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Sharing simple ideas across a broad community of practitioners helps them to work

together more effectively. For this reason, drought early warning systems spend a

considerable effort on describing how hazards are detected and defined. Well-articulated

definitions of drought provide a shared basis for collaboration, response planning, and

impact mitigation. One very useful measure of agricultural drought stress has been the

“Water Requirement Satisfaction Index” (WRSI). In this study, we develop a new, simpler

metric of water requirement satisfaction, the Phenological Water Balance (PWB). We

describe this metric, compare it to WRSI and yield statistics in a food-insecure region

(east Africa), and show how it can be easily combined with analog-based rainfall forecasts

to produce end-of-season estimates of growing season water deficits. In dry areas, the

simpler PWB metric is very similar to the WRSI. In these regions, we show that the

coupling between rainfall deficits and increased reference evapotranspiration amplifies

the impacts of droughts. In wet areas, on the other hand, our new metric provides

useful information about water excess—seasons that are so wet that they may not be

conducive to good agricultural outcomes. Finally, we present a PWB-based forecast

example, demonstrating how this framework can be easily used to translate assumptions

about seasonal rainfall outcomes into predictions of growing season water deficits.

Effective humanitarian relief efforts rely on early projections of these deficits to design

and deploy appropriate targeted responses. At present, it is difficult to combine gridded

satellite-gauge precipitation forecasts with climate forecasts. Our new metric helps

overcome this obstacle. Future extensions could use the water requirement framework to

contextualize other water supply indicators, like actual evapotranspiration values derived

from satellite observations or hydrologic models.
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INTRODUCTION

A central and successful tenet of the famine early warning
community is the fact that impacts of water deficits are
predictable—water deficits anticipate reductions in food access
and availability. In the late 1970s and 1980s, plot-based studies
by the Food and Agricultural Organization (FAO) identified crop
water requirements (Doorenbos and Pruitt, 1977) and created
the Water Requirement Satisfaction Index (WRSI) model (Frère
and Popov, 1986) to estimate yield reductions based on the crop
water balance and accumulated deficits. The WRSI framework
quantifies the water required for optimal plant growth during
four main growth stages, with the vegetative and grain-filling
stages occurring when the crop water requirements are highest.
The WRSI tracks increased crop water use—and crop water
stress—, which occurs when the available soil moisture is less than
the crop’s water requirement. For regional crop monitoring, an
important step forward in operational application of the WRSI
was the combination of the WRSI formulation with gridded
rainfall, reference evapotranspiration, and soil property data
sets (Senay and Verdin, 2001, 2003; Verdin and Klaver, 2002).
These models now provide a widely used foundation for tracking
agricultural shocks in food-insecure countries. WRSI is actively
used to support the Famine Early Warning Systems Network
(FEWS NET) Food Security Outlook (FSO) process (Magadzire
et al., 2017), in which FEWS NET scientists provide forward-
looking assumptions that food security analysts use to estimate
food-insecure populations (Funk et al., 2019b). In this study,
we draw from some of the most useful aspects of the WRSI
framework and consider how advancements in forecast weather
and climate data can support new types of forward-looking crop
and rangeland monitoring applications.

Over the past few decades, the food security community has
increasingly taken advantage of the opportunities provided by
climate science (Verdin et al., 2005). FEWS NET scientists use
“staged” early warning systems that combine long-lead and short-
lead climate and weather forecasts with high-resolution satellite
observations, and hydrology and crop model simulations. The
staged system accommodates the benefits and challenges from
weather and climate information being produced by different
communities, with disparate scales and statistical distributions,
as well as the skill in long-lead time climate forecasts associated
with major climate modes like the El Niño-Southern Oscillation
and at short-lead time weather forecasts.

At the forefront of such efforts are climate services focused
on producing “seamless” or “interoperable” sets of precipitation
estimates that combine satellite observations, rain gauge archives,
weather forecasts and climate outlooks—high-resolution grids
that extend from the past into the future. A key aspect of
such systems is that the statistical distributions of the rainfall
predictions are similar to those of the observations. At weather
time scales, the Climate Hazards Center (CHC) uses quantile
mapping to produce high-resolution forecasts at weather time
scales. At climate time scales, it is also common practice to
identify analog seasons, which can also be used to generate
high-resolution “forecasts” of future rainfall based on averages
of observed blended satellite-gauge data. For example, in early

November 2020, combinations of satellite-gauge observations,
downscaled weather forecasts, and expectations based on climate
analogs, were combined and presented in a Crop Monitor
Alert1 While these “Early Estimates” were fairly accurate2, they
only presented likely precipitation outcomes. To move closer to
impacts associated with crop and rangeland water deficits, we
explore simple combinations of Growing Season Precipitation
(GSP) and estimates of crop and rangeland Water Requirements
(WR). We use GSP and WR to define a simple “Phenological
Water Balance” (PWB) metric.

WRSI tracking involves estimating, in mm, the amount of
evapotranspiration required by the crop at each time step, which
is typically a dekad, or 10-day increment3. This is the Water
Requirement (WR). The WRSI estimates water supply, in mm
per dekad, by using a “bucket” model of the soil column,
parameterized using assumptions about crop phenology (e.g.,
rooting depth) and water holding capacity, to track soil moisture
conditions throughout the growing season. TheWRSI is the ratio
of growing season actual evapotranspiration (AET) to the crop’s
water requirements (WR). This ratio quantifies the degree of crop
water stress, ranging from no stress to enough stress to cause
wilting (Smith, 1992; Senay and Verdin, 2003). The dekad is the
most common time step used in WRSI modeling, and we use it
here. Each month is divided into two 10-day dekads and a final
dekad that contains the remainder of the days in each month.

