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A robust early warning system can alert to the presence of food crises and related drivers,

informing decision makers on food security. To date, decision-makers in Zimbabwe still

rely on agriculture extension personnel to generate information on wheat production and

monitor the crop. Such traditional methods are subjective, costly and their accuracy

depends on the experience of the assessor. This study investigates Sentinel-2 NDVI and

time series utility as a wheat-monitoring tool over the wheat-growing areas of Zimbabwe’s

Bindura, Shamva, and Guruve districts. NDVI was used to classify and map the wheat

fields. The classification model’s evaluation was done by creating 100 reference pixels

across the classified map and constructing a confusion matrix with a resultant kappa

coefficient of 0.89. A sensitivity test, receiver operating characteristic (ROC) and area

under the curve (AUC) were used to measure the model’s efficiency. Fifty GPS points

randomly collected from wheat fields in the selected districts were used to identify and

compute the area of the fields. The correlation between the area declared by farmers and

the calculated area was positive, with an R2 value of 0.98 and a Root Mean Square Error

(RMSE) of 2.23 hectares. The study concluded that NDVI is a good index for estimating

the area under wheat. In this regard, NDVI can be used for early warning and early action,

especially in monitoring programs like ‘Command Agriculture’ in Zimbabwe. In current

and future studies, the use of high-resolution images from remote sensing is essential.

Furthermore, ground truthing is always important to validate results from remote sensing

at any spatial scale.
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INTRODUCTION

Wheat is one of the cereal grains produced and consumed globally (Igrejas and Branlard, 2020).
It is one of the most important crops for national food security and a source of livelihood in
developing countries like Zimbabwe (Shiferaw et al., 2013). Wheat is considered the second most
important cereal crop in Zimbabwe after maize (Chawarika, 2016). It is grown during the winter
season (May–September) under irrigation, and it is the predominant crop grown during winter.
The annual wheat consumption for Zimbabwe is above 400 000 metric tons, yet imports of around
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80 percent wheat are made each year (Mutambara et al.,
2013). This is attributable to several factors such as poor
agricultural practices, lack of resources to finance wheat
production in winter and, to a certain extent, unfavorable weather
conditions. Therefore, the decision-makers must obtain accurate
information on the planting area and production of winter
wheat to determine how much wheat to import and protect
the constrained local farmers who produce 15 to 25% of wheat
required in the country.

Traditionally, the country relies on field surveys to monitor
wheat production. This method is expensive, time consuming,
and sometimes subjective (Wang et al., 2019). It is also not
feasible in a large-scale agriculture landscape to facilitate national
field crop mapping (Ouzemou et al., 2018). Therefore, cheaper
and faster ways of identifying and mapping crop fields have
become a necessity. Satellite remote sensing technology has
been successfully used to estimate wheat production through
vegetation indices (VI) time-series data at large scales (Atkinson
et al., 2012; Franch et al., 2019). Crop phenological information
can be derived from satellite data, and ground observations can
be used for verifications (You et al., 2013). It has been investigated
and practiced successfully in retrieving vegetation phenology
based on remotely sensed vegetation indices (VI) time-series at
broad scales (Atkinson et al., 2012; Zeng et al., 2020). Vegetation
index time series are good indicators reflecting the dynamics of
vegetation growth and vegetation coverage. This has provided
a basis for wheat growth monitoring in this study. Sentinel-
2 imagery was used, which provides free and open services
and data with a high spatial resolution of 10–60m (depending
on the band). It has a temporal resolution of about 5 days
(depending on the latitude) (Escolà et al., 2017a; Isbaex and
Margarida Coelho, 2021). Such spatial and temporal resolutions
and the availability of images free of charge make Sentinel-2
very appealing for crop monitoring. This includes identifying,
mapping and estimating acreage of the field crops for subsequent
yield forecasting when using yield statistical records. Therefore,
the need to integrate remote sensing in crop monitoring with
ground observations cannot be over-emphasized. However, this
involves acquiring and using big data to monitor crops in
real-time, which needs to be automated for easy management.
Cloud based solutions require hardware and software driven by
the appropriate applications, packaging and systems, and they
require high financial investments.

