two factors on the carbon intensity of
China’s planting. Secondly, distinguished from the technological
progress measured by EI in previous analysis, the present paper
strips the TECH element from the variation of EI. Finally, in the
context of China’s food security strategy, the agricultural resource
endowments of one province may affect the regional pattern of
carbon emissions. Thus, this paper divide the sample into three
sub-regions, namely, the main grain-production areas (MPA),
the producing-sales balance areas (BA), and the main grain-sales
areas (MCA), to analyze the heterogeneities of the drivers of CI
across regions.

The remainder of this paper is organized as follows:
Section Methodologies decomposes the change of the carbon
intensity by incorporating the PDA into the LMDI method;
Section Data sources gives more details of the sources of
data used in this paper; some results are presented in Section
Results and discussions; and Section Conclusions and policy
implications concludes the paper and puts forward some
policy recommendations.

METHODOLOGIES

LMDI Model
As one of IDA decomposition approaches, the LMDI has been
widely applied to explore the drivers of carbon emissions owing
to its properties of aggregation, zero value, and robustness (Ang,
2005). Up to now, there are two widely used construction
methods, the additive formula and the multiplicative one (Ang,
2015). Considering that this paper aims to investigate the relative
changes in driving forces of China’s planting carbon intensity, the
multiplicative LMDI is employed. The decomposition process is
written as

CI =
CO2

Y
=

31
∑

i=1

CO2i

Ei
×

Ei

Yi
×

Yi

Y
(1)

where CI represents the carbon emission intensity in planting;
CEi = CO2i/Ei denotes CO2 emissions per unit agrochemical
energy (fertilizer, pesticide, plastic mulch, irrigation, plowed by
tractor, diesel) in province i, which reflects a comprehensive
carbon emission coefficient of the six carbon sources. REi = Yi/Y
is the ratio of the crop farming output of province i to the national
planting output, which shows the regional layout of China’s
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crop farming. EIi = Ei/Yi measures the agrochemical energy
consumption per unit GDP in province i, i.e., the agrochemical
EI. The larger the EIi, the greater the EI and the lower the
energy efficiency.

According to the multiplicative LMDI method, the
intertemporal changes of CI are decomposed into

CIt,t+1 =
CIt+1

CIt
= CEt,t+1 × REt,t+1 × EIt,t+1 (2)

where

CEt,t+1 = exp

(

∑

i

L(CIit+1,CIit)

L(CIt+1,CIt)
ln(

CEit+1

CEit
)

)

REt,t+1 = exp

(

∑

i

L(CIit+1,CIit)

L(CIt+1,CIt)
ln(

REit+1

REit
)

)

EIt,t+1 = exp

(

∑

i

L(CIit+1,CIit)

L(CIt+1,CIt)
ln(

EIit+1

EIit
)

)

CEt,t+1, REt,t+1, and EIt,t+1 represent inter-period changes ofCE,
RE, and EI, respectively. L(CIit+1,CIit)/L(CIt+1,CIt) is a weight
function (Ang, 2004).

PDA Model
Actually, the agrochemical EI is also affected by other factors such
as technical efficiency (TEFF), TECH, and variations of input
in crop farming. In order to capture more details about driving
forces of EI, the PDAmodel is embedded in the LMDI framework
in this section. Considering that EI is equivalent to the inverse of
energy productivity (EP) (gross output per unit of energy), we
first decompose the EP and then take its inverse.

According to the production-theory decomposition analysis
framework conducted by Wang (2007), the change of EP from
period t to t + 1 can be decomposed as follows:

(
EPit+1
EPit

)t
=

Dit+1
o (Lit+1 ,Sit+1 ,Eit+1 ,Yit+1)

Dit
o (Lit ,Sit ,Eit ,Yit )

×
Dit
o (Lit+1 ,Sit+1 ,Eit+1 ,Yit+1)

Dit+1
o (Lit+1 ,Sit+1 ,Eit+1 ,Yit+1)

×

Dit
o (lit ,sit ,1,yit )

Dit
o (lit+1 ,sit+1 ,1,yit+1)

= TEFFit × TECHi(t + 1)× PEPCHit

(3)

where the input variables include labor Lt ∈ R1+, land
St ∈ R1+, agrochemical energy (from six sources)1 Et =

