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It is important to quantify changes in the local meteorological observational environment

(MOE) around weather stations if we are to obtain accurate assessments of the regional

warming of the surface air temperature (SAT) in relation to urbanization bias. Current

studies often use two-dimensional parameters (e.g., the land surface temperature, land

use/land cover and the normalized difference vegetation index) to characterize the

local MOE. Most of the existing models of the relationship between urbanization bias

in SAT series and MOE parameters are linear regression models, which ignore the

non-linear driving effect of MOE changes on SAT series. By contrast, there is a lack

of three-dimensional parameters in the characterization of the morphological features

of the MOE. Changes in the MOE related to urbanization lead to uncertainties in the

contribution of SAT series on different scales and we need to introduce vertical structure

indexes to enrich the three-dimensional spatial morphology of MOE parameters. The

non-linear response of urbanization bias in SAT series to three-dimensional changes in

the MOE and its scale dependence should be explored by coupling computational fluid

dynamics model simulations with machine learning.

Keywords: meteorological observational environment, urbanization bias, regional warming, scale dependency,

spatial morphology

INTRODUCTION

The meteorological observational environment (MOE) around weather stations is fundamental
to the accurate and continuous recording of the meteorological elements used for disaster
prevention and mitigation, economic development, public health decision-making and climate
change adaptation (Ren et al., 2007, 2015; Luo and Lau, 2018, 2019; Zheng et al., 2021).
The MOE of stations changes with rapid urbanization, which leads to inhomogeneities in the
surface air temperature (SAT) series (Li, 2011; Yan et al., 2014; Cao et al., 2016; Du et al.,
2020). For example, local changes in the microclimate immediately surrounding the thermometer
shelter mean that the temperature records of poorly exposed stations are likely to contain non-
climate biases that are not representative of the climate in the surrounding area (Davey and
Pielke, 2005; Yilmaz et al., 2008). We refer to these non-climate biases as urbanization bias
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(Zhang, 2009; Connolly and Connolly, 2014). Urbanization bias
has become an important cause of systematic bias in the SAT
in China, leading to uncertainties in regional and even global
climate change predictions (Mahmood et al., 2006; Ren et al.,
2017; Tysa et al., 2019; Wen et al., 2019). Quantitative analysis
of the effects of environmental change on urbanization bias
in the SAT is fundamental work at the forefront of climate
change research.

According to the World Meteorological Organization, the
observational biases caused by changes and disruptions in the
MOE are usually greater than instrumental errors and may even
completely drown out signals of climate change (Watts, 2009).
The impact of changes in the local MOE related to urbanization
bias on the SAT should therefore be quantified in large-scale
studies of climate change (Brohan et al., 2006; Zhang, 2009;
Soon et al., 2018). The spatial morphological characteristics of
the MOE around a weather station are important in driving
urbanization bias in the SAT (Erell et al., 2011; Shi et al., 2021).
Previous studies have attempted to quantify the contribution of
this urbanization bias to regional warming by using the results
from surface stations (Jones et al., 2007; Menne et al., 2010; Ren
et al., 2010a; Fall et al., 2011; Stewart and Oke, 2012; Estoque
et al., 2017; Scarano and Mancini, 2017), although this is still
controversial as a result of uncertainties in quantifying the impact
of the MOE on urbanization bias.

This paper summarizes and reviews recent progress in the
characterization of the spatial morphology of the MOE, the
relationship between changes in the MOE and the urbanization
bias in SAT series, and considers future research directions.

RESEARCH PROGRESS ON THE
CHARACTERIZATION OF THE SPATIAL
MORPHOLOGY OF THE MOE

An undisturbed MOE with long-term stability is required to
obtain valuable, continuous, uniform and accurate observational
data. Quantitative representation of the spatial morphology of the
local MOE around weather stations is an important prerequisite
in studies of urbanization bias. Figure 1 shows that weather
stations are usually sited far away from cities in the early stages
of station construction and therefore their observed temperature
series represents the local climate background (Figure 1A).
The representation of the MOE continues to be damaged as
urban sprawl encroaches the weather station (Figure 1B). The
thermal properties of the underlying surface are changed by the
addition of impervious surfaces and buildings around the station
(Figure 1B) and the built-up area warms faster than the natural
underlying surface under the same amount of solar radiation
(Ren, 2015; Yang and Bou-Zeid, 2019).