The start of the growing season (SOS) commences when
a location receives more than 25mm of rain, and is followed
by two dekads that total more than 20mm of rain combined
(AGRHYMET, 1996). Beginning with that first dekad, the WR
component of the WRSI uses Length of Growing Period (LGP)
assumptions and crop-stage-dependent coefficients (Kc) to adjust
the Reference EvapoTranspiration (RefET) corresponding to the
phenological cycle of healthy plant growth and photosynthesis
during a growing season (WR = RefET × Kc). For context,
Kc values greater than one indicate periods of the phenological
cycle in which the crop has a greater upper limit to its
atmospheric demand of moisture than the reference green-grass
crop used in the calculation of the RefET data. This will be
shown formulaically in Methods section, but can be described
generally as follows. Plants emerge, and WR increases as they
add biomass during their vegetative stage. Then, after a fixed
fraction of the LGP, cereals enter a grain-filling phase. The
energy, carbohydrates, and sugars obtained via photosynthesis
are used to increase the size and quantity of grains. Finally,
cereal crops enter a senescent stage associated with decreasing
WR. The bucket model, driven with observed precipitation and
RefET, estimates the amount of water available for extraction
as AET. When there is always sufficient moisture available to
meet the WR, the WRSI (AET÷WR) will be 100%, and there is
no water deficit-related yield reduction. Large (∼50%) seasonal
water deficits will be associated with crop failure (Smith, 1992).

1http://cropmonitor.org/documents/EWCM/reports/

EarlyWarning_CropMonitor_202011.pdf.
2https://blog.chc.ucsb.edu/?p=937.
3Dekads break each month into two 10 day periods and one final dekad containing

the remaining days in each month.
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The PWB is simpler to calculate than the WRSI, easier to
integrate with climate observations and forecasts, less impacted
by potential biases associated with the input rainfall and RefET
data sets, and unaffected by potential errors in the specification
of soil conditions. Furthermore, unlike the WRSI, the PWB is
not capped at 100%, and therefore provides more information
about exceptionally wet conditions. This feature may support
better assessments of adverse precipitation impacts in productive
agriculture areas and could mean that PWB is better equipped
for monitoring impacts of extreme precipitation events and
destructive storms related to global climate change (Trenberth
et al., 2003; Donat et al., 2016). Sub-Saharan Africa may be
experiencing more extreme precipitation events, yet information
is heavily under observed (Harrison et al., 2019).

The PWB indicator can be seen as a plant-smart form of
Aridity Index (Zucca et al., 2012) or Standardized Precipitation
Evaporation Index (SPEI) (Vicente-Serrano et al., 2010; Peng
et al., 2020). We will explore the utility of the PWB framework
for seasonal monitoring, scenario development (Husak et al.,
2013), yield estimation, trend analyses, and national agricultural
risk management. We will use seasonal precipitation as our
water supply indicator, but the approach used here could
easily be expanded to incorporate alternative variables, such
as satellite or model-based estimates of AET or soil moisture,
Normalized Difference Vegetation Index (NDVI) Values, etc.
The temporal filtering provided by the WR framework could be
used in conjunction with myriad supply-related inputs. These
filtered inputs, furthermore, could then feed into more complex
statistical or machine-learning-based estimation processes (e.g.,
Laudien et al., 2020).

This study seeks to demonstrate the utility of the PWB
framework for seasonal monitoring, prediction, trend analyses,
and risk management. In the sections below, we examine the
following questions:

• Can the PWB be used, like the WRSI, to effectively detect
agricultural and pastoral droughts? Can it provide insights into
areas with high drought risk?

• How does the PWB compare with WRSI as a basis
for estimating national and sub-national crop production
in Kenya?

• Can the PWB framework be used to combine gridded satellite
observations with weather and climate forecasts to produce
mid-season outlooks of plant water stress?

The case study presented here focuses on east Africa during
the boreal spring Long/Gu/Belg rainy season, providing an
important context for our analyses. This region, which includes
parts of Kenya, Somalia, and Ethiopia, is extremely food insecure,
and prone to both severe droughts and flooding. While March–
April–May is the core of this season, some regions may start
earlier or end later. Data and Study Region section describes
the data used and our study region, and Methods section lays
out our methods. Examining the Utility of the PWB Framework
for Monitoring Water Stress section, Examining the Utility of
the PWB Framework as a Basis for Estimation of National
and Sub-national Yields in Kenya section and, Examining the
Utility of the PWB Framework as a Basis for Translating

Integrated Rainfall Early Estimates into Assessments of Agro-
pastoral Hazards section, then examine: (1) The utility of the
PWB Framework for monitoring agro-pastoral drought; (2)
The utility of the PWB framework as a basis for estimation
national and sub-national yields in Kenya; and (3) The utility
of the PWB framework as a basis for translating integrated
rainfall observations and forecasts into assessments of agro-
pastoral hazards. Discussion and Conclusion sections present
some discussion and conclusions.

DATA AND STUDY REGION

This study uses 1981–2020 0.1◦ Climate Hazards InfraRed
Precipitation with Stations (CHIRPS) rainfall data (Funk et al.,
2015b) and 0.1◦ Penman-Monteith-based RefET estimates
produced by Michael Hobbins (Hobbins et al., 2016)4 Focusing
on the east Africa boreal spring rainy season, the study uses the
land cover designations, LGP, and crop types commonly used
by the United States Geological Survey (USGS)’s Early Warning
team5 to support FEWSNET. ThreeWRSImodeling frameworks
have been combined to provide one synoptic overview of east
Africa (Figure 1A). A “long rains” maize modeling framework
describes crop-growing conditions across the general region.
Within Ethiopia, settings for the “Belg” growing season augment
this default. Finally, in drier regions, settings for rangeland are
used to quantify outcomes in pastoral regions. This corresponds
with the USGS’s “Long rains, maize” WRSI framework6,
“Croplands Belg”7, and “Long rains, rangeland” WRSI8 The long
rains and Belg maize simulations use the same crop coefficients,
but the Belg season has been customized for Ethiopia, with
a different mask, LGP, and SOS values. Where available, Belg
cropland parameters were used in place of the long rains values.
In highland areas, the Belg LGP values can be long, 15+
dekads, representing the slow development of crops in cool high-
elevation locations. The resulting composite map provides a
snapshot of conditions over the entire region in a single view,
aiding in the interpretation of individually modeled growing
conditions and identification of conditions which may present
food-insecurity issues.