Vegetation Indices (VIs) are a combination of surface
reflectance at two or more different wavelengths and are designed
to highlight a specific vegetation property. Vegetation Indices
(VIs) obtained from remote sensing-based covers are simple and
effective algorithms for quantitative and qualitative evaluations
of vegetation cover, vigor, and growth dynamics. They include:
normalized difference vegetation index (NDVI), leaf area index
(LAI), vegetation condition index (VCI), enhanced vegetation
index (EVI) and soil-adjusted vegetation index (SAVI). These
vegetation indices have been applied widely in remote sensing
using different aerial and satellite platforms. Recent advances
involve Unmanned Aerial Vehicles (UAV) (do Amaral et al.,
2020), although its application is still new in Zimbabwe. The
NDVI, derived from remote-sensing (satellite) data, is commonly

used in crop assessments (Stuhlmacher, 2011). NDVI measures
the state of plant health based on the plant’s reflection of light
at specific frequencies (absorbs some waves and reflects others).
Therefore, it is instrumental in crop monitoring and evaluation
(Suárez et al., 2019).

In Zimbabwe, the estimation of the wheat area is always
a challenge because it is the only major cereal winter crop
with significant importance to the economy. Unlike other
crops such as maize, sorghum, and groundnuts typically grown
simultaneously during the rainy season, allowing assessments of
multiple crops, monitoring of winter wheat crop is expensive
because field assessments are done for a single crop. In addition,
the government of Zimbabwe is financing wheat farmers by
providing inputs under the ‘Command Agriculture’ program to
improve wheat production (Supplementary Table 1). Therefore,
cheaper and timely monitoring and evaluation techniques to
acquire the planting area of winter wheat are critical for
implementing these programs. We can improve the timing of
assessment results, reduce cost, address subjectivity, and enhance
broad-scale crop monitoring by integrating remote sensing into
the current crop assessment programs. However, studies on
remote sensing technology in crop monitoring systems are still
limited in Zimbabwe. Therefore, the main objective of this
study is to investigate the use of remote sensing data in crop
monitoring. Sentinel-2NDVI and time series analysis will be used
as monitoring tools to identify, map, and estimate the winter
wheat crop area.

METHODS AND MATERIALS

Study Area
The study was carried out in major wheat-growing districts of
Mashonaland Central province, namely Bindura, Guruve, and
Shamva (Figure 1). The province is located between 30.014 ∼

32.858 degrees East and 15.620 ∼ 17.688 degrees South. The
province primarily lies in the agro-ecological region II (Intensive
farming), with some small portions falling in regions III (Semi-
Intensive farming) and IV (Semi-Extensive farming) (Musemwa
and Mushunje, 2012). Rainfall in this region is confined to
summer and ranges frommoderate (650–800mm) to moderately
high (750–1,000mm). The soils in this area vary from sandy
loams to clays. Similarly, soil fertility varies from place to place.
It is suitable for semi-intensive and semi-extensive farming,
depending on the prevailing agro-ecological conditions (CIAT;
World Bank., 2017). Major crops grown include tobacco, soya
beans, citrus, cotton and small grains (including wheat).

Data Collection
Training of Agriculture Extension (AGRITEX) officers was
done on Global Positioning System (GPS) technology to
capacitate them to collect locational data for the wheat fields
in Mashonaland Central districts for the 2019 season. The data
was collected using Latitude/Longitude (degrees, minutes, and
seconds) coordinate system with the World Geodetic System
of 1984 (WGS84) as the reference datum. To cater to the GPS
receivers’ error margins, the GPS locations were recorded inside
the fields about 3m from the edges of the selected wheat fields.
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FIGURE 1 | Study area.

These locations and other attributes were captured in a table on a
formatted data collection sheet. The data collected included; farm
name, farm owner, farm model, an estimated area under wheat,
date of planting and date of harvesting. The coordinates were
then converted using QGIS software into shapefiles and used for
satellite image analysis, i.e., classification of the image, identifying
and mapping the fields, and computing area of the fields.

Sample Size
Six districts that grow wheat in Mashonaland Central province
were initially targeted, but a few officers collected the data.
However, only three sections were visited, namely; Bindura,
Guruve, and Shamva districts. A total of 60 GPS locations
of wheat fields were randomly collected during the survey.
Farmers contracted to the ‘Command Agriculture’ program
was our primary target, although a few commercial farmers
who have not joined the program were included. According to
statistics, Mashonaland Central had 139 farmers contracted to
this program in 2019. Although 60 fields were visited and the
relevant data was collected, not all the data collected was usable
because of its quality. Some of the coordinates were wrongly
captured, thereby falling far away from the actual fields. Some of
the data supplied had missing details of critical attributes like the
area of the fields. Such data was therefore discarded, and only
usable data were considered for the analysis. Our sample size
ultimately was 50 wheat fields (Table 1).