Further, we take the Hefei station in eastern China as an
example to discuss the changes of MOE from 1979 to 2018.
Figure 2 gives the distribution of land use within the 20-km
buffer zone around the center of Hefei (Shi et al., 2021). In the
last 40 years, the built-up area within 20 km of Hefei in 2018 is
about 20 times larger than that in 1979, leading to the continuous
deterioration of MOE. In 1979, the Hefei station was relocated

FIGURE 1 | Schematic diagram of urbanization-induced changes in the local

MOE. (A) Rural environment and (B) environment affected by urban sprawl.

to the outskirts of the city (Figure 2A). As time went by, the
residential and industrial land around the observation site was
increasing, and by 1998 the urban sprawl had affected the MOE
of Hefei station (Figure 2C). As a result, the site was relocated to
the suburban area in 2004 (Figure 2D). 2018, when the MOE of
the site was again destroyed (Figure 2F).

In addition, anthropogenic heat released from boilers, air
conditioners and motor vehicles within the city is transferred
via the urban boundary layer (Zhang et al., 2016, 2021; Yang
et al., 2020a). The pollutants emitted exacerbate the urban
heat island effect at night through the interaction of aerosols
with solar radiation (Zheng et al., 2018). Greater air pollution
can generate more intense nocturnal heat islands, for example,
Yang et al. (2020b) suggested that the UHII at the time of
daily maximum/minimum temperature (UHIImax/UHIImin)
exhibits a decreasing/increasing tendency as PM2.5 concentration
increases, causing a continuous decrease in the diurnal
temperature range (DTR), and these effects are mediated via
aerosol-radiation interaction (aerosol-cloud interaction) under
clear-sky (cloudy) condition.

Characterization Indexes of the
Two-Dimensional Morphology of the MOE
Microclimate observation networks and high-density automated
meteorological observation networks have been used to study the
changing characteristics of meteorological observation sequences
and to analyze the extent to which the MOE is affected by
urbanization (Stewart and Oke, 2012; Liu et al., 2013). However,
these methods are not suitable for large-scale use as a result of
their high impact on natural conditions and social activities and
the relatively high cost of construction and maintenance. The
use of satellite data to study the representation of the MOE has
become more common with the rapid development of remote
sensing technology (Ren et al., 2010b; Ren and Ren, 2011; Yang
et al., 2013; Li Y. et al., 2015; Shi et al., 2015, 2021). Satellite
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FIGURE 2 | Land use of Hefei city in the 20-km buffer zone and the location of Hefei station: (A) 1979; (B) 1987; (C) 1998; (D) 2004; (E) 2009; (F) 2018 (this figure

was cited from Shi et al., 2021).

remote sensing data cover a wide area and are periodic; they can
therefore provide multi-temporal and large-scale information for
the study of dynamic changes in the MOE. Computer image
processing and pattern recognition technology can be used to
effectively reproduce historical information about environmental
changes, such as land use/cover types around a weather station
(Yang et al., 2013; Zhang, 2014; Li Y. et al., 2015; Shi et al., 2021).

Many studies have used horizontal parameters [e.g., the
land surface temperature (LST), land use/land cover (LULC),
impervious surface area (ISA), the normalized difference
vegetation index and the night-time light intensity] in the remote
sensing monitoring and simulation of the MOE (Gallo et al.,
1993; Imhoff et al., 1997, 2010; Schneider et al., 2009; Yang et al.,
2011b,c, 2013; Yang X. et al., 2019; Li et al., 2021; Yu et al., 2021).
For instance, Yang et al. (2011a) classified the urban and rural
types of stations in different buffer areas by using night light
intensity data in eastern China. Li Y. et al. (2015) found that
stations can be regarded as rural type when the area ratio of the
high-temperature in the 2-km buffer zone is <30%. Luo and Lau
(2019) used land use/land cover to classify stations as urban and
rural types to explore the urban dry island effect. In addition,
a strong positive correlation between percentage of ISA and
LST suggests that percentage of ISA can quantitatively describe

the spatial distribution and temporal variation of urban thermal
patterns/and associated LULC and UHI intensity changes (Weng
et al., 2011; Zhang et al., 2019).