The rangeland WRSI parameters are very different from the
maize parameters. The SOS calculation uses amuch-less stringent
threshold: 10mm in dekad one, followed by a total of just
5mm in the next two dekads. The maximum Kc coefficients are
substantially lower (0.75 as opposed to 1.2), and the LGP is set to
a universal 7 dekads.

The next key modeling parameters used are modal estimates
of SOS. Using 40 years of CHIRPS data, onset dates were
calculated for each pixel, and then the most frequent SOS dekad
(i.e., the mode) was identified (Figure 1B). In this pilot study,
we use these fixed dates to begin every year’s growing season. In
practice, different dates could be identified every year. Implicit

4https://psl.noaa.gov/eddi/globalrefet/.
5https://earlywarning.usgs.gov/fews/.
6https://earlywarning.usgs.gov/fews/product/125.
7https://earlywarning.usgs.gov/fews/product/124.
8https://earlywarning.usgs.gov/fews/product/130.
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FIGURE 1 | (A) The three crop classes used to calculate Water Requirements. (B) The most frequent (modal) SOS dekad used to define the start of the season. (C)

Mean LGP values, in dekads. (D–F) Average monthly crop WR totals in mm. (G–I) Average monthly CHIRPS precipitation totals in mm.

in the WRSI simulation system developed by the U.S. Geological
Survey FEWS NET team9 This framework provides spatially
detailed information about the dominant crop or pasture type,
when we can expect the season to begin, and how the plant water
requirements are expected to evolve over time.

Commencing with the SOS dekad, LGP values (Figure 1C)
are then used to identify the end of a growing season. Static
LGP values were originally developed by WRSI modelers at
the U.S. Geological Survey (Senay and Verdin, 2001, 2003;
Verdin and Klaver, 2002) based on climatological (long-term
average) precipitation and RefET. Note that LGP will vary
dramatically depending on geographical location. A common
metric for estimating LGP is the number of consecutive dekads

9https://earlywarning.usgs.gov/fews.

in which the precipitation is greater than one half of the reference
evapotranspiration10 (FAO, 1978). In arid areas with low rainfall
and high RefET, LGP values will be low (∼7 dekads or 70 days). In
these regions, plants have a very short window through which to
receive adequate moisture to support growth. In moist, cool areas
with high rainfall and low RefET, LGP values can be much larger.
Corresponding growing seasons can extend beyond 18 dekads
(180 days). In east Africa, longitude and altitude play a huge
role in determining LGP. As seen in Figure 1C, many critical
crop-growing regions tend to be located in spatially limited,
high-mountain areas associated with the Rift Valley escarpments.
Meanwhile, inmost of Kenya, all of Somalia, andmost of Ethiopia
east of 38◦E, the growing season is very short.

10http://www.fao.org/nr/climpag/cropfor/lgp_en.asp.
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Taken together, the SOS, LGP, and Kc coefficients provide a
simple yet powerful way to automatically filter environmental
information in time. In data-sparse environments, such filtering
can be extremely useful in a food-security setting. While we
are often interested in the ultimate drivers of food access and
availability shocks, such as food production deficits, in practice,
we only have proximate indicators like precipitation, RefET,
etc. The WR framework gives us a physically plausible way to
interpret this information. This filtering can be used to augment
statistical and machine-learning-based estimation approaches
and support easy-to-implement decision support informatics.

As previously noted (Figure 1C), most of Kenya, all of
Somalia, and most of Ethiopia east of 38◦E have very short
growing seasons. Inmany of these areas, RefET andWR increases
substantially in April and May (Figures 1E,F), and precipitation
drops in May (Figure 1I). This results in a short window for crop
and pasture growth.

A few high-elevation areas with high rainfall and low RefET
provide limited areas that can support highly productive crops.
The interplay of water demand and water supply can be
visualized using long-term averages for March, April, and May
(Figures 1D–I). In March, both WR and GSP totals tend to be
relatively low, as the season becomes established and the growing
season begins. WR values increase dramatically in April, as Kc

values increase and crops typically enter their vegetative stage.
April typically represents the month of maximum rains in most
eastern regions (east of 38◦E). InMay,WR values remain high, or
even increase in this eastern region, as rains begin to subside and
climatological RefET values intensify. This intensification and the
inherently short eastern African March-April-May rainy season
can make it hard to recover from late starts or early-to-mid
season deficits.

METHODS

Building on the standard FEWS NET crop phenology
framework (Figures 1A–C), we introduce a simple agro-
pastoral Phenological Water Balance (PWB), which is a form
of tailored Aridity Index that takes into account the total
amount of Growing Season Precipitation (GSP) and crop
Water Requirements (WR) based on standard WRSI modeling
practices. In this study, we use fixed SOS dates (Figure 1B).
Beginning with each location’s SOS date, and assuming a
fixed LGP value at each pixel (Figure 1C), GSP values can
be accumulated over each year’s growing season’s dekadal
precipitation in mm (Pi).

GSP =

SOS+LGP∑

i=SOS

Pi (1)

Equation (1) represents a simple measure of water supply.
Borrowing directly from the WRSI framework, we can then
estimate seasonal plant-specific WR values based on time-
varying crop coefficients (Kc) and time-varying dekadal RefET
values—equation (2). The WR values represent the amount of
AET required by crops or fields to maintain maximum “water

satisfaction.” As atmospheric water demand (RefET) increases,
the optimal amount of AET increases as well. But WR also
changes as plants grow. RefET formulations typically assume a
well-watered, well-developed “reference” crop, like alfalfa, that
efficiently transports water into the atmosphere. At the start of
the season, at emergence, WR values will be much lower than
this upper limit. Hence, Kc terms start low and increase during
the vegetative stage. In cereal crops, the Kc terms typically stay
high during grain filling, then drop rapidly as the plants senesce.
Rangeland Kc terms typically stay high throughout the plant’s
short (70-day) growing season (Figure 1C). The time-varying Kc

and RefET values can be combined to calculate season WR totals
in mm.

