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Both spatial and temporal information sources contribute to the predictability of

precipitation occurrence at a given location. These sources, and the level of predictability

they provide, are relevant to forecasting and understanding precipitation processes at

different time scales. We use information theory-basedmeasures to construct connected

“chains of influence” of spatial extents and timescales of precipitation occurrence

predictability across the continental U.S, based on gridded daily precipitation data. These

regions can also be thought of as “footprints” or regions where precipitation states tend to

bemost synchronized. We compute these chains of precipitation influence for grid cells in

the continental US, and study metrics regarding their lengths, extents, and curvature for

different seasons. We find distinct geographic and seasonal patterns, particularly longer

chain lengths during the summer that are indicative of larger spatial extents for storms.

While synchronous, or instantaneous, relationships are strongest for grid cells in the same

region, lagged relationships arise as chains reach areas farther from the original cell.

While this study focuses on precipitation occurrence predictability given only information

about precipitation, it could be extended to study spatial and temporal properties of other

driving factors.

Keywords: precipitation, information theory, predictability, uncertainty, footprint

1. INTRODUCTION

The generation and movement of precipitation across the continental U.S. varies seasonally and
between individual events. Particularly, the same event never occurs twice when magnitudes,
directions, spatial extents, and durations are considered. However, there is persistence, or patterns,
in terms of typical timescales of storm events and directions of movement. This leads to an average
predictability of precipitation at any location, based on some defined subset of driving factors.
These driving factors range widely in timescales from long, such as decadal or longer climatic
indices (Ting and Wang, 1997; Barlow et al., 2001; Carvalho, 2020), to short, such as moisture
advection and precipitation recycling (Dominguez et al., 2006, 2008), or storm movement on sub-
daily timescales (Hurrell and Deser, 2010; Seo et al., 2012; Gao and Fang, 2018). In this paper, we
focus on the predictability of daily precipitation occurrence at a certain location, given information
about precipitation occurrence at increasingly distant locations.
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Historically, precipitation occurrence at a location has been
modeled as a Markov chain or similar random process model
(Gabriel and Neumann, 1961; Chin, 1977). These models capture
the predictability of precipitation given the knowledge of past
precipitation, either from a single day lag (first order) to
multiple time lagged histories (higher order). More recent
studies have studied precipitation occurrence or extremes from
various perspectives involving spatial synchronization (Boers
et al., 2014), predictability given lagged states (Goodwell and
Kumar, 2019; Goodwell, 2020), spatial extents and directions of
events (Mondal et al., 2020; Najibi et al., 2020), and durations of
wet and dry periods (Roque-Malo and Kumar, 2017). Recently
from a spatial perspective, Mondal et al. (2020) uses graph
theory to study the directionality and structure of extreme
summer precipitation events, and uses several directed network
measures to determine spatial extents of instantaneous and
lagged synchronization of events. Meanwhile, Najibi et al. (2020)
uses measures of synchronization to explore the central locations,
extents, and orientations of heavy rainfall events for different
seasons across the continental U.S.

Instead of focusing on the actual spatial extent of a
storm event, we consider the area from which precipitation
predictability can generally be derived. We take an iterative
approach, where we seek to characterize a typical region or
path of influence for the precipitation state at a given “central”
location. Specifically, we use information theory measures to
determine a “maximally informative neighbor” for precipitation
state at the central location, and use dominant neighboring
relationships to define a directed and connected chain of grid
cells. Our hypothesis is described by the following poem:

When it rains in one spot
it’s more likely than not
that it’s raining next door
during, after or before.
A chain with its links

shows the sources and sinks
of where information flows

or precipitation goes.
In other words, a precipitation “chain” or “footprint” for a
given starting point will show the primary pathway from which
predictability can be derived. This is not necessarily the pathway
by which precipitation arrives at that point, or even the region
most highly synchronized with that point, but should be similar
as far as the knowledge of lagged precipitation is informative
to current precipitation at a nearby location. This type of chain
can be contrasted with precipitation recycling model frameworks
(Dominguez et al., 2006, 2008), where paths of atmospheric
moisture are traced from their entry into a study region to the
location of precipitation using a Lagrangian approach. Instead
of tracing individual moisture packets forward to a precipitation
target cell, we start from a target cell, and consider a “typical”
path fromwhich precipitation at that grid cell is most predictable.
Other key differences include the consideration of a “typical” or
average path instead of a trajectory for any single event, and our
focus on information flow rather than a physical flow of moisture.
Relative to studies that attribute precipitation events to different
causes or study multiple precipitation-related processes (Kunkel

et al., 2012), we use a much more limited dataset that only
consists of precipitation occurrence to make similar inferences
about extents and directionalities of precipitation.

In this paper, we extend upon Goodwell and Kumar (2019),
which evaluated precipitation persistence, or temporal patterns,
using multivariate and conditional information measures. This
study identified trends over time in both the probability of
precipitation and the temporal ordering of precipitation, which
diverged across the continental US. Goodwell (2020) studied
the predictability of precipitation based on the knowledge of
a combination of lagged neighboring states. Here we found
dominant directions of precipitation predictability that generally
corresponded with our current understanding of precipitation
generationmechanisms and weather patterns. As in these studies,
here we consider both large and small precipitation magnitudes
together, and additionally consider all time points rather than
only time points for which precipitation occurs. Therefore, this
study can be thought of as looking at the predictability of both
precipitation occurrence and non-occurrence.

To construct a precipitation predictability chain, we use
information theory measures, which relate to uncertainties and
reductions in uncertainties of random variables. Particularly,
we use mutual information measures to detect instantaneous
and lagged relationships between precipitation occurrence at
neighboring and distant locations. We apply information theory
measures to daily CPC gridded gauge-based precipitation data
set (Xie et al., 2007; Chen et al., 2008) for the period from 1950 to
2019. While Goodwell and Kumar (2019) and Goodwell (2020)
used similar measures to characterize precipitation persistence
and predictability from the same data, here we employ an
iterative approach to study precipitation relationships between
increasingly distant geographic locations while minimizing
the computational complexity that arises with an expanding
search radius.

This study is organized as follows. In section 2, we describe
the information theorymethods and application to the dataset. In
section 3, we present results over the continental U.S, including
examples of individual chains and seasonal and geographic
patterns in chain properties. In section 4, we provide a discussion
in the context of existing studies, and discuss limitations and
possible extensions of this approach.

2. METHODS

2.1. Information Theory-Based Algorithm
Information theory (Shannon, 1948; Cover and Thomas, 2006)
is based on Shannon Entropy, H(Xc,t) = −

∑

p(xc,t) log2 p(xc,t),
where Xc,t is a random variable, p indicates a probability
distribution function, and the summation is over all possible
states of xc,t . Here, the t index indicates a temporal aspect,
particularly the current state, and c indicates a spatial index
for the “central” cell. H(X) indicates the uncertainty of X, or
the amount of information in bits that would be needed for
a full prediction. Here, we consider X to be a time-series of
binary daily precipitation occurrence at a given grid cell. For
a grid cell where is it nearly always raining, or hardly ever
raining, the entropy is very low. In other words, the state of
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precipitation occurrence on any given day is fairly “certain.”
Maximum H(X) occurs for a sequence for which the probability
of precipitation is 0.5. However, H(X) does not depend on the
ordering of precipitation over time. In this paper, we focus on
reductions in uncertainty of precipitation given the knowledge of
instantaneous or lagged precipitation at neighboring grid cells.
Previous studies have used information theory measures to study
a range of lag times and multivariate dependencies to understand
the persistence of precipitation, or the dominant direction of
precipitation predictability when surrounding neighbors are
considered. Meanwhile, here we characterize the spatial region
of precipitation predictability by constructing a connected chain
of grid cells that most significantly reduce the uncertainty in a
chosen central cell.