The anthropogenic heat flux is closely related to changes in
the built-up area around stations (Yang X. et al., 2019; Yang
et al., 2020a; Chen G. et al., 2021; Zhang et al., 2021) and can
reliably reflect the effects of both anthropogenic emissions and
changes in land use related to the latent heat flux and the sensible
heat flux. A characterization system of the MOE (the surface
thermal environment class and the anthropogenic heat flux)
centered on the thermal environment around a station has been
developed based on remote sensing images and geographical
information systems technology (Shi et al., 2015; Yang X. et al.,
2019; Yang et al., 2020a,b; Zhang et al., 2021). This system solves
the problem of the quantitative characterization of the influence
of anthropogenic heat emissions on the SAT series under the
effects of turbulent and horizontal advection.

However, the two-dimensional morphological indexes are
limited to a single scientific discipline, which may not completely
characterize the MOE and its impacts on observation. For
example, in 2013, the national meteorological observational
station in Anqing was surrounded by a high-density built-up area
(Figure 3A), and the built-up area ratio within a of 5-km radius
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FIGURE 3 | (A) Changes in the MOE before and after the relocation of Anqing station in 2013, (B) difference in daily-averaged surface air temperature between new

and old location (SATDON) of Anqing station in 2013.

buffer zone around station can reach 71.3%. Anqing station was
therefore moved 12.5 km to the northwest of the old station, with
an elevation difference of 6.0m. Within a radius of 5 km, the
proportion of buildings around the station decreased to 15.4%,
and the MOE assessment score increased from 75 to 95 (MOE
assessment conducted by the meteorological administration can
be scored by 0–100, the high the score is, the better the MOE
is). However, when comparing the synchronous observational
data, we found that the daily average temperature of the new
station was higher than that of the old station for 348 days
after relocation and the annual average temperature was 0.76◦C
higher than that of the old station with a warming of 4.4%
(Figure 3B). According to the current remote sensing assessment
method, the MOE of the relocated Anqing station is greatly
improved, but the SAT series is more significantly influenced
by urbanization. Although the urban area within the MOE was
significantly reduced after relocation, the new buildings to the
east and northwest of the station were much taller than the old
buildings. The structural layout of the planting, water bodies and
buildings around the old station was well planned and effectively

mitigated the impact of urbanization on the thermal environment
around the station.

Three-Dimensional Morphological Index
System for the MOE
The spatial morphology within the MOE can be divided
into horizontal and vertical morphologies, where the vertical
morphology is characterized using indexes related to the heights
of buildings (Shi et al., 2021).

The vertical geometry of buildings has a much greater
impact on the local microclimate than other factors (Oke, 2004).
Changes in the three-dimensional MOE, which consists of the
horizontal structure and vertical morphology of buildings, may
have a pronounced effect on both the SAT series and high-
temperature heat wave events (Luo and Lau, 2018; Ngarambe
et al., 2020; Zong et al., 2021). Tian et al. (2019) showed that
the ratio of vegetation to building volume showed a significant
negative correlation with temperature. The sprawl of urban
buildings within the vertical space around a station affects the
surface energy balance and air flow on the local scale, leading
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to changes in the thermal environment (Wang et al., 2016).
Particularly, the multi-reflections of sunlight among high-rise
buildings are important as well to capture more solar radiation,
which significantly increase the absorptivity of heat in the urban
canopy to warm the urban (Ren, 2015), especially in the heat wave
periods (Zong et al., 2021). Stewart and Oke (2012) defined the
concept of a local climate zone using characteristic parameters
(e.g., the sky view coefficient, the aspect ratio and the average
building height). This is mainly applicable to urban heat island
studies at large scales (Yang Y. et al., 2019; Zhang et al., 2019),
whereas the micro-scale MOE cannot be finely depicted by a
separate local climate zone unit.

Existing methods for three-dimensional morphological
assessment of MOE are at an early stage and can not be ignored
(Voogt and Oke, 2004; Davis et al., 2016; Zong et al., 2021).
For instance, Davis et al. (2016) investigated the effect of three-
dimensional morphology on nighttime air temperature at five
spatial scales and found that building volume had the strongest
ability to explain air temperature change within a 100m radius
from the meteorological stations. With the development of
remote sensing and LiDAR technology, it is no longer difficult
to obtain quantitative information on the vertical structure or
height of the urban canopy (Amfield, 2003; Berger et al., 2013;
Freitas et al., 2015; Yan et al., 2015; Jamei et al., 2016), which
provides an important technical support for us to enrich and
improve the three-dimensional morphological characterization
index system of the MOE.