(Et1,E
t
2,E

t
3,E

t
4,E

t
5,E

t
6) ∈ R6+, and crop farming outputs (from

four sectors)2 Y t = (Y t
1,Y

t
2,Y

t
3,Y

t
4) ∈ R4+; lit = Lit/Eit

3 and
sit = Sit/Eit , respectively, denote the labor–energy ratio and
land–energy ratio; and yit = (Y1

it/Y it ,Y
2
it/Y it ,Y

3
it/Y it ,Y

4
it/Y it)

represents the output composition, hereY it = Y1
it+Y2

it+Y3
it+Y4

it .
In Equation (3), we use the technology of period t as a

reference. TEFFit measures the inter-period change of technical

1The six sources are fertilizers, pesticides, plastic mulch, irrigation, plowing by a

tractor, and diesel.
2The four sectors are grain crops, oil-bearing crops, vegetables, and other crops.
3Eit = Eit

1 + Eit
2 + Eit

3 + Eit
4 + Eit

5 + Eit
6.

efficiency; TECH(t + 1) is the technological progress; PEPCHit

depends on the changes in the labor–energy ratio, land–energy
ratio, and output composition from t to t + 1. To obtain more
specific components of PEPCHit , it can be decomposed further:

PEPCHit =
Dit
o (lit , sit , 1, yit)

Dit
o (lit+1, sit+1, 1, yit+1)

=













[
Dit
o (lit , sit , 1, yit)

Dit
o (lit+1, sit , 1, yit)

]2

·

[
Dit
o (lit , sit+1, 1, yit+1)

Dit
o (lit+1, sit+1, 1, yit+1)

]2

·
Dit
o (lit , sit , 1, yit+1)

Dit
o (lit+1, sit , 1, yit+1)

·
Dit
o (lit , sit+1, 1, yit)

Dit
o (lit+1, sit+1, 1, yit)













1/6

︸ ︷︷ ︸

LEit

×













[
Dit
o (lit , sit , 1, yit)

Dit
o (lit , sit+1, 1, yit)

]2

·

[
Dit
o (lit+1, sit , 1, yit+1)

Dit
o (lit+1, sit+1, 1, yit+1)

]2

·
Dit
o (lit , sit , 1, yit+1)

Dit
o (lit , sit+1, 1, yit+1)

·
Dit
o (lit+1, sit , 1, yit)

Dit
o (lit+1, sit+1, 1, yit)













1/6

︸ ︷︷ ︸

SEit

×













[
Dit
o (lit , sit , 1, yit)

Dit
o (lit , sit , 1, yit+1)

]2

·

[
Dit
o (lit+1, sit+1, 1, yit)

Dit
o (lit+1, sit+1, 1, yit+1)

]2

·
Dit
o (lit+1, sit , 1, yit)

Dit
o (lit+1, sit , 1, yit+1)

·
Dit
o (lit , sit+1, 1, yit)

Dit
o (lit , sit+1, 1, yit+1)













1/6

︸ ︷︷ ︸

OSit

(4)

Substituting Equation (4) into Equation (3), EPit+1/EPit could be
rewritten as

(
EPit+1

EPit

)t

= TEFFit × TECHi(t + 1)× LEit × SEit × OSit (5)

To avoid the impact of arbitrarily employing a reference
technology on the intertemporal changes of EP, we define

(EPit+1/EPit) as the geometric mean of (EPit+1/ EPit)
t and

(EPit+1/EPit)
t+1; we obtain that

(
EPit+1
EPit

)

= TEFFit × [TECHi(t + 1)× TECHi(t)]
1/2

×

(LEit × LEit+1)
1/2

× (SEit × SEit+1)
1/2

× (OSit × OSit+1)
1/2

= TEFFi × TECHi × LEi × SEi × OSi

(6)

According to EI = 1/EP, the changes of EI over time can be
decomposed into the following:

(
EIit+1

EIit

)

=
1

TEFFi
×

1

TECHi
×

1

LEi
×

1

SEi
×

1

OSi
(7)

Therefore, EIt,t+1 = exp

(
∑

i

L(CIit+1,CIit)
L(CIt+1,CIt)

ln(EIit+1
EIit

)