WR =

SOS+LGP∑

i=SOS

Kci × RefETi (2)

While powerful, WRSI results can be problematic when any
of the core inputs are biased. Furthermore, because the WRSI
requires sub-monthly rainfall data, it can be difficult to connect
the WRSI framework with climate forecasts, climate change
simulations, or historical gridded rainfall archives. Finally, WRSI
does not provide information about extremely wet conditions.

Hence, we examine here the utility of combining the WR
framework of the WRSI with a simpler PWB formulation:

PWB = 100×
GSP + ε

WR+ ε

(3)

Whereas the WRSI estimates the ratio of AET and WR values,
PWB examines the ratio of GSP and WR. A small value (10mm
in this study) is added to both the numerator and denominator
to increase numerical stability in arid regions. This study will
compare PWB results with those produced using the WRSI
model, asking whether we can get reasonably comparable results
using the simpler PWB framework.

Note also that the rainfall accumulations in the numerator of
eq. 3 could be replaced by a host of other indicators, such as AET
values from hydrologic models, like the FEWS NET Land Data
Assimilation System (FLDAS) (McNally et al., 2017), hydrologic
forecast systems (Arsenault et al., 2020), satellite-based energy
balances (Senay et al., 2007, 2011; Anderson et al., 2011), or
satellite-based vegetation or soil moisture observations (McNally
et al., 2015). The WR framework, therefore, could be used to
search for consilience across multiple data sets that relate to crop
water supply.

RESULTS

Examining the Utility of the PWB
Framework for Monitoring Water Stress
This section begins by comparing PWB and WRSI values over
east Africa. As Figures 2A,B reveal, the variance structure of
WRSI and PWB is quite similar in drier, water-limited areas,
where WR > GSP, but quite different in wetter areas, where WR
< GSP. In the latter, the WRSI tends to saturate at or just below
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100%, and the WRSI standard deviation rapidly tends to zero. In
these regions, the PWB is allowed to have large values >100, and
hence, has a larger amount of variability. In many water-limited
areas, however, we find moderate-to-high correlations between
the WRSI and PWB (Figure 2C).

Note that there are potential advantages to both approaches. If
the WRSI is perfectly calibrated with the correct soil properties,
crop coefficients, plant phenology, and driven by accurate and
low-bias precipitation and RefET data, then, presumably, WRSI
values near 100 will be a reliable indicator of good yields. There
are times and places, however, where these conditions are not
met. In such cases, the simpler PWB approach might actually be
more representative. Another interesting potential application of
the PWB might be to explore negative impacts associated with
very high PWB values. It seems plausible that when PWB values
become very large, crops may experience waterlogging, reduced
photosynthesis due to reduced sunlight, or other detrimental
influences associated with extremely wet conditions. Extremely
wet conditions will not register in WRSI simulations.

As one might expect, the overall correlation between the end-
of-season WRSI and PWB is quite high in water-limited areas,
where the standard deviation of the WRSI is high (Figure 2A).
Stratifying these correlation grids by the standard deviation of
the WRSI, we find that the mean WRSI-PWB correlations are
0.28, 0.59, 0.71, 0.83, and 0.87 when σWRSI ranges from >0 to
<5, >5 to <10, >10 to <15, >15 to < 20, and >20, respectively.
Hence, the PWB and WRSI results are quite similar in water-
limited regions.

The simplicity of the PWB framework makes it easy to explore
and quantify the covariability of the supply (GSP) and demand
terms (WR). This is valuable, because the Bouchet–Morton
Complementary Relationship suggests that water-limited arid
regions will exhibit a negative relationship between RefET and
AET (Hobbins et al., 2012). Under arid conditions, reductions
in AET drive increase in RefET through energy exchanges
across the land-atmosphere interface (Hobbins et al., 2016).
In contrast, in humid regions, radiation, not water availability,
limits AET, and RefET will equal AET. In dry regions, the
lack of AET means that the Earth’s surface will need to rely
on upward radiative and sensible heat energy fluxes. So as
radiation increases, surface temperatures and RefET increase,
and as RefET increases, AET tends to decrease. And as AET
decreases, RefET increases.

Figure 2D displays an empirical regression slope grid, with
GSP predicting WR. While we might expect an inverse
relationship from first principles, the strong spatial coherence
of these slope values is nonetheless striking. Particularly in arid
pastoral regimes, we find slopes as low as −0.5 mm·mm−1. This
slope implies that a 50-mm rainfall deficit might be exacerbated
by a 25mm increase in WR. The magnitude of the plant water
deficits would be magnified by 50%, from 50 to 75mm. On a
year-to-year basis, this helps explain why pasture conditions can
collapse so rapidly in arid and semi-arid areas like southern and
eastern Ethiopia, northern and eastern Kenya, and all of Somalia,
where RefET or WR often increase with rainfall deficits.

According to the Complementary Relationship, one expects
that the mean AET and RefET will converge in humid areas

and diverge in water-limited areas, where AET decreases and
RefET increases. What we see in Figure 2D is an important
temporal expression of these interdependencies. In humid areas,
AET should follow RefET, and we do not expect precipitation to
strongly influence RefET. Regression coefficients in these regions
are very low. In dry areas, wet and dry seasons will be associated
with more or less clouds and cooler or warmer land surface
conditions, which in turn strongly modulate RefET and WR.

In Figures 3, 4 we have plotted PWB andWRSI anomalies for
four boreal spring seasons, as well as four prior signature drought
years. While not identical, there is a high level of agreement
between the PWB and WRSI anomaly figures. This suggests that
very WRSI-like results may be derived from GSP and WR. The
2017, 2018, 2019, and 2020 seasons were selected because they
provide a “whip-saw” example, with dramatic swings between dry
and wet seasons. Both the PWB and WRSI display this sequence.
But by construction, the unbounded PWB indicator provides
more information about very wet conditions in humid areas.
It is interesting to note that the PWB dry anomalies in 2017
and 2019 indicate more stress in some important areas, such as
southern Somalia, the south-central highlands of Ethiopia, and
central-western Kenya. The stronger andmore extensive drought
response of the PWB index maps can be seen even more clearly
in plots of four very dry seasons: 1984, 1993, 2000, and 2009.
In 1984 and 1993, tragic famines struck Ethiopia and Somalia,
respectively. In 2000 and 2009, strong La Niña conditions and
extremely warm west Pacific sea surface temperatures produced
widespread droughts (Funk et al., 2018b). For these very dry
years, in humid regions, the PWB anomalies suggest more
widespread water deficits than the WRSI.