INFLUENCE OF SPATIAL PATTERNS OF
THE MOE ON URBANIZATION BIAS IN SAT
SERIES

The rapid urbanization seen in recent years has meant that
many meteorological stations previously located on the outskirts
of cities with good observational environments have gradually
moved into urban centers or are now surrounded by built-
up areas. This has created biases in the SAT series, which
cannot be ignored to regional warming in China (Ren et al.,
2017). Other possible factors affecting the variation of SAT
series mainly include station relocation, instrument height
change, upgraded observation instrument, observation time and
frequency changes, statistical method change, and so on (Xu et al.,
2013; Yan et al., 2014; Li L. et al., 2015; Soon et al., 2018; Shi et al.,
2021).

Station Relocation, Observational
Environment Change and Inhomogeneity in
Urbanization Context
Station relocation significantly influence on observational
environment change. Taking Hefei station in eastern China as
example (Shi et al., 2021), due to the process of urbanization
in recent years, Hefei station had been completely surrounded
by built-up land before relocation, and the observational
environment score of Hefei Station was only 63.2. Hefei station
was relocated in 2018, which moved 30.2 km to the northwest
of the old site, with an altitude difference of 6.0m. The

observation environment of Hefei station greatly improved, and
the score increased to 99.3. As a result, it is obvious different
that MOE factors (including land-use parameters, landscape
parameters and geometric parameters) between the old and
the new stations in the 5-km buffer zone (Shi et al., 2021).
For instance, after relocation, area ration of built-up decreased
from 42.17 to 4.23%; the mean fractal dimension of built-up
declined to a certain extent; and distance between the station
and the gravity center of various land of built-up increased from
0.53 km to 3.13 km.

Previous studies have shown that the errors caused by
MOE changes and destructions are usually greater than the
instrumental observation errors, which can completely submerge
the signal of climate change (Gallo et al., 1996; Peterson, 2003;
Vose and Menne, 2004; Soon et al., 2018; Zhang et al., 2021).
For example, Peterson (2003) proposed that the micro-scale
and local-scale environments have greater influence on the
observation data of stations than the meso-scale environments.
Taking temperature observation as an example, the local
environment within a few hundred meters of the observation
station will form an unusual “microclimate,” which cannot
represent the environmental climate of the background area
in which it is located. For another example, tall buildings and
trees near the station will reduce sunlight, radiation and wind,
and the temperature measured by the temperature station on
the asphalt pavement will be higher than that on the soil
and grass. Therefore, the temperature records of “hidden” sites
with poor exposure include non-climatic biases caused by local
“microclimate” changes, namely siting biases or inadequate
station exposure biases (Connolly and Connolly, 2014). This kind
of siting bias is a bit different from urbanization bias. That is,
urbanization bias can impact the local climate in a wide range,
while siting bias are strictly represented by the local microclimate
in the area near the site. Similarly, both biases can be produced
through regional modernization and urbanization. Therefore,
these two biases can occur independently. For example, an urban
site with a significant urbanization bias may have a good degree
of environmental exposure, while a rural site that is not affected
by the urbanization bias may have a siting bias due to insufficient
environmental exposure (Davey and Pielke, 2005; Menne et al.,
2010; Ren et al., 2015; Zhang et al., 2021). It can be seen
that changes in meteorological elements are not only extremely
sensitive to local MOE changes around the station but also to
urbanization bias.

Generally speaking, in the past 30 years, with the rapid
economy development and urbanization in China, MOE
of national meteorological stations in mainland China has
been seriously damaged, and a large number of stations
have been forcedly and frequently relocated. Although the
relocation of stations has improved the regional representation
of meteorological observations, it has made the issue of non-
uniformity of climate data in China increasingly prominent (Li
et al., 2004, 2009; Yang et al., 2013; Yan et al., 2014). Therefore, the
meteorological observation data adjusted by the homogenization
should be employed to accurately reveal the facts of regional
climate change in China (Li L. et al., 2015; Cao et al., 2016; Ren
et al., 2017; Li et al., 2020).
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TABLE 1 | Calculation results of urbanization bias of Hefei station based on the traditional linear trend method (cited from Shi et al., 2021).