)

is

rewritten as
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EIt,t+1= exp

(
∑

i

L(CIit+1 ,CIit )
L(CIt+1 ,CIt )

ln( 1
TEFFi

)

)

× exp

(
∑

i

L(CIit+1 ,CIit )
L(CIt+1 ,CIt )

ln( 1
TECHi

)

)

× exp

(
∑

i

L(CIit+1 ,CIit )
L(CIt+1 ,CIt )

ln( 1
LEi

)

)

× exp

(
∑

i

L(CIit+1 ,CIit )
L(CIt+1 ,CIt )

ln( 1
SEi

)

)

× exp

(
∑

i

L(CIit+1 ,CIit )
L(CIt+1 ,CIt )

ln( 1
OSi

)

)

= TEFFt,t+1 × TECHt,t+1 × LEt,t+1 × SEt,t+1 × OSt,t+1

(8)

Ultimately, we substitute Equation (8) into Equation (2) and
obtain that

CIt,t+1 = TEFFt,t+1 × TECHt,t+1

︸ ︷︷ ︸

technical effects

×OSt,t+1 × LEt,t+1 × SEt,t+1 × CEt,t+1

︸ ︷︷ ︸

structural effects

×REt,t+1

The intertemporal changes of carbon emission intensity (CI)
have been decomposed into seven components, namely, two
technical effects (TEFFt,t+1 and TECHt,t+1), four structural ones
(OSt,t+1, LEt,t+1, SEt,t+1, and CEt,t+1), and one regional layout
effect (REt,t+1). We define the following formula:

Ratet,t+1 = (Ft,t+1 − 1)× 100%,

F ∈ {CE,RE,TEFF,TECH, LE, SE,OS} (9)

where Ratet,t+1 is the contribution rates of each component to
the intertemporal changes of CI. It is <1, which means that the F
factor promotes the decrease of CI.

DATA SOURCES

Since CO2 emissions of the planting industry are not available
in the official statistical databases in China, the CO2 emissions
of crop farming in this analysis are computed by agrochemical
energy consumption, including fertilizers, pesticides, plastic
mulch, irrigation, plowing by a tractor, and diesel. The calculation
formula is as follows:

Carbon =
∑

j

δjEj (10)

where Ej is the carbon source j and δj represents its emission
coefficient, whose value is shown in Table 1.

In addition, we collect the datasets of planting output, labor
input, land usage, and agrochemical energy consumption, which
covers 31 administrative provinces of China over the period
2001–2018. Moreover, the 31 provinces are grouped into three
sub-regions4 to investigate the trend and driving factors of CI’s
changes at the regional level: MPA, MCA, and producing-sales
BA (see Figure 1).

The basic data mainly derive from the China Rural Statistical
Yearbook (CRSY), published by China National Bureau of

4The division is based on Opinions on the Reform and Improvement of

Comprehensive Agricultural Development Policies and Measures issued by the

Ministry of Finance of the People’s Republic of China.

Statistics. The following is a detailed description of the variables
involved in this paper.

As for variables involved in the LMDI model, the CO2

emissions are calculated by using Equation (10), where the
amount of fertilizers (E1), pesticides (E2), plastic mulch (E3),
irrigation (E4), plowing (E5), and diesel (E6) is directly from
CRSY (2001–2018). Data on gross planting output (Y) consisting
of grain crops (Y1), oil-bearing crops (Y2), vegetables (Y3), and
other crops (Y4) are obtained from CRSY, which is at the 2000
price level to eliminate inflation. As to variables involved in
the PDA model, the total sown area of crops is chosen as a
proxy of the land input. Considering that the labor input of
planting cannot be obtained directly from CRSY, it is calculated
by multiplying the number of employees at the end of the year in
the agricultural sector by the proportion of the planting output to
the total output of this sector. The amount of each carbon source
is converted into the equivalent of diesel5 and then added up to
measure the total agrochemical energy consumption.

RESULTS AND DISCUSSIONS

Changes of CO2 Emission Intensity in
China’s Planting
According to Equation (10), the carbon emissions of each
province during the period of 2001–2018 are calculated and
then added up to obtain the total carbon emissions for China’s
planting. Subsequently, the total carbon emissions of each
year are divided by the corresponding gross output of China’s
plantation to acquire the CI of each year at the national level. The
results are shown in Figure 2.