Examining the Utility of the PWB
Framework as a Basis for Estimation of
National and Sub-national Yields in Kenya
We next turn to a comparison of WRSI and PWB values with
national and sub-national maize yields for Kenya. Kenya has
been selected because of its abundant crop data compared to
other countries in the region. It should be noted, however, that
this data is imperfect, given limited and changing crop survey
capacities. Two sources of yield statistics were examined: (1)
sub-national (county) level yields, obtained via the FEWS NET
DataWarehouse, and (2) national yields obtained from the FAO’s
statistical archive (FAOSTAT). At the sub-national scale, we
focused on 18 key agricultural counties11. The PWB and WRSI
time-series were very similar in 12 of these counties (R > 0.8).
In four counties, correlations were 0.5–0.79. The remaining two
counties had saturated WRSI (mean of >99%), resulting in no
relationship between the two metrics.

Overall, the correlations between county-level yields and
WRSI and PWB were relatively poor, with median correlations
of 0.36 and 0.37, respectively. While far from impressive, these
results do indicate that the performance of the WRSI and PWB

11Baringo, Elgeyo-Marakwet, Kajiado, Kiambu, Kirinyaga, Kwale, Laikipia, Lamu,

Murang’a, Nakuru, Narok, Nyandarua, Nyeri, Taita Taveta, Tana River, Trans

Nzoia, Uasin Gishu, Kilifi.
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FIGURE 2 | (A) Interannual WRSI standard deviation. (B) Interannual PWB standard deviation. (C) Interannual correlation between end-of-season WRSI and WB (D).

Slope coefficients from regression between GSP and WR in units of mm per mm.

were not statistically distinguishable. The WRSI did not perform
better than the PWB.

We next turn to comparisons with national Kenyan FAOSTAT
yields and spatially aggregated sub-national yields (Figure 5). For
these comparisons, the PWB and WRSI were averaged over key
cropping counties9. Scatterplots with national yields are shown
in panels A and B, and sub-national results are plotted in C
and D. Again, the statistical relationships are fairly weak, with
national R2 values ranging from 25 to 41%12 In general, the
scatterplots reveal more discrimination when PWB and WRSI
averages are low. When PWB and WRSI are high, the values’
relationships with yields are weak. But, when PWB andWRSI are

12Please note that, in general, very few counties exhibited positive yield

trends. In general, yield growth in Kenya is stagnant, and per capita cereal

production is declining. https://www.usaid.gov/documents/1867/contrasting-

kenyan-resilience-drought-2011-2017-full-report.

<90 and 60%, respectively, we do find consistent below-normal
yield outcomes. These seasons (1984, 1993, 2000, and 2009) are
noted in Figure 5 and are mapped in Figure 3, Figure 4. The
relationships with sub-national yields are somewhat stronger,
with R2 values of 41 and 37 percent. For both national and sub-
national yields, there are low-yield seasons that have average
WRSI and PWB values. It is not clear whether this is an issue with
the yield statistics or a function of non-weather-related factors,
such as conflict. While the PWB and WRSI performance is very
similar, the PWB is substantially less complex to calculate, and
less sensitive to parameterization.

Figure 6 presents a time-series of national yields and
standardized PWB values from Kenya’s key cropping counties.
One striking aspect of this time-series is the incredibly wet
outcomes in 2018 and 2020. The actual PWB values for
Kenya were 269 and 232%. The GSP totals far exceeded crop
water requirements. The average WRSI time-series (not shown)
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FIGURE 3 | Seasonal PWB maps, expressed as percent anomalies from the long-term average, for the four most recent years (A 2017, B 2018, C 2019, D 2020)

and four extremely dry prior years (E 1984, F 1993, G 2000, H 2009).

FIGURE 4 | End-of-season WRSI anomalies for the four most recent years (A 2017, B 2018, C 2019, D 2020) and four extremely dry prior years (E 1984, F 1993, G

2000, H 2009).

presents a very different story, with 2018 and 2020 values of
89 and 87. While these values are extremes in both time-series,
the physical implications of these values are quite distinct. A
WRSI value of about 88 indicates good cropping conditions. A

PWB value of about 250% may indicate issues associated with
extremely wet conditions. Again, PWB and WRSI maps of these
wet seasons (Figures 3, 4) demonstrate that the PWB better
reflects the dynamic range of these extremely wet seasons. Plots of
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FIGURE 5 | Comparisons (scatterplots) showing Kenyan FAOSTAT national yields (y-axis) and Plant Water Balance (A) and WRSI (B) (x-axis) in key crop-growing

counties in Kenya. (C, D) Show similar results based on sub-national yields from these counties. The FAOSTAT time-series extends from 1982 to 2019, the

sub-national yields extend from 1982 to 2016.

the GSP minus WR differences (not shown) are also useful from
this perspective.

It is worth noting that national yields appear quite static,
i.e., they are not trending upward. At the same time, the
population has grown rapidly, at about 3% per year. As we
will explore, this has resulted in exceptionally low per-capita
maize production values. But another striking feature of Figure 6
is the lack of extreme agro-hydrological deficits over the last
10 years—a period in which the number of people facing
acute food insecurity has climbed dramatically. While 2011,
2014, 2016, 2017, and 2019 had below-average PWB values,

the magnitude of these PWB deficits were relatively mild given
the historical record, with standardized anomalies of about
−0.7. Given that many of these seasons were associated with
large humanitarian crises (Funk et al., 2018a), these results
appear to indicate that non-weather drivers may be decreasing
Kenyan resilience and adaptive capacity, so that relatively
modest droughts appear associated with rather large increases in
food insecurity.