Year Observed temperature (◦C) Urban bias (◦C) Temperature after correction (◦C) Ratio of built-up area (%) GDP (100 millions of USD)

1979 16.1236 0.1694 15.9542 18 –

1987 15.7956 0.2211 15.5745 20 –

1998 17.1285 0.2925 16.8360 25 42.30

2004 16.6333 0.3320 16.3013 28 92.23

2009 16.7197 0.3644 16.3553 53 328.77

2018 17.0615 0.4225 16.6390 92 1223.50

Detection and Revision of Urbanization
Bias
Current research on urbanization bias has focused on the
detection and revision of inhomogeneities in the SAT series
(Hansen et al., 2001; Fujibe, 2009; Xu et al., 2013; Yan et al., 2014;
Li Q. et al., 2015). The reference station comparison method is
often used to calculate urbanization bias. This method is used
to select target stations and their surrounding reference stations
for comparative analysis and uses the difference between them
to characterize the degree of homogeneity of the SAT series
affected by urbanization (Stewart and Oke, 2012; Liu et al., 2013).
Fujibe (2009) divided the meteorological stations in Japan into
six categories in terms of the population density within a certain
radius around city stations and corrected the urbanization bias
at the sites in the third to sixth categories using the first and
second types of station as reference stations. Hansen et al. (2001)
assumed a linear increase in urbanization warming over two time
periods and then used this linear trend to revise the urbanization
bias in the SAT series. Wen et al. (2019) used the difference in
the SAT series trends between urban and reference stations as the
total revised value and then divided this by the number of years in
the time series to obtain the multi-year average urbanization bias.

However, the technical solutions for studying urbanization
bias are not yet complete as a result of a lack of in-depth analysis
of the drivers (Shi et al., 2021). Many studies have utilized the
population density or city size as the criteria for classifying
meteorological stations to explore urbanization bias (Bai and
Ren, 2006; Liu, 2006; Ren et al., 2017; Soon et al., 2018), for
example, Bai and Ren (2006) chose meteorological stations in a
city with a population of more than 100,000 as urban stations,
but Liu (2006) divided the stations in city with a population of
more than 40,000 and the stations that were not described as
“rural” into urban stations. In fact, it is difficult to find a pure
reference station near the urban station as reference stations
are inevitably affected by urbanization, especially in high-density
urban agglomeration areas (Chao et al., 2020; Yang et al., 2020a),
so the urbanization bias in the SAT series exhibit minimum
estimation (Wen et al., 2019). In addition, some studies corrected
SAT series based on the assumption that the urbanization bias
increases linearly year on year (Hansen et al., 2001; Shi et al.,
2021). However, the urbanization process at different times and
in different regions is variable, so it is impossible to subdivide
the specific degree of contribution of the urbanization bias to the
SAT series on temporal and spatial scales. In particular, there are
considerable differences in the mechanisms and magnitudes of

the impact of urbanization on different temperature elements (Li
et al., 2014) insofar as, despite the possibly limited contribution to
regional warming (Chao et al., 2020), the impact of urbanization
on extreme temperatures can usually be very large (Li andHuang,
2013; Li et al., 2014; Yang et al., 2017).

Table 1 shows that Hefei city developed relatively slowly
before 2004, whereas the total GDP increased by $4.23 billion
during the time period 2004–2018, with an average annual
growth rate of 81.77%, ranking first in the economic growth rate
of the Yangtze River Delta region. The proportion of built-up
land around the station increased significantly after 2004, but
the results obtained from traditional research methods show that
the urbanization bias of Hefei station has remained consistent
over the last three decades (multi-year average 0.0651◦C/decade).
The assumption that the urbanization bias increases linearly from
year to year in the traditional approach is therefore questionable
(Shi et al., 2021) and the contribution of the urbanization bias
to the SAT series cannot be finely quantified in time and space.
In addition, with urban sprawl, rural stations in suburban areas
will also be gradually affected by urbanization and there is
much uncertainty about whether rural reference stations can
continuously represent the climate background of the area in
which urban stations are located (Wang et al., 1990; Portman,
1993; Soon et al., 2018). This will require a lot of time and effort
for the dynamic monitoring and evaluation of reference stations.

Drivers of the Spatial Morphology of the
MOE on Urbanization Bias in SAT Series
Current research methods on the relationship between the three-
dimensional morphology and surface air temperature series are
divided into two main categories (i.e., statistical modeling and
numerical modeling).