As can be observed in Figure 2, the CI experiences a
continuous decline both at national and regional levels over the
whole study period. The planting CI at the national level reduces
from 8,684.36 tons per 100 million CNY in 2001 to 1,082.79
million tons per 100million CNY in 2018, with an average annual
decreasing rate of 11.4%, which dropped by 87.5% cumulatively.
At the regional level, the carbon intensity of MCA is the lowest
among the three regions, and the CI of MPA is lower than that
of BA throughout the sample period except for 2007. After 2011,
the CIs in three regions show a trend of convergence.

Analysis of Driving Factors of CI in China’s
Planting
Based on Equation (9), the contribution rate of each component
from 2001 to 2018 can be calculated. Since the economic planning
in China is adjusted every 5 years, we divide the entire study
period into four economic stages: the 10th “Five Year Plan” (FYP)
(2001–2006), 11th FYP (2006–2011), 12th FYP (2011–2016), and
13th FYP (2016–2018). The accumulative contribution rates of
each factor in four economic stages and the whole sample time
are described in Figure 3, respectively.

As we observe in Figure 3, during the entire examined
period (2001–2018), TEFF effect (−83.22%) and OS effect

5For example, 1 kg of fertilizer causes 0.896 kg of CO2, and 1 kg of diesel produces

0.593 kg of CO2, which means that carbon emissions from 1 kg of fertilizer are

equivalent to that of 1.511 kg diesel.
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TABLE 1 | The carbon emission coefficient of major crop farming sources.

Carbon sources Carbon emission coefficient Reference

Fertilizers (E1) 0.896 (δ1:kg CE/kg) Oak Ridge National Laboratory (ORNL)

Pesticides (E2) 4.934 (δ2:kg CE/kg) Oak Ridge National Laboratory (ORNL)

Plastic mulch (E3) 5.180 (δ3:kg CE/kg) Intergovernmental Panel on Climate Change (IPCC)

Irrigation (E4) 20.475 (δ4:kg CE/hm2) Dubey A., Lal R.

Plowing (E5) 312.600 (δ5:kg CE/hm2) Intergovernmental Panel on Climate Change (IPCC)

Diesel (E6) 0.593 (δ6:kg CE/kg) Institute of Resource, Ecosystem, and Environment of Agriculture in Nanjing Agricultural University (IREEA)

FIGURE 1 | Distribution of food production areas in China.

(OS: −27.72%) play the dominant roles in the decline of
CI for planting in China, followed by land-agrochemical
energy substitution effect (–SE: 2.52%), regional effect
(RE: −1.91%), and labor-agrochemical energy substitution
effect (LE: −0.57%), while the TECH (8.52%) shows a
positive effect on changes of CI. We can observe that land-
agrochemical energy SE, LE, CE, and RE have almost negligible
and stable impact on the planting CI in each economic
stage. Thus, the evolutions of TEFF, TECH, and OS at
different economic stages are mainly investigated in the
next section.

As for TEFF, the negative value of its contribution rate
indicates that the improvement of TEFF curbs the increase of
CI. As shown in Figure 3, during the 10th FYP, 11th FYP, 12th
FYP, and 13th FYP, the contribution rate of this factor is −49.01,
−52.78, −28.45, and −2.61%, respectively. This means that the
contribution of TEFF has witnessed a sharp decline since the
12th FYP. The reasons may be that the Chinese government
implemented a series of agricultural support policies during the
10th and the 11th FYP. For instance, in order to stimulate the
inspiration of farmers to cultivate grains, the central government
abolished the agricultural tax and carried out four agricultural
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FIGURE 2 | The variation trend of carbon intensity of China’s planting from 2001 to 2018.

subsidies (seed subsidy, grain direct subsidy, farm-machinery
subsidy, and comprehensive subsidy). These measures affect
farmers’ production decisions and inspire them to use clean
agrochemical energy.