What will happen when Kenya experiences another severe
drought, a drought similar to 1984, 1993, 2000, or 2009? We
will explore this question in more detail in Examining the Utility
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FIGURE 6 | Time-series of FAOSTAT national Kenyan maize yields (blue bars) and PWB Z-scores for key crop-growing counties (orange line with dots).

of the PWB Framework as a Basis for Translating Integrated
Rainfall Early Estimates into Assessments of Agro-pastoral
Hazards section.

Examining the Utility of the PWB
Framework as a Basis for Translating
Integrated Rainfall Early Estimates Into
Assessments of Agro-Pastoral Hazards
We next describe how the PWB framework can be used
to take advantage of integrated monitoring-forecast systems.
For many years, the Climate Hazards Center has worked
toward methods that support the combination of high-resolution
gridded rainfall estimates (like CHIRPS) with weather and
climate forecasts. The basic idea is that coarse resolution
weather and climate information can be transformed such
that it has statistical distributions similar to high-resolution,
rapidly updated data streams, like CHIRPS. This makes these
forecasts inter-operable with the observations. The ability to
combine observations and predictions can be very powerful. In
terms of hydrologic modeling, the NASA Hydrologic Forecast

System (NHyFAS) (Arsenault et al., 2020) provides one good
example of linking to-date conditions and forecasts to assess
hydrologic conditions in the future. Here, we demonstrate how
the PWB framework can be used to generate forecasts of agro-
pastoral water deficits. This framework builds on two existing
forecasting resources: (1) high-resolution CHIRPS-GEFS 1–15-
day precipitation forecasts and (2) east African climate analog-
based rainfall and RefET predictions.

CHIRPS-GEFS is a bias-corrected and downscaled version of
National Center for Environmental Prediction Global Ensemble
Forecast System (GEFS) precipitation forecasts (Hamill et al.,
2013). Quantile matching is used to make GEFS forecasts
spatially compatible with various CHIRPS products13 Daily
rainfall forecasts are accumulated to create 5-, 10-, and 15-day
totals. The rank-based quantile of these totals is then quantile-
matched to the empirical distribution of CHIRPS rainfall for
the corresponding period. The result of this quantile-matching
scheme is that the average and variance of the CHIRPS data is
approximately retained in the resulting CHIRPS-GEFS values.

13https://chc.ucsb.edu/data/chirps-gefs.
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The CHIRPS-GEFS forecast data product is a valuable
resource for CHIRPS users, since it provides GEFS precipitation
totals and anomalies that are compatible with the historical
CHIRPS. This feature allows for the timely assessment of how
the latest forecast could alter the current agro-climatological
situation. The CHC Early Estimates provide routinely updated
analyses that combine CHIRPS and CHIRPS-GEFS.

Climate analogs can provide longer lead (1–8 months) climate
forecasts. Typically based on diagnostic drought analyses, the
identification of analog seasons (historical seasons that may
resemble current/predicted conditions) provides a simple but
powerful means of leveraging the power and detail of high-
resolution data sets and hydrologic and crop simulations. This
can be especially powerful when combined with skillful long-
lead climate forecasts of Pacific Sea surface temperatures, as
exemplified by FEWS NET long-lead forecasts for eastern Africa.
To support the FEWS NET FSO process, FEWS NET uses a
staged approach (Funk et al., 2019b) that combines tailored
1–8 month climate forecasts, down-scaled weather predictinos,
satellite observations and hydrologic simulations (McNally et al.,
2017) and forecasts (Arsenault et al., 2020).

Following the disastrous 2011 famine in Somalia (Checchi
and Robinson, 2013), the FEWS NET team carried out extensive
research that focused on understanding and predicting east
African droughts (Hoell and Funk, 2013a; Funk et al., 2014;
Hoell et al., 2014; Shukla et al., 2014). While a full description
of this work is beyond the scope of this paper, this research links
climate change-enhanced La Niña conditions to sequential dry
east African conditions in the October-to-December and March-
to-May rainy seasons (Funk et al., 2018a, 2019a). While the
best analog definitions vary by season, timing, and data source,
variations of the West Pacific Gradient (WPG) (Hoell and Funk,
2013b) are used to identify strong-gradient La Niña seasons.

In eastern Africa, this approach, combined with the latest
generation of climate forecast models, can provide surprisingly
skillful forecasts at very long leads of 6 or more months. For
the October-to-December season, many La Niña-related dry
seasons can be identified as early as June14,15 For the March-to-
May season, September forecasts of strong La Niña-like Pacific
Sea surface temperature gradients can be robust indicators of
eastern east Africa droughts16 While these forecasts explain a
relatively low amount of the overall variance (∼40%), they do
provide valuable advance notice of many sequential droughts.
The September 2020 analysis identified 2017, 1999, 2011, 2008,
2014, and 2009 as analogs. The final update17 identified 1999,
2000, 2001, 2008, 2009, 2011, 2012, and 2017.

In May of 2021 (as we write), the eastern Horn faces a
severe food crisis associated with poor late 2020 and early 2021
rainy seasons. The food security situation, already dire due to
the combined influences of conflict in Ethiopia and Somalia,
recurrent drought and flood shocks since 2016, persistently high

14https://blog.chc.ucsb.edu/?p=937.
15https://blog.chc.ucsb.edu/?p=757.
16https://blog.chc.ucsb.edu/?p=880.
17https://blog.chc.ucsb.edu/?p=946.

inflation in Ethiopia, the COVID-19 pandemic, and the desert
locust upsurge, is becoming worse.