Statistical modeling method includes correlation analysis
and regression equations, where the independent variable is
the morphological parameter and the dependent variable is
the temperature series obtained from station observations. For
instance, by using remote sensing technology, spatial datasets of
land-use, landscape and geometric parameters of the underlying
surface in the 5-km buffer zone around the station were
established as the MOE factors, and the differences in these
MOE factors (DOEFs) between the old and the new stations
were calculated to indicate the change induced by urbanization
(Shi et al., 2021). Then, multiple linear regression models of
differences in site-relocation SAT series between the old and
the new stations and DOEFs can be constructed, which could
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reveal clear contributions of the rapid and slow stages of
the urbanization process and resultant environmental changes
around the stations to the observed SAT (Shi et al., 2021).
However, in reality, it is usually neglected that the complex non-
linear driving effect of the influencing factors on the SAT series
(Shashua and Hoffman, 2000). For instance, the shading effect of
buildings within the micro-scale area of the station during the
day may result in a lower SAT series than for stations with an
open topography, whereas the longwave radiation from buildings
at night may result in a higher SAT series (Liu et al., 2018).
Wang et al. (2019) conducted a correlation analysis between
information about obstacles within the MOE and the SAT series
and showed that the spatial morphology of the MOE has a more
complex and non-simple linear relationship with the SAT. These
studies show that it is not possible to finely quantify the effects of
the three-dimensional morphology of the MOE on urbanization
bias through linear statistics.

Another approach is numerical modeling, in which numerical
simulations are used to study the impact of changes in the MOE
caused by urbanization on the meteorological observational
elements (Zhang et al., 2002, 2016; Liu and Zhou, 2007; Yang
et al., 2016; Chen, 2021; Chen G. et al., 2021; Yu et al.,
2021). The simulations include physical equations and the
laws of atmospheric radiation related to energy and mass and
therefore explain the changes in terms of the mechanism of
influence. These models are often used for scenario simulation—
that is, different three-dimensional morphological scenarios are
set and the climate parameters in each scenario are obtained
by numerical model simulation. The impact of the three-
dimensional morphology on the microclimate is then obtained
by comparing the simulation results. Common numerical models
include energy consumption models and regionalized models,
such as the Weather Forecasting and Research, ENVI-met,
computational fluid dynamics and EnergyPlus models (Liang
et al., 2018). The simulation results often lack validation by
fine-resolution observations.

Scale Dependence of the Response of the
SAT Series to Changes in the MOE
An appropriate buffer scale is essential for studying the
relationship between the SAT series and the three-dimensional
morphological characteristics of the MOE. The contribution
of the observational bias caused by environmental damage in
the surrounding area to the regional climate change signal has
large uncertainties at different scales. For example, Gallo et al.
(1996) studied the effect of nine land cover types within three
scaled buffers (circles with radii of 100, 1,000 and 10,000m)
around stations on the diurnal temperature range and concluded
that urban land use types have a large effect on the local
temperature. Peterson (2003) suggested that the micro-scale and
local-scale environments have a greater impact on observations
of meteorological elements than meso-scale environments. In
eastern China, rapidly increasing urban sprawl impacted on the
MOE, showing that the maximum range of influence affecting
observational data under advection and turbulence transport

conditions does not usually exceed 5 km (Ren and Ren, 2011;
Tysa et al., 2019; Yang et al., 2020a; Zhang et al., 2021).

In the case of the SAT series, the local environment within
a few hundred meters of stations can create an unusual
microclimate that is not representative of the climate background
of the region in which it is located. Other examples are nearby
trees reducing the amount of sunlight and wind and stations
located on asphalt roads observing a higher SAT than those
located on soil and grass. It is therefore crucial to determine the
sensitive area of the MOE around a station (Gallo et al., 1996;
Peterson, 2003; Ren et al., 2010b; Stewart and Oke, 2012; Yang
et al., 2013; Li Y. et al., 2015). Different response relationships
are seen between the local microclimate and the urban spatial
morphology at different scales (Chun and Guldmann, 2014;
Chen et al., 2020), which may be related to the physical
characteristics of the MOE (e.g., the block size, building density
or infrastructure) and the background climate (Oke, 2004; Qian
et al., 2018).While for regional-scale urbanization context, taking
the Guangdong-Hong Kong-Macau region (GHMR) as case
study, recent study show that the warming due to urbanization
tends to be smaller as the spatial scale increases: the contribution
to the local warming can reach as high as 50% in the metropolis,
remains high (∼25%) in GBA, and decreases to about 10% in
GHMR (Chao et al., 2020). A lack of in-depth consideration
of the dependence on spatial scale increases the uncertainty in
the impact of changes in the MOE on the urbanization bias in
SAT series.