We begin with precipitation occurrence at a selected central
grid cell, or reference cell, Xc,1,t and identify its eight surrounding
neighbors, as dset (Figure 1A). We then compute the mutual
information between precipitation at the central cell and each of
the eight neighboring cells as follows for a given Xd:

I(Xc,i,t;Xd,t ,Xd,t−1) =

∑

p(xd,t , xd,t−1, xc,i,t)

log2

(

p(xd,t , xd,t−1, xc,i,t)

p(xd,t , xd,t−1)p(xc,i,t)

)

. (1)

This is the total information from the current and lag-1 histories
of each neighboring cell, and represents the information that the
knowledge of both the current and lagged states of a neighboring
cell provide about precipitation occurrence at the central cell
(i = 1 for the original central cell). We pick the neighboring cell
that leads to the maximum value of this term, and tentatively set
it as the “new” central grid cell, adding it as the next link in the
chain (Figure 1B) as follows:

Xc,new = argmax
Xd∈Xdset

(I(Xc,i,t;Xd,t ,Xd,t−1)), (2)

Initially, dset = 1...8, indicating the possible neighboring cells
relative to the central cell, c. The index i indicates the length of the
chain in number of grid cells, which starts as i = 1, such thatXc,1,t

is the “original” central cell. In general, we add Xc,new to the chain
as the updated central grid cell (Xc,i+1,t), and determine which of
its eight neighbors is most informative regarding its precipitation
state, and so on. However, as the chain grows longer, there are
several considerations, illustrated in the flowchart in Figure 1

and described below.
First, we do not want the chain to loop around to itself,

resulting in an infinite loop. If the newly selected central grid
cell leads to a path crossing such as this, we instead go back
to the previous central cell and re-compute (Equation 2) with
the other neighboring cells (Figure 1C). In other words, for a
chain longer than one grid cell, if the determined Xd that defines
Xc,new is already part of the chain, d is removed from dset and
Equation 2 is re-evaluated in order to pick the next location d
where precipitation occurrence is informative of the central cell.
If dset becomes an empty set, this indicates that all surrounding
grid cells for a central cell are already part of the chain, and the

algorithm exits (Figure 1D). Otherwise, we iterate through the
remaining neighboring cells until an Xc,new is determined that
does not cause an overlap in the existing path.

The next checkpoint determines whether the newly added
link provides statistically significant information to the original
central grid cell. We test whether the mutual information
between Xc,new and Xc,1,t is statistically significant at a time lag
between 0 and 3 days as follows:

I(Xc,new,t−τ ;Xc,1,t) > Icrit , (3)

where τ = 0...3 days, and Icrit is a critical value of mutual
information based on a shuffled surrogates method (Ruddell
and Kumar, 2009), in which the source variables are shuffled
in time to destroy correlations. In other words, we define
a given information theory measure as statistically significant
by comparing it to the distribution of measures based on
randomized data. We do this 100 times to compute a distribution
of shuffled information values, with a mean of Ishuff,mean and
standard deviation of Ishuff,stdev. Icrit is then computed as follows:

Icrit = Ishuff,mean + 3Ishuff,stdev, (4)

If a given measure is not statistically significant at any time lag,
in that the mutual information is less than the critical value,
the chain is curtailed due to the lack of a clear relationship
with the central cell. If it is statistically significant at any time
lag, then Xc,new is added to the chain and set as the updated
“central” cell (Figure 1E) and the number of links in the chain, i,
is incremented.

Finally, if there is no path crossing and a statistically
significant relationship between precipitation occurrences at the
last link added and the central cell, we check whether the chain
has attained some maximum length. We choose this length as
200 grid cells, which is nearly the gridded length (in longitude
values) of the continental U.S. However, we find few cases were
a precipitation chain moves in a single direction, as instead paths
tend to curve around and fill the grid cells in a region closer
to the original central cell. If a chain reaches 200 grid cells in
length before losing statistical significance or hitting a “dead end,”
the algorithm is curtailed (Figure 1F). In this setup, if the chain
reaches a coastline or border, it is forced tomove along the border
or is cut off if there are no adjacent precipitation grid cells that
have not already been added to the chain.