Our focus here is to show how the PWB framework makes
it relatively simple to “stack” three sources of information
to provide spatially detailed forecasts of agro-pastoral risk—
CHIRPS observations, CHIRPS-GEFS forecasts, and analog-
based climate forecasts. In this example, we use CHIRPS
observations through the 1st dekad of April (dekad 10), CHIRPS-
GEFS forecasts for the second dekad of April, and then analog
and average CHIRPS rainfall through the remainder of the
season. In this last step, we use two different assumptions to
finish out the season. We explore one scenario that assumes
performance similar to the recent La Niña-like seasons, using
the average of our analog seasons. We also examine a “normal”
scenario that uses the 40-year (1981–2020) average of the
CHIRPS archive.

Figure 7A shows the observed+CHIRPS-GEFS precipitation
anomalies for the beginning of the 2021 growing season (dekads
1–10). To harmonize our results with those already presented, in
this example, we have used, as above, a fixed climatological start
of season (Figure 1B). Onset dates could vary from year to year
in a more sophisticated operational implementation. Through
dekad 10, much of the region had experienced rainfall deficits
ranging from about −15 to more than −90mm, with the largest
deficits occurring in the Ethiopian highlands, northeastern
Kenya, and southern Somalia. While these types of anomalies
are known to frequently occur during recent La Niña-like
seasons, the impact of elevated WR values during these events
has not been examined. Growing season analog WR anomalies
(Figure 7B) are actually fairly large (up to∼+50mm), and, more
importantly, the location of many of these increases are often
in exceptionally dry areas of Kenya, Somalia, and Ethiopia. We
can finish out the season by either assuming rainfall performance
similar to our set of analogs (Figure 7C) or simple climatological
averages (Figure 7D). The analog scenario is substantially more
pessimistic, particularly for Kenya and Somalia, where late April
and early May rains play a critical role in providing moisture for
crops.

Combining the analog-based GSP precipitation totals with
analog season WR totals allows us to generate a mid-
season analog PWB anomaly map (Figure 7E). We can use
a similar calculation based on climatological WR calculations
to create an “average” PWB projection (Figure 7F). While
more sophisticated bootstrapping approaches could be used to
generate scenarios (Husak et al., 2013), Figure 7E, F represent
a reasonable way to transform CHIRPS-GEFS and climate
analog assumptions into results bracketing likely agro-pastoral
outcomes. Contrasting the pessimistic analog with the less-
presumptive average scenario suggests that outcomes in Kenya
and Somalia may be substantially less certain than in Ethiopia.
In Ethiopia, in both the analog and average scenarios, substantial
water stress appears across much of the country.

While space limitations prevent further elaboration here,
the PWB framework does seem promising as a basis for
developing predictive agro-pastoral outlooks. In addition to
growing-season precipitation totals derived from observations,
weather, and climate conditions, similar interoperable seamless
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FIGURE 7 | An Agro-Pastoral Outlook example for 2021. (A) Early season rainfall anomalies through dekad 10. (B) Average growing season WR anomalies for analog

seasons. (C) 2021 GSP CHIRPS anomalies based on analogs for dekads 11–36. (D) Same but based on long-term averages. (E) The predicted end-of-season WB

anomalies associated with the analog forecast assumption shown in (C). (F) The predicted end-of-season WB anomalies associated with the climatological forecast

shown in (D). (C, D) All anomalies based on a 1981–2020 period of record.
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RefET observations/prediction data streams could be developed.
One-to-fifteen-day forecasts could be derived from the GEFS
(Hamill et al., 2013). At climatic timescales, these forecasts
could be derived from coupled ocean-atmosphere models
(Shukla et al., 2017), predictive hydrologic modeling systems
(Arsenault et al., 2020), or via constructed analogs (Pierce
et al., 2014). Finally, it should be noted that these outlooks
could also help capture potential disruptions associated with
extreme precipitation. Using the WRSI phenology stages,
for example, one can identify regions in the grain-filling
stage and the associated optimal WR values. When the
observed precipitation far exceeds these WR values, that
may be a clear indicator of potential negative influences
(e.g., flooding).

DISCUSSION

In his classic book on Cultural Anthropology, Clifford Geertz
explained how societies produce cultures that allow for
coordinated behavior by effectively combining “models of ” the
world and “models for” the world (Geertz, 1973). Models “of ” the
world imitate or simulate the world as it is; they resemble our
numerical models. Models “for” the world, however, are models
“for” human behavior, behaviors that imply specific and coherent
actions, actions informed by our models “of ” the world. This
distinction was first introduced by Geertz (1973) as he described
how conceptual frameworks supported coherent behavior among
tribes in Southeast Asia (Geertz, 1973). Such considerations are
relevant here because agricultural early warning systems, like the
FEWS NET (www.fews.net) (Brown, 2008; Funk et al., 2019b)
or the United States Drought Monitor (Svoboda et al., 2002) are
also “cultures” — cultures, furthermore, distributed across space,
multiple institutions, and even nations. Coherent, intelligent
behavior in these systems requires shared and crisply defined
“search patterns.” These patterns describe hazards, supporting
consensus and early action, leading to emergent collaboration
across a wide variety of factors. In this setting, models “of” the
world provide information, whilemodels “for” the world describe
impacts and (re)actions (Funk et al., 2021).

Models “of” the world may provide synoptic observations
of precipitation (Funk et al., 2015b; Huffman et al., 2020),
soil moisture (Karthikeyan et al., 2017a,b), or actual
evapotranspiration (Anderson et al., 2011; Senay et al., 2011,
2013). Complex numerical models “of” the world may offer
detailed simulations and forecasts of land (Nijssen et al.,
1997, 2014; McNally et al., 2017; Arsenault et al., 2020) and
atmospheric (Hamill et al., 2013; Gelaro et al., 2017) conditions.
In fact, every day, an ever-increasing torrent of such sources
output more and more information.

Ironically, filtering and assimilating all of this information
is increasingly challenging. But one long-standing and very
effective “model for” impact assessment, which we have explored
in this study, is crop WR. Here, we have revisited this widely
used and effective concept, using an example situated in the
boreal spring rain season of eastern Africa. We have described
how this simple yet powerful framework can guide monitoring

and prediction, providing “WRSI-like” results that are easier
to calculate, more interoperable with rainfall forecasts, and
potentially less sensitive to parameterization and potential biases
and timing issues.