TABLE 1 | Sites visit in Mashonaland Central province.

District Captured Sites Useable sites

Bindura 51 43

Shamva 5 5

Guruve 2 2

Centenary 2 Nil

Total 60 50

Normalized Difference Vegetation Index
(NDVI) Data
NDVI data were derived from Sentinel 2 datasets. Sentinel 2
is a component of the Copernicus earth observation program
developed by the European Union (EU) to study the earth’s
surface. It consists of two satellites designed to acquire reflected
sunlight in the optical range of the electromagnetic wavelengths.
It is susceptible to variations in vegetation and has been extremely
useful formonitoring forests and crops (Hill, 2013). The Sentinel-
2 images (tiles 36KTG, KUG, KTF and KUF) with zero percent
cloud cover were selected and downloaded from the USGS Earth
Explorer site: https://earthexplorer.usgs.gov/ for the period 1
May to 30 September 2019. These tiles were joined together
by creating a virtual raster in QGIS. Pre-preprocessing, which
involved atmospheric correction of the Sentinel-2 images, was
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done using the Semi-Automated Classification Plugin. Sentinel-
2 contains reflectance data of 13 bands (Escolà et al., 2017a).
The temporal resolution of this product is 5 days. The spatial
resolution of Sentinel-2 images ranges from 10 to 60 meters.
The red (Band 4) and near-infrared (Band 8) spectral bands are
of significant importance to this study, with a spatial resolution
of 10 meters. Normalized Difference Vegetation Index (NDVI)
image was created from the red and near-infrared bands in
ArcGIS using the spatial analystmodule and the ‘raster calculator’
tool. The polygon for the study area was used to extract NDVI
data for the area of interest for the analysis. The NDVI index
is calculated as the ratio between the difference and sum of the
reflectance in NIR (B8) and red (B4) regions (Adão et al., 2017).

NDVI = (RNIR−R RED)/(RNIR+R RED)

The RNIR represents the reflectance of NIR radiation, while

RRED is the reflectance of visible RED radiation.
With the formula above, vegetation density at any point of

the image is highly correlated to the difference in reflected light’s
intensity in the red and infrared range divided by the sum of these
intensities (Suárez et al., 2019).

Time Series Analysis for Phenology
Extraction
We analyzed the NDVI values from May (usually the start of the
winter wheat growing season) to September (end of the season).
The value tool in QGIS was used to extract pixel data from the
NDVI images created for a start to the end of the season. The
NDVI values from the random points in the wheat fields were
used to construct time series graphs. This is because NDVI time
series from satellite data can approximate phenological stages
and thus characterize the general vegetation behavior within
its spatial footprint (Huang et al., 2019). Therefore, the wheat
crop development was studied by looking at its phenological
characteristics, including germination, leaf emergence, and up to
the start of senescence. This was used as a monitoring tool to
confirm the presence or absence during the period under study.

Mapping of Wheat Fields and Calculation
of Area Under Wheat
On the NDVI image, wheat fields were an outstanding feature
during the period under study. The image was classified into
three land-use classes using NDVI thresholds derived from
the NDVI raster map, i.e., <0.07 for water bodies, <0.3
for uncultivated land and >0.3 for the cropped area ArcGIS
software. Fifty GPS coordinates collected from the fields were
used to identify and match with the individual wheat fields
to compute the area. The area of each field was calculated
using the ‘Raster Calculator’ tool in ArcGIS. The area computed
using this method was compared to the area reported by the
farmers (Supplementary Table 4). Evaluation of this method
of determining the area under wheat was done using a linear
regression model. Coefficient of determination (R2) was used
to indicate the consistency and linear correlation between the
calculated area and the reference data (area reported by farmers).

The closer theR2 is to 1, the higher the consistency between them.
RMSE was also used to assess the model performance.