DISCUSSION

Two important scientific questions need to be addressed in
current researches on the effects of changes in the MOE on
urbanization bias: (1) how can we improve the characterization
indexes of three-dimensional spatial morphology of MOE; and
(2) how can we analyze the non-linear response of urbanization
bias to the three-dimensional spatial morphology of the MOE
and its scale dependence?

Characterization Indexes of
Three-Dimensional Morphology of the
MOE
Most studies only use the horizontal parameters of the MOE
in remote sensing assessments and lack in-depth research on
the internal structural layout. Landscape patterns (Figure 4) can
be used to explore the relationship between structural land use
layout and the local microclimate (Zhang et al., 2009; Meng et al.,
2010; Estoque et al., 2017). For example, Meng et al. (2010)
explored the thermal environmental effects of park landscape
patches and road landscape corridors through landscape patch
characterization. Ren (2015) used landscape metrics to analyze
the configurations of urban vegetation to obtain the relationship
between urban landscape distribution and the SAT. Tysa et al.
(2019) showed that the effect of urbanization on the SAT series
is closely related to the distance of the stations from the center
of urban buildings. In general, the landscape pattern index,
mainly including the largest patch index (LPI) and the mean
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FIGURE 4 | Schematic diagram of urban landscape patterns around weather stations (cited from Shi et al., 2021).

fractal dimension, can fully consider the respective types, shapes,
sizes, quantities and spatial combinations of different land uses,
such as the perimeter–area ratios, the landscape shape indices,
edge and patch densities, fragmentation and fractal dimensions.
The larger the LPI value, the more obvious the advantage of
this type of patch in the overall landscape. For an example of
case studies in Hefei, the correlations between the changed air
temperatures and the LPIs of built-up and water were 0.66 and
−0.503, respectively, passing the 0.05-level significance test (Shi
et al., 2021). These two landscape pattern indexes are important
input variables for multiple linear regression models of the
urbanization bias simulations in case studies of Hefei, and the
error range of the model for simulated temperature difference
related to MOE change was 7.01–18.37% with an average of
12.28% (Shi et al., 2021). Therefore, the introduction of the
landscape pattern index can enrich the indexes in remote sensing
studies of the MOE and quantify the degree of response of each
meteorological element to the configuration structure of different
land use types.

The impact of urban sprawl on the MOE is not only reflected
horizontally, but also vertically as an important part of the spatial
structure (Figure 5). Indexes such as the sky visual factor (SVF),
the block height to width ratio (BHWR), the floor area ratio
(FAR), and Vegetation volume to building volume (VV2BV) are
often used to depict vertical morphology within cities (Figure 5),
which are expected to provide scientific assessments for the MOE
changes and their effects on urban thermal environments (Chen
G. et al., 2021; Chen X. et al., 2021). In detail, the SVF is the
ratio of the area of sky visible at a fixed point on the surface
to the total visible area (Oke et al., 1991) and the BHWR is
defined as the ratio between the average building height within
a street canyon and the width of the canyon (Oke, 1988). FAR
and SVF are two important parameters for characterizing the
geometry, density and heat balance of urban areas, in addition to
generating and controlling the heat island effect (Svensson, 2004;
Chen et al., 2020; Chen G. et al., 2021). The BHWR and VV2BV
are two important indicators for characterizing the microscopic
three-dimensional morphology and play key roles in radiation
balance and outdoor thermal environment studies (Shashua and
Hoffman, 2000; Chen, 2021).

The subsurface metadata of buildings, trees, roads and water
bodies in the station buffer zone that affect the MOE can be
established by field measurements and remote sensing, allowing
us to retrieve parameters (e.g., the anthropogenic heat flux,
land surface temperature and enhanced vegetation index) in the
area around the station. Landscape pattern software (Fragstats)
can be used to calculate the maximum number of patches, the
average fractal dimension, the sprawl index and the distance from
the station to the urban center for the land types around the
station, reflecting the geographical characteristics and patterns
of different land use types. For three-dimensional information
about the MOE (Figure 6), the software can automatically read
online map information and visual interpretations of high-
resolution remote sensing images to obtain building height
information. The software can then calculate the regional volume
ratio around the station, the SVF, the BHWR and other urban
vertical morphology parameters, extracting the characterization
index system of the three-dimensional morphology of the MOE
(Figure 6).