2.2. Application to Gridded Precipitation
Data
We apply this algorithm to the CPC gridded gauge-based
precipitation data set (Xie et al., 2007; Chen et al., 2008) for the
period from 1950 to 2019, for all grid cells in the continental
U.S. that have at least 5 land neighbors. We exclude most
coastal grid cells as their chains tend to be very short and the
predictability of precipitation is largely influenced by a water
body. We also find that grid cells in very dry areas, such
as the Southwest, tend to have unresolved chains since the
entropy of precipitation is very low and neighboring grid cells
provide non-statistically significant information. We convert the
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FIGURE 1 | Diagram illustrating development of a precipitation chain of influence for a chosen reference grid cell. These steps (A–F) are further enumerated in the

main text, section 2.

precipitation magnitudes into precipitation occurrence using a
1 mm threshold to distinguish between “precipitation at time
t” and “no precipitation at time t.” In other words, we convert
the precipitation data into a binary dataset with p0 = 1 − p1,
such that H(X) = −p0 log p0 − p1 log p1. While the threshold
for precipitation could be increased to capture only heavier
precipitation events, this generally leads to lower entropies
as the number of “X = 1” days greatly decreases for a
given location.

We calculate information theory measures for each season
(DJF, MAM, JJA, SON) separately based on all the daily time
points within a given season. For lagged measures, we cut off any
lagged points that span from one year to the next. For example,
we do not compare June 1 precipitation with that from the end
of the previous August, but omit those points in our estimates of
lagged probability distribution functions.

2.3. Descriptive Metrics for Precipitation
Chains
We summarize a precipitation chain emanating from a central
location with several metrics. First the length of the chain
in terms of the number of links, N, measures the extent

of the area that is most highly predictive of precipitation
at a given cell. For example, some chains may be curtailed
after only a few links are added for reasons detailed in the
previous subsection, mainly the loss of statistically significant
relationships or a chain wrapping around itself or returning
to the central location. Meanwhile, other chains contain up
to 200 grid cells, which is our imposed limit on length.
However, N does not provide any details regarding the distance
covered by a chain. For this, we consider the coordinates of
the central grid cell and the last location in the chain, and
determine the distance between them in units of kilometers,
D. Finally, we consider the relationship between N and D,
particularly their ratio as a measure of curvature. The ratio of
C =

D
N is small for a case where the chain is very “curvy”

or overlaps such that there are many links but not a long
distance between the starting and end points. Meanwhile, C
is large for cases where the chain is more linear. In terms
of precipitation occurrence, this differentiates between regions
where precipitation is synchronous over a large area or comes
from a variety of directions such that predictability is diffuse, vs.
regions where storms tend to come from a single direction and
predictability is more linear.
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We compute these measures ofN,D, andC separately for each
season and each grid cell, and also compare dominant time lags of
influence between grid cells in the chain and the original central
cell. We find that for most cases, the 1-day lag and the current
state are most informative for a central grid cell, but the influence
from longer time lagged histories increases as the chain moves
farther away from the original central cell.

3. RESULTS

3.1. Average Precipitation Chain Metrics
Figure 2 shows the seasonal averages for chain distance from
start to end point (D, km) and number of total links (N) for all
grid cells. We find that on average, chains are longer in terms of
both D and N in the summer (JJA) relative to other months. This
behavior of longer precipitation chains in the summer indicates
that in this season, precipitation occurrence at a location is more
predictable at a larger distance. In other words, precipitation
tends to be more synchronized at large spatial scales during the
summer. However, the variability in lengths and distances is high
in every season. While spring (MAM) shows the shortest chains
in terms of D, this is not the case for N, indicating there are
locations with more chain links but shorter distance from start
to end in the spring, or a more curly average chain. Average
distances are between 600 and 800 km, and average numbers of
links are between 70 and 90 grid cells.