Validation of the Classification Model
The accurate location of the winter wheat fields is an essential
consideration in obtaining accurate results. Therefore, the need
to validate the classification process. A point map was created
using 100 randomly selected reference points across the NDVI
image with 30 points for water (class 1), 40 for uncultivated
(class 2), and 30 for cultivated (class 3) land-use classes
(Supplementary Table 2). The reference points were converted
to reference pixels and combined with the NDVI classified map
to extract the classified map’s pixel values. Data extracted from
the combined map was used to compute a confusion matrix
(Supplementary Table 3). Validation of this model was based on
the overall accuracy and the kappa coefficient values from the
confusion matrix, the receiver operating characteristic (ROC),
and the area under the curve (AUC) analysis. The ROC plot has
an x-axis indicating the false-positive error rate, which signifies
a wrong prediction by the model. The y-axis shows the actual
positive rate, indicating a correct prediction by the model. If
the value of AUC is ≤0.5, it means a random prediction, while
values of AUC higher than 0.5 and closer to 1 indicates a
better prediction by the model (Jiménez-Valverde, 2012; Senay
and Worner, 2019). The composite operator helps illustrate
how well two layers or maps agree on how the categories are
clustered spatially.

RESULTS

Time Series Analysis Results for the NDVI
on the Wheat Fields
Time-Series Images
NDVI images for the wheat fields understudy for dates ranging
from 5May, 11 June, 1 July, 31 July, 30 August and 29 September
2019 are displayed in Figure 2. The NDVI images show a gradual
increase in intensity on the wheat fields from May to the end
of July, then a gradual decrease after that until there was no
significant difference with the nearby environment in September.
Therefore, NDVI values assumed an upward trend from early
June to the end of July, then a downward trend after that until
September (with deeper color standing for higher NDVI values).

Time-Series Graphs
The NDVI time series graphs from the beginning of May to
the end of September 2019 are displayed in Figure 3. These
results agree with results from the time series images. There is
an increase in NDVI values from about 0.2 in May, rising to peak
values ranging from 0.4 to 0.8 in July before gradually decreasing
to around 0.2 again in September.

Classification of the NDVI Image and
Mapping of Wheat Fields
Data was collected from selected farms in Bindura, Shamva, and
Guruve districts extending from 30.80 to 31.60 E longitude and
16.60 to 17.170 S latitude. From the Sentinel-2 NDVI images,
wheat fields were an outstanding observable feature. The image
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FIGURE 2 | NDVI Time-series images for part of Bindura from May to September 2019. Image Acquisition dates: (A) May 2019, (B) 11 June 2019, (C) 1 July 2019,

(D) 31 July 2019, (E) 30 August 2019, (F) 29 Septembers 2019.

acquired on 1 July 2019 was used to classify and map the wheat
fields (Figure 4). Locational data was used to identify and match
the wheat fields with their farm names, farm owners and the area
planted (as reported by the farmer).

Computation of Area Under Wheat
Hectarages of wheat fields were computed in ArcGIS to
determine the hectarage of wheat planted using satellite imagery.
The comparison between the output from these computations
with the area reported during the field visits by the farmers was
made. The locational, attribute data collected, and area of the
wheat fields are displayed in Supplementary Table 4. The sizes
of the wheat fields ranged from a minimum of 1 hectare to a
maximum of 74 hectares.

Validation of the Results for Calculating the
Area Under Wheat
The results obtained from calculating the actual hectarages was
validated using simple linear regression analysis (Figure 5), and
an R2 value of 0.9801 was attained with an RMSE of 2.23 hectares.
The regression equation for predicting the area under wheat is;

y= 0.992x−0.3127

Validation of the Classification Model
Evaluation of the classification model was done by computing
the confusion matrix and through ROC/AUC analysis. The
overall accuracy rate was 0.93, and the kappa coefficient was 0.89
(Supplementary Table 3). The ROC / AUC analysis results were

derived from the logistic regression according to the maximum
entropy (MaxEnt) theory (Figure 6). The value of AUC for this
model is 0.91.

DISCUSSION

Many nations have widely adopted remote sensing data as a
crop monitoring tool over the years. However, Zimbabwe seems
to be lagging in adopting these new technologies. Relying on
field assessments alone has proved to be costly, time-consuming
and in some cases subjective. This study investigated the use of
remote sensing data in crop monitoring. Sentinel-2 NDVI data
and time series analysis were used as monitoring tools to identify,
map, and estimate the winter wheat crop area. The NDVI from
Sentinel-2 satellite imagery could locate wheat fields and calculate
the area under wheat with relatively high precision (R2 = 0.98,
RMSE = 2.23). The classification model was evaluated using the
confusion matrix with an accuracy of 0.93 and a kappa coefficient
of 0.89 (Supplementary Table 3). ROC/AUC analysis gave an
accuracy of 91 percent (Figure 6). These results indicate a better
prediction by the model. This implies that detecting wheat fields
using Sentinel-2 NDVI as a remote sensing tool agrees with the
ground truth. Therefore, NDVI provides a simple, faster and
more reliable way of identifying wheat fields to monitor wheat
production through the winter season.