Non-linear Response of Urbanization Bias
to the Three-Dimensional Morphology of
the MOE and Its Scale Dependence
With the continuous development of high-performance
computers and numerical simulation algorithms, researchers
have increasingly used numerical modeling techniques to
simulate the characteristics of urban climates (Zhang et al.,
2002, 2016; Li L. et al., 2015; Li et al., 2016; Yu et al., 2021).
This provides new ideas and methods to explore how the MOE
is influenced by urbanization (You et al., 2014). An accurate
description of the three-dimensional morphology of the MOE
can provide effective subsurface information and boundary
conditions for numerical simulations, which, in turn, can verify
the accuracy of the remote sensing assessment of the MOE.

The Weather Research and Forecasting model has a
comprehensive physical scheme to describe various complex
climate phenomena and can analyze the climate characteristics
of cities at the local scale. This model can propose policy
recommendations and improvement strategies for urban
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FIGURE 5 | Schematic diagram of the vertical morphology of the MOE around a weather station.

FIGURE 6 | Indexes used to characterize the three-dimensional morphology of the MOE at the local scale. AH, anthropogenic heat; LST, land surface temperature;

LUCC, land use and cover change; SVF, sky visual factor; BHWR, block height to width ratio; FAR, floor area ration; VV2BV, vegetation volume to building volume;

CONTAG, contagion index; LPI, largest patch index; FRAC_MN, mean fractal dimension.

construction, planning and management (Zhang et al., 2002; Fei
et al., 2011). Computational fluid dynamics can quantitatively
calculate the distribution of physical quantities (e.g., temperature
and wind) at various points in space in a microscale open
atmosphere and can describe in detail the characteristics of
urban spatial patterns, building information and data on

anthropogenic heat production, providing a powerful tool for
understanding and evaluating microscale climate characteristics
(Shao et al., 2012; You et al., 2014; Chen et al., 2020). In the
future, the WRF model could be coupled with computational
fluid dynamics models to obtain accurate information about
meteorological elements from the large-scale circulation and the

Frontiers in Climate | www.frontiersin.org 9 January 2022 | Volume 3 | Article 781999

https://www.frontiersin.org/journals/climate
https://www.frontiersin.org
https://www.frontiersin.org/journals/climate#articles


Shi et al. Urbanization Bias in SAT

energy balance on the mesoscale; computational fluid dynamics
could be used to finely describe the influence of the complex
underlying surface on the SAT series (Li L. et al., 2015; Nelson
et al., 2016).

Statistical modeling is also an important method of studying
the drivers of urbanization bias at different scales. The random
forest algorithm is a natural non-linearmodelingmethod suitable
for analyzing complex datasets with a large number of unknown
features. This method can be used to predict and analyze the
intrinsic association of variables and to perform importance
and local dependence analysis of independent variables (Genuer,
2010). The random forest algorithm is widely used in fitting
complex problems and to factor importance measures, especially
for simulations of changes in land use and urban morphological
expansion (Ghosh et al., 2014; Feng et al., 2015). Machine
learning methods could be used in the future to analyze the
influence of three-dimensional morphological changes of the
MOE on urbanization bias and its scale dependence.

SUMMARY

In the context of the current rapid increase in urbanization,
studies of the impact of changes in the MOE on the urbanization
bias in SAT series are of great scientific significance inmonitoring
regional and global climate change. These studies can also meet
practical operational needs, such as the detection and revision
of the asymptotic inhomogeneity of meteorological data, the
standardized preparation of benchmark meteorological data, the
environmental assessment of national meteorological stations,
and the site selection and overall optimization of the layout of
meteorological observational stations. Studies of the influence
of changes in the MOE on urbanization bias in SAT series

involve knowledge of urban meteorology, urban geography and
the urban environment, as well as urban planning, architecture,
landscape architecture and other disciplines. However, current
research is mostly limited to a single discipline, resulting
in relatively limited research findings. By effectively coupling
multiple technical methods (e.g., machine learning, remote
sensing and numerical models), we will be able to gain a
greater understanding of the non-linear response of urbanization
bias to the three-dimensional morphology of the MOE and its
scale dependence.
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