Figure 3 illustrates several of the longest, shortest, and most
curly (lowest C) precipitation chains for different seasons. In
general, a chain that has a high N is not necessarily associated
with high D, but these tend to be correlated. Particularly, we note
that maximum N andD chains always have lengths of 200, which
is the maximum we set for the search, but some are relatively
straight and others curve significantly in multiple directions.
For example, one of the longest chains in the winter (DJF)
curls around to encompass most of southern Florida and then
into the Gulf states (Figure 3A). Meanwhile, chains associated
with maximum D have more straight shapes (Figure 3B). We
note that chains with maximum N for each season originate in
the southeast, corresponding to predominant west to east wind
patterns in the continental U.S.

While maximum N and D cases are relatively similar and
consist of chains with many links, minimum D cases behave
similarly to minimum C cases. When we search for these
extremes, we find chains that wrap around to their beginning
“central” points, such that the total distance D is only the length
of a single grid cell, but there are a significant number of
links such that C =

D
N is very small. Meanwhile, minimum

N cases are those for which few links are detected before the
algorithm terminates.

Figure 4 shows the information theory metrics (Equation 3)
associated with several examples of the longest chains in terms
of both N and D. In general for all chains, the instantaneous
precipitation occurrence state is more highly informative than
lagged states for grid cells along the chain that are closer to the
central cell. However, for the longest chains, there is a distance
at which the shared information from the 1-day lagged state
becomes larger (Figure 4). We also see that if a chain wraps

around, the lag 0 shared information tends to increase as it gets
closer to the central cell. This illustrates that our algorithm is
not just searching a large area around a central grid cell to find
the most informative, or matched, locations, but moving from
grid cell to grid cell along a pathway. For example, there may
be grid cells that are not along the constructed chain that are
individually more informative to the central cell, but they are not
directly connected via highly informative neighbors. Meanwhile,
we see that the 2-day lagged mutual information tends to be
very low, regardless of distance. This indicates that at large
distances, the knowledge of precipitation occurrence 2 or more
days ago is not highly informative of precipitation state. While
an analysis of an individual storm track may show otherwise,
this shows that on average, storms assume many different paths
such that there is no single “typical” pathway for precipitation
predictability. However, the high values of instantaneous mutual
information, and relatively high values of 1-day lagged values,
indicate a large degree of spatial synchronicity for some areas.
This can be compared to studies of extreme precipitation
synchronicity, where lagged relationships are dominant on a
relatively short timescale even over large regions such as South
America (Boers et al., 2013). While lagged dependencies in
precipitation occurrence longer than 10 days have been found
to be statistically significant for data from a single location
(Goodwell and Kumar, 2019), these are typically much weaker
relative to the more immediate lagged histories, and indicate
average durations between precipitation events.

3.2. Spatial and Seasonal Variability Over
the Continental U.S.
We next consider spatial and seasonal differences in terms of
chain characteristics of N, D, and C (Figures 5–7). For the
number of total links in the chain, we see more regions with
longer chains in the summer, particularly in the north and
central parts of the continental U.S (Figure 5C). This matches
the overall finding of this behavior in the summer (Figure 2)
and shows that this pattern exists over a wide spatial extent.
This corresponds to the season with the most extreme rainfall
events for most of the central part of the country (Kunkel et al.,
2012). While this analysis focuses on precipitation occurrence
rather than extremes, this shows that seasons with higher
precipitation in general are associated with larger spatial extents
of connectivity. In the summer, we also see longer chains
[higher N] in northern California (Figure 5C). This could be
related to North American Monsoon (NAM) events that are
more dominant in the summer for California region Kunkel
et al. (2012) that extend from south to north. In other seasons,
extra-tropical cyclones dominate extreme precipitation events,
and would lead to shorter detected chains since the pathway
of lagged predictability would likely terminate upon reaching
a coastline. In the winter (Figure 5A), we find long chains
in terms of N in the central plains, in a region extending
from northern Mississippi to eastern Colorado. Meanwhile in
the spring (Figure 5B), regions of higher N exist in eastern
Colorado and Wyoming and in part of the Midwestern U.S.
In the fall (Figure 5D), we see higher N along the central part
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FIGURE 2 | Distribution of precipitation chain properties for different seasons. Both (A) average distance (km) and (B) average chain length in grid cells are longest in

summer. Horizontal lines indicate mean values.