The NDVI time series images and graphs obtained in the
selected wheat fields generally showed a progression from values
of <0.2 at the start of the season to a maximum range of between
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FIGURE 3 | Time series graphs for (A) SOS Maizelands, (B) Hopedale, (C) Vale Farm, (D) Northstar, (E) Douglyn, (F) Kudukloof.

FIGURE 4 | NDVI Classified Map.
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FIGURE 5 | Scatter plot showing the relationship between reported and calculated hectarage for wheat fields in selected farms for Mashonaland Central province.

FIGURE 6 | ROC/AUC analysis results.

0.4 and 0.8, then a gradual decrease after that (Figures 2, 3).
Similar studies were carried out using EOS/MODIS in Henan
Province, China. The results obtained are consistent with the
results of this study, where a gradual increase in NDVI values
of winter wheat was observed. The signal from NDVI reached
peak value at the heading stage, then a gradual decrease toward
harvesting (Filippa et al., 2018). This study shows a similar trend,
thus confirming that NDVI values can be used for crop growth
monitoring. This increase in NDVI is related to increases in the
canopy leaf area index (LAI).

In estimating the area under a crop, accurate information
on the temporal and spatial resolution of the remote sensing
images is essential. In this study, sentinel-2 satellite data was
used to provide high-resolution images (10m), available for free.
Sentinel-2 datasets can be used in developing countries like

Zimbabwe, where high-resolution images from Light Detection
and Ranging (LiDAR) are still expensive. The NDVI from
sentinel-2 satellite data is used based on the physics of light
reflection and absorption across bands (Suárez et al., 2019). It
is known that healthy vegetation reflects light strongly in the
near-infrared band and less strongly (absorbs more) in the visible
portion of the spectrum (Suárez et al., 2019). The more a plant
absorbs visible sunlight (during the growing season), the more
photosynthesising and more productive it is (Rafezall et al.,
2020).

Conversely, the less sunlight the plant absorbs, the less
photosynthesising and the less productive it is. Therefore, a ratio
between the light reflected in the near-infrared and light reflected
in the visible spectrum will represent areas with wheat. This has
formed the basis for using this tool for crop monitoring.
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Estimating wheat areas on time will allow decision-makers
to take appropriate action toward food security. This is critical
in the Zimbabwean context, where the government is funding
special agricultural programs to improve crop production
and productivity with particular reference to the ‘Command
agriculture’ program. Several challenges are being faced in
recovering the total value of these government initiatives because
some beneficiaries do not use the inputs for the intended
program, thereby derailing the purpose of such initiatives.
Due to slackened monitoring and evaluation systems, the
government is unable to timely trace whether the farmer or
beneficiary has complied or not. Use of NDVI time series
can be used to confirm in time whether the beneficiaries
of this program have planted wheat within the anticipated
period or not. If not, the administrators of the programs
can quickly make informed decisions and prevent abuse
of resources.

This study shows that hectarages derived from the field
images (calculated area) are very close to those reported by
farmers (Supplementary Table 4). The scatter plot in Figure 2

shows a positive relationship between the area reported by
farmers and the area calculated through the classification model.
The simple linear regression analysis obtained a coefficient of
determination (R2 value) of 98%. This means eyeballing and
remote sensing determined areas are close to 1. It implies
that 98% variation in Y can be explained in X. Therefore, it
confirms that NDVI can extract winter wheat fields with high
accuracy. Previous studies in China also demonstrated that NDVI
could successfully extract winter wheat acreage with an error
of 9.66% (Qiao and Cheng, 2009). In recent wheat mapping
studies in China’s Northern Anhui Counties and Central Anhui
Counties, accuracy was obtained between 78 and 95 percent
(Zhang et al., 2019). The variation in the accuracy of mapping
was mainly due to differences in the size of the wheat fields. Large
homogeneous wheat fields were mapped with high precision
when compared to areas with smaller fields. In this study,
our most minor wheat field was one hectare, but most of the
wheat fields were in the range of 10–50 hectares; hence they
were mapped with high precision. This study can therefore
confirm that NDVI can be used successfully to estimate the area
under wheat.