For the OS effect, it has little effect on the change in the CI of
crop farming over the periods of the 10th FYP and 11th FYP (see
Figure 3). However, it gradually promotes the decline of CI since
2011, and upturn as a leading role in the period of 2016–2018.
This result may be explained by the non-grain-planting structure.
As shown in Figure 4, the share of staple crops in the gross output
of planting has declined since 2011, while those of vegetables and
other crops have increased. Since the greenhouse gases (such as
methane) are mainly derived from staple crops (rice, corn, and
wheat), and the carbon sink caused by vegetables, the planting
structure has actually transferred from the high-carbon pattern
to a low-carbon one.

As shown in Figure 3, TECH effect contributes the increase
of CI in the 10th FYP with a rate of 5.89%. This result
implies that the technological progress in China’s planting
promotes the usage of high-carbon input, and thus increases
the CI. This conclusion is contrary to that of previous studies,
which insist that technology improvement in planting cuts
down CO2 emissions. The reasons may be explained by the
“rebound effect” (Thomas and Azevedo, 2013; Ghosh and

Blackhurst, 2014; Zhang et al., 2017; Du et al., 2019). Specifically,
increasing production-oriented technological progress probably
affect the substitution of agrochemical energy and other inputs
(substitution effect) and the actual income of farmers (income
effect) through its impact on prices of agrochemical energy,
which may stimulate famers’ consumption of agrochemical
materials and then boost CI. However, during the 11th FYP,
the 12th FYP, and the 13th FYP periods, the effect of
technological progress in promoting CI gradually weakened. It
can be inferred from this result that technological progress in
planting is gradually shifting toward green. The reason is that
the Chinese government starts to take measures to promote
green agricultural production alleviating the degradation of
agroecosystems. For example, they increase the investment
in green technologies related to soil testing and fertilizer
application, soil pollution control, and precision in agricultural
and ecological recycling technologies.

Heterogeneity of Drivers of Planting CI
Across Regions
As observed in Figure 5, the direction of influence of each
component on CI in every region is similar to that of the whole
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FIGURE 3 | Contribution rate of each driving factor in different periods at national level.

country. However, there are significant differences in the value of
contribution rate of each driver for CI across regions.

As presented in Figure 5A, during the 10th FYP, the
contribution rate of TEFF to the decline of CI in BA is the
highest. The reason for this may be that self-sufficiency of
food is available in BA, whose input allocation is likely to be
primarily through market mechanisms. In contrast, China’s grain
production mainly depends on the MPA, so government support
policies mainly favor this region to ensure national food security.
These excessive policy interventions may enhance the TEFF
of planting, but they also lead to the distortion of the factor
market and the abuse of fertilizers and pesticides. As for OS, its
contribution to the drop of CI in MCA is the highest among
three regions. The potential reason lies in that the MCA includes
Beijing, Tianjin, Shanghai, Zhejiang, Fujian, Guangdong, and
Hainan, in which there are a small number of commercial crops.
The planting OS in this area is constant. However, in MPA
and MCA, periodic oversupply of food and other agricultural
products may result in an uncoordinated OS.

As shown in Figure 5B, in the 11th FYP, the role of TEFF
in the decrease of CI is similar to that in the 10th FYP no
matter what the region is. The steady implementation of the
agricultural policies and the government’s efforts to stabilize
grain production may result in this result. Differing from the
TEFF, the contribution rates of OS to the falling of CI of BA

and MPA are more than that of MCA. The outline of the
11th proposed to optimize the layout of agricultural production,
promote the industrialization of agriculture, and adjust the
structure of grain production. Moreover, these measures were
primarily implemented in BA and MPA, which may lead to the
rationalization of the agricultural structure.

During the 12th FYP, the TEFF contribution rate inMPA is the
smallest among the three regions (see Figure 5C). The potential
reasons for these results may be the simultaneous increase of
three quantities in food production. China has been in a situation
of grain supply shortage for a long time in the past, so it has been
pursuing an increase in grain production. However, domestic
agricultural production costs are still on an upward trajectory
in this period. Since 2015, with rising land rent, labor costs,
and machinery operating costs, there has been a “triple increase”
in grain production, stocks, and imports. It may lead to the
low TEFF of the planting in MAP. However, for OS in MPA,
its contribution is stronger than other regions. The probable
reason lies in the supply-side structural reform of agriculture of
China, which proposed to remove capacity, reduce costs, and
make up for shortcomings in the agricultural sector through
structural adjustment.