FIGURE 3 | Examples of maximum and minimum precipitation chain properties. (A) Maximum length in grid cells, N, (B) maximum distance, D, from start (indicated

by stars) to end point in km, (C) minimum C, where C is defined as D
N
, and (D) minimum D.

of the east coast relative to other seasons. One region that has
relatively low chain lengths throughout the year is the Pacific
Northwest. This region is relatively stable through different
seasons, with average chain lengths between 50 and 100 links.
While this is a region with high precipitation frequency [high
H(X)], this indicates that events tend to be relatively local to
this region.

While D is somewhat similar to N in terms of geographic
and seasonal patterns (Figure 6), we do see regions where
these metrics are less correlated. Particularly in the summer
when a large area in the center of the country shows
higher than average N, we see the highest distances D
only in the Southeast and northern California (Figure 6C).
Meanwhile, the northern central plains region in summer
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FIGURE 4 | Mutual information values associated with maximum N and maximum D example cases from Figure 3. (A) Instantaneous (lag 0), 1 day lag, and 2 day lag

mutual information between each grid cell along chain and the original center location for winter and spring locations associated with maximum number of links. (B)

Same as (A) for locations associated with maximum geographic distance between central point and end point.

FIGURE 5 | Number of links (N) for precipitation chains for (A) winter, (B) spring, (C) summer, and (D) fall. White areas indicate regions where no precipitation chain

was constructed, either due to neighboring coastal or water grid cells, a lack of statistically significant relationships with neighbors.
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FIGURE 6 | Distance from central to end point (D, km) for precipitation chains for (A) winter, (B) spring, (C) summer, and (D) fall.

exhibit relatively low D. The Pacific Northwest, which did
not show many seasonal differences in N, shows more
seasonal patterns in D, particularly higher D in the spring
(Figure 6B). In the winter and somewhat in the spring, we
see consistent differences between the mountainous west and
the plains, where chains are longer in terms of both N and
D in the plains relative to the mountains (Figures 6A,B).
This is related to the difference in weather patterns due
to the topography in the region, and specifically shows
that precipitation in the plains tends to be more spatially
synchronized with larger extents. In other words, precipitation
predictability is high given information sources from longer
distances in the plains relative to the mountains. During the
summer, the higher D in the Southeast corresponds to the
greatest frequency of tropical cyclones, for which precipitation
originating in the ocean can have a significant influence
far inland.

Finally, C combines the influence of both number of links
and the geographic distance to obtain a measure of curvature
of a given chain (Figure 7). We see fewer spatial differences
in C relative to N or D, since N and D tend to be positively
correlated. However, seasonal maps of C do show some regions
where the ratio of spatial extent (N) and straight line distance
(D) vary. For example, we see relatively high C during the
spring in the Pacific Northwest region. This indicates that in
the spring, chains do not span more areal extent but “straighten
out” in terms of a more defined elongated path. We also note

relatively high C in the winter and summer on both the Pacific
and Atlantic coasts, indicating more straight typical pathways
relative to other seasons. In general, the more direct or frequent a
specific storm path, the more clearly a straight path will appear
in these chains. For regions where storms come from many
different directions and with different speeds, or for spatially
extensive storms, there is less of a clear spatial pathway of
precipitation predictability. In the north central part of the U.S.
in the summer (Figure 7C), we see the lowest C, associated with
very high N (Figure 5C). This indicates that while precipitation
state is very synchronized over many grid cells in this region
and season, the constructed chain loops around to encompass
an area rather than a straight line. This corresponds to the
large spatial extents of storms in this season, such that events
are likely synchronized over a large area rather than along a
single path.

4. DISCUSSION AND CONCLUSIONS

In this section, we first discuss several key findings, followed
by advantages and limitations of our approach to constructing
precipitation predictability chains.