It was also noted during the initial stages of the data analysis
process that the error of estimating area under wheat for this
study was high, and this was attributed to the existence of many
outliers. Most of the discrepancies came from the fact that some
farmers contracted to the ‘Command Agriculture’ program has
limited irrigation facilities on their farms but can grow more
wheat. These farmers have resorted to increasing their hectarage
by out-sourcing land from other farms with idle irrigation
facilities to which they are sub-contracted. Many farmers just
report the total area intended for wheat growing and get the
corresponding inputs without declaring such arrangements. On
the other hand, some farm owners who have sub-contracted
part of their farms to other farmers only declare their hectarage,
which is less than that observed on the satellite images. As a
result, the total area under wheat on their farms detected through
satellite imagery wasmuchmore or less than what is in the official

records for ‘Command Agriculture’ contracts. Efforts were made
to contact farmers with such scenarios to clarify these issues,
which has greatly reduced the error of the field area calculations.
Therefore, the results of this study demonstrate that satellite
imagery can more accurately be used to timely estimate the
acreage of wheat for each season.

Like most remote sensing studies on identifying and mapping
crop fields, this study comes with some limitations. For example,
the wheat fields visited were ranging from 1 to 74 hectares.
However, we noted that some smaller fields were not included in
this study because the field boundaries were not clearly defined
on the images, making it difficult to map them. Recent studies
in the Netherlands also assessed geospatial parcel parameters
on arable land and revealed the same limitation on Sentinel-
2 satellites on small agricultural plots (Vajsová et al., 2020).
Therefore, higher resolution images like UAV technology may
be recommended when mapping smaller agricultural plots.
Downloading of images were done manually because of the
limited capacity of our computer hardware and software, so we
failed to download some of the images and sourced them from
other government departments. Therefore, the need for financial
investment in these resources should be prioritized. During the
present data collection exercise, we have not considered the
influence of different farming systems in Mashonaland Central
province because the visual selection of occurrence location
points may cause substantial bias in sample selection (Araújo and
Peterson, 2012; Merow et al., 2013). Again, the three districts and
the 50 sites selected in this study may not represent the whole
country, Zimbabwe. A systematic random sampling technique is
recommended to capture the dynamics of farming systems in the
whole of Zimbabwe.

Way Forward
This study demonstrated the potential for remote sensing data to
extract wheat fields and compute the area under wheat at the early
stages of the wheat growing season, which can be used to predict
yield. This has raised the need to roll out the research to a national
level to create and deploy a near-real-time early warning system.
Therefore, we recommend that more training sites be included
across the country to ascertain the applicability of this tool in all
scenarios in the wheat growing sector.

While the results of this study remain applicable for use, future
research should consider the use of data with a finer resolution
to improve the accuracy of crop mapping. This will improve the
mapping of smaller agricultural plots and identify specific crops
in mixed crop farming, which are now a common phenomenon
in the Zimbabwean agricultural systems. The use of unmanned
aerial vehicles can be used to capture high-resolution images
and to validate satellite-derived data. One such sensor is LiDAR
(Light Detection and Ranging) technology, which provides 3D
models of croplands (Gago et al., 2015). LiDAR technology can
provide accurate maps for farmlands in crop monitoring (Rosell
and Sanz, 2012; Lin, 2015). However, the cost-benefit of using
LiDAR for smallholder farmer settings needs to be evaluated
to determine the feasibility of such investments (Escolà et al.,
2017b).
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CONCLUSION

Remote sensing technology has a great potential to timely provide
national statistics on the area under wheat for the winter season.
This study has demonstrated that Sentinel-2 NDVI data is a
powerful and valuable tool to identify and map winter wheat
fields and can be used at a national scale to calculate wheat
acreage. NDVI time series analysis proved to be a tool that
can effectively monitor wheat crop growth. A deeper analysis
will make these tools relevant in the decision making on food
security issues. In order to strengthen monitoring and evaluation
of crops in Zimbabwe, integrating the use of GIS and remote
sensing technology should be prioritized, especially for the winter
wheat crop. Results from remote sensing should be validated
with ground-truthed information to increase the confidence of
decision-makers in adopting the use of remote sensing in wheat
production monitoring in Zimbabwe.
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