As depicted in Figure 5D, the contribution rates of the
TEFF effect in BA, MPA, and MCA are −12.60, −2.88,
and 29.86% in the 13th FYP period, respectively. This result
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FIGURE 4 | Changes in the output structure of China’s crop industry (2001–2018).

may derive from the “reform plan for establishing a green-
ecology-oriented agricultural subsidy system” promulgated by
the Chinese government in 2016. Accordingly, seed subsidy,
grain direct subsidy, and comprehensive subsidy were combined
into subsidies for arable land protection and moderate-scale
operation. These measures may promote the amelioration of
TEFF in BA and MPA. With respect to the OS effect, its
contribution rates in BA, MPA, and MCA are −19.55, −8.64,
and−29.65%, respectively. It may be related to the National Plan
for the Structural Adjustment of the Plantation Industry (2016–
2020) issued by the Ministry of Agriculture on April 28, 2016,
which specified the tasks for the structural adjustment of the
planting. In particular, it includes building a variety structure that
adapts to market demand, a regional structure with coordinated
production and ecology, and a farming system that combines
land use and land raising. In terms of variety structure, the
plan proposes that priority be given to developing high-quality

agricultural products such as high-protein soybeans and actively
developing special processing varieties like high-starch potatoes.

CONCLUSIONS AND POLICY
IMPLICATIONS

With the dual pressures of food supply and carbon reduction,
the CO2 intensity of China’s planting has gradually become a key
indicator in the effort of the agricultural sector to curb emissions.
Incorporating PDA into the LMDI, this paper conducts a
comprehensive framework to simultaneously explore the impact
of both technological and structural effects on changes in China’s
planting carbon intensity. Based on this developed framework,
the variations of crop farming CI are decomposed into TEFF
effect, OS effect, TECH effect, land-agrochemical energy ratio,
labor-agrochemical energy ratio, regional effect, and emission
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FIGURE 5 | Decomposition results in three regions at different periods. (A) 2001–2006, (B) 2006–2011, (C) 2011–2016, and (D) 2016–2018.
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coefficient effect. Moreover, the contribution rate of each factor
for the agricultural sector for 31 provinces in China from 2001 to
2018 has been evaluated and analyzed, respectively.

The results indicate that China’s planting carbon intensity has
witnessed a continuous decline. Examining the sources of the
CO2 intensity decrease of planting, we find that TEFF effect
plays a dominant role whether at the national or regional level,
followed by the OS effect. In contrast, TECH effect promotes
the growth of CI. Analysis of regional differences demonstrates
the following: (1) During the whole observed period, the TEFF
component in BA and MPA shows a larger contribution for
the decline of CI than that of MCA. (2) With respect to the
OS effect, it presents the greatest contribution for the decline
of CI in MCA, and the effect is relatively weak in BA and
MPA. (3) Nevertheless, the positive effects of TECH on CI
changes almost have no differences among three regions. (4)
The contribution rate of each factor is relatively unstable across
regions and economic stages due to the frequent implementation
of agricultural support policies.

Based on the conclusions drawn from the above analysis,
some valuable policy implications can be put forward for the
Ministry of Agricultural and Rural Affairs of China in low-carbon
development of planting industry. At first, considering that TEFF
effect plays a major role in prompting China’s planting carbon
intensity decline, future policy should continue to optimize
the allocation of agricultural resources. Especially the BA and
MPA may proceed to control the excessive inputs of fertilizers
and pesticides and promote land transfer for achievement
of a moderate planting operation scale. Secondly, since the
adjustment of the planting OS is conducive to falling of CI,
cultivate new crop varieties with high yield and low carbon
emissions in the future. Thirdly, because the TECHs played a
positive role in the alteration of CI, it is urgent to increase
the investment in green technologies related to soil testing and
fertilizer application, soil pollution control, and precision in
agricultural and ecological recycling technologies.

This paper does not decompose the CI of various
crops at the provincial level due to the availability of

data. Hence, the decomposition and analysis of regional
heterogeneity results can be more precise in future works.
Moreover, the method of calculating the total carbon
emissions in the agricultural sector is controversial, and
this paper just adopted the common practice of existing
research, which did not take the carbon sink of planting
into consideration. It is therefore worthwhile to improve
the measurement.
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