The average distances of precipitation chains of 600–800 km
are similar to or greater than previously detected synchronization
distances determined from clustering algorithms (Mondal et al.,
2020). This could be related to our consideration of precipitation
occurrence as a binary variable, and our inclusion of all
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FIGURE 7 | Curvature (C =
D
N
, km per link) for precipitation chains for (A) winter, (B) spring, (C) summer, and (D) fall.

precipitation events rather than only extremes. For example,
a study that only considers extreme events would omit
surrounding areas with lower precipitation magnitudes. On
average, we also see similar west-to-east behavior that has been
detected in other ways (Najibi et al., 2020), reflecting the average
wind directions across the continental U.S. Our findings of longer
average chains, in terms of both links and geographic distance,
in summer (JJA), also matches with previous findings of events
with larger aerial extents in this season (Najibi et al., 2020).
In general, we can compare this framework for precipitation
chains with other complex network measures of precipitation
synchronicity. For example, a high geographical distance (D)
from starting to ending point, relative to a shorter distance or
a more curved chain with the same number of links, could
indicate a higher “long ranged directedness” (Boers et al., 2013)
in precipitation. In other words, precipitation tends to follow
a long transport route over a narrow pathway. Meanwhile, a
chain with a lot of curvature is a case where precipitation is
largely regionally synchronous and occur over a wide area. Here,
we see that interior states tend to have lower C (higher D

N )
relative to coastal regions, indicating the prevalence of more
precipitation events that span large regions and may come from
multiple directions.

We found that the lag-0, or instantaneous, mutual
information was generally stronger than lagged values, even
as the chain gets farther from its original central grid cell.
This reflects the synchronicity and size of precipitation (or

non-precipitation) events, in that even if a storm is moving
across the region at a given pace, the concurrent state at a distant
grid cell is still more highly predictive than the lagged state that
could be associated with the speed of the event.

We do not fully address directionality in this study,
but note that most precipitation chains have an east-west
orientation, matching the typical wind patterns across the
continental U.S. However, we see several behaviors along
coastlines that do not reflect the movement of storms in that
direction, but the synchronicity of precipitation along those
coasts. For example, some of the longest chains in either
distance or number of links originate in southern Florida
and move along the Gulf Coast, or move up the Pacific
Coast from southern California. A more detailed analysis
could determine the average directionality associated with
precipitation predictability, and extend upon Goodwell (2020)
which focused on directionality based on only neighboring grid
cells. In general, this study shows that precipitation occurrence
predictability can be very far ranging, beyond those nearest
grid cells, and in some cases the knowledge of more distant
locations can most strongly inform a precipitation state at a
certain location.

The information theory based algorithm employed here has
several advantages and limitations relative to other types of
analysis techniques. One advantage is the context of information,
or reductions in uncertainty, as these are directly related to the
level of predictability of a random variable whether it is from
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a linear or nonlinear type of relationship. Information theory
also enables detection of lagged and multivariate relationships.
Another advantage of this particular “chain” construction
algorithm is that it is computationally inexpensive relative to
searching for dependencies for a widening radius around a
central grid cell. For example, to search all possible connections
within a 50 grid cell radius for a central grid cell would require
a square with edge length of 100, for a total perimeter of
400 grid cells and an area encompassing 10,000 grid cells,
nearly the entire extent of the continental U.S. based on the
gridded dataset used here. Meanwhile, we perform 8 or fewer
computations of mutual information to determine each added
link to the chain, so a chain of 50 grid cells in length would
require a maximum search of 400 grid cell time-series which
would be compared to each other and the central cell. Even
our longest chains with lengths of 200 grid cells required
computations between 1,600 or fewer other cells. However,
this method, in defining a “chain” of grid cells that are
maximally connected by mutual information, potentially misses
defining a “region” or “footprint” of the actual influence to
the central grid cell. Potentially, this could be improved by
allowing for multiple chains to emanate from central grid
cell, such that instead of a chain we could have obtained a
“precipitation predictability network” that may span primary
and secondary directions of typical moving precipitation events.

In general, this study introduces an information theory based
method to construct a pathway, or chain, of influence from
one location to another, and could be applied or extended to
study predictability in various types of temporal and spatial
data sets.
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