Clearly communicated definitions of drought (Wilhite and
Glantz, 1985; Svoboda and Fuchs, 2016) provide a shared basis for
collaboration, response planning, and impact mitigation. In the
context of food security, the Integrated Phase Classification (IPC)
system supports the evaluation of food security status across
diverse cultural and socio-economic settings (Frankenberger and
Verduijn, 2011). More specifically, FEWS NET uses a household
food economy approach to develop food security scenarios18

that take into account a complex tableau of drivers. Many
social factors—conflict, price shocks, micro andmacro-economic
conditions—drive food insecurity. But, especially in many arid
and semi-arid regions, agricultural and pastoral water deficits
create shocks to food access and availability.

In this paper, we have used the PWB framework to
demonstrate WRSI-like performance across several important
decision support contexts. In general, we found that the easy-
to-calculate PWB index appears to perform very similarly to the
WRSI in most locations. More detailed analyses based on crop
stages could certainly be of value, and the WR framework could
be used to filter other indicators of water supply or water stress.
Satellite-observed soil moisture (Karthikeyan et al., 2017a,b) or
actual evapotranspiration (Anderson et al., 2011; Senay et al.,
2011, 2013) could be processed with WR framing, as could
hydrologic model outputs (McNally et al., 2017; Arsenault et al.,
2020) .

The simplicity of the PWB makes it relatively straightforward
to combine observations, weather forecasts, and climate analog
predictions, as demonstrated in Examining the Utility of the
PWB Framework as a Basis for Translating Integrated Rainfall
Early Estimates into Assessments of Agro-pastoral Hazards
section. Producing reasonably interoperable rainfall and RefET
estimates, at high resolutions, based on satellite and station
observations, reanalyses, weather models, and coupled global
climate models is challenging on its own. The PWB provides a
defensible way to combine such outputs, resulting in forward-
looking assessments of crop water satisfaction. The example
provided here focuses on combining Early Estimates and
climate analog predictions (Examining the Utility of the PWB
Framework as a Basis for Translating Integrated Rainfall Early
Estimates into Assessments of Agro-Pastoral Hazards Section),
but similar framing could be used with outputs from hydrologic
forecast systems like NHyFAS. NHyFAS forecasts of AET and
RefET could be translated into PWB forecasts, for example.

In addition to an expected opportunity to describe PWB-
based impact assessments, we were also surprised by two specific
aspects of this study: the very high level of covariability of WR
and GSP in arid regions (Figure 2D) and the extremely high
positive Kenyan PWB values in 2018 and 2020 (Figure 6). Both
results indicate forms of climatic hazards. During dry seasons in
arid regions, positive land surface feedbacks associated with low

18https://fews.net/sites/default/files/documents/reports/

Guidance_Document_Scenario_Development_2018.pdf.
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precipitation enhance RefET and WR values, increasing plant
water stress. But during extremely wet seasons, like 2018 and
2020, the available water may far exceed plant needs in many
areas, leading to increased runoff and potential waterlogging
and flooding.

CONCLUSIONS

Simplicity can, at times, be revealing. Because the PWB
simply uses accumulations of CHIRPS rainfall and WR, this
framework makes it very easy to assess the covariability and
relative contributions of water supply and atmospheric demand.
Explicitly calculating and analyzing the WR provides valuable
insights. Climatologically, late-season WR values make it hard
to catch up from early season rainfall deficits (Figure 1).
Interannually, the magnitude of WR increases and decreases
in dry and wet seasons can be relatively large in arid regions,
amplifying rainfall anomalies, and helping to support extreme
outcomes (Figure 2D).

In conclusion, the PWB framework seems very useful for
monitoring, prediction, trend analyses, and risk management
applications. Future work will expand our analysis to more
regions and develop more decision support-related analyses.
In general, analyzing WR along with GSP provides valuable
information by answering a simple question—was growing
season precipitation inadequate, adequate, or much more than
adequate? Spatially, this provides a picture of eastern east Africa
as a relatively small set of cool, moist highland areas with seasons
long enough to support agriculture.

Finally, we return to a simple but important result: the PWB
provides results that are, for most water-limited areas, very
similar to the WRSI. At the pixel scale, correlations were greater
than 0.8 for all regions in which the standard deviation of WRSI
was greater than 15. At the sub-national administrative unit,

the median 1981–2020 PWB/WRSI correlations were 0.8, 0.93,
and 0.82 in Kenya, Somalia, and Ethiopia, respectively. For our
Kenya crop-growing counties, the correlation between regionally
averaged PWB andWRSI was 0.85. These results suggest that the
PWB can be a useful supplement to the more intensive WRSI
modeling. When parameterized with accurate soil information
and driven with accurate climate data, the WRSI should provide
more accurate estimates that take into account soil moisture and

sub-seasonal weather variability. But WRSI-like results can be
obtained using GSP and WR. Similar analyses could incorporate
other metrics of water supply, such as satellite or model-based
estimates of AET. Both satellite and model-based estimates are
likely to capture the complementary transitions as AET decreases
and WR increases during periods of severe water stress.

In a world with increasingly extreme precipitation (Emori
and Brown, 2005; Allan and Soden, 2008) and Indo-Pacific sea
surface temperature volatility (Cai et al., 2013, 2015), East African
agricultural advances are struggling to cope with climate change
(Davenport et al., 2018). As the combination of population
growth, declining rainfall and climate volatility create increasing
food stress (Funk et al., 2005, 2015a; Funk and Brown, 2009),
improved integrated drought early warning systems (Funk et al.,
2007; Thomas et al., 2019, 2020; Funk and Shukla, 2020;
Shukla et al., 2021) and improved drought risk management
practices and policies (Pulwarty and Sivakumar, 2014; Wilhite
and Pulwarty, 2017) can help east Africa manage risk and boost
productivity. The PWB framework, discussed here, will provide a
relatively simple means of connecting satellite observations with
climate, weather and land surface model simulations, helping to
support integrated early warning systems.
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