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The 2019–2020 Desert Locust (DL) upsurge in East Africa threatened food security for

millions in the region. This highlighted the need to track and quantify the damaging

impacts of the swarming insects on cropland and rangelands. Satellite Earth observations

(EO) data have the potential to contribute to DL damage assessments that can inform

control measures, aid distribution and recovery efforts. EO can complement traditional

ground based surveys (which are currently further limited due to COVID-19), by rapidly

and cost effectively capturing the full spatial scale of the DL upsurge. However, EO-based

techniques struggled to accurately quantify damage from this DL upsurge due to the

sporadic and localized nature of infestations impacting scale, timing, and anomalous

vegetation conditions. This study analyzed time series data fromMODIS, the harmonized

Landsat Sentinel-2 product, and C-band radar data from Sentinel-1 to distinguish DL

damage from normal senescence or other confounding factors from January to June

2020. These data were compared to in situ locust swarm, band, and non locust

observations collected by the Food and Agriculture Organization (FAO) and PlantVillage.

The methods presented did not produce results that could confidently differentiate

senescence from locust activity, and may represent a limitation of publicly available

remotely sensed data to detect DL damage. However, the higher spatial resolution data

sets showed promise, and there is potential to explore commercially available satellite

products such as Planet Labs for damage assessment protocols.

Keywords: locust, NDVI, vegetation, damage assessment, MODIS, harmonized landsat sentinel

1. INTRODUCTION

Desert locusts (Schistocerca gregaria) (DL) are considered one of the most dangerous migratory
pests on the planet (Cressman, 2016; Gómez et al., 2018; Shrestha et al., 2021). They typically inhabit
the arid regions stretching from West Africa to the Indian subcontinent and exist in a relatively
unremarkable solitary phase (Cressman, 2016; Gómez et al., 2020; Shrestha et al., 2021). However,
under favorable climatic conditions, DL can phase change into gregarious swarms, breeding, and
devoring vegetation at massive scales (Pener, 1991; Sword et al., 2010). DL need wet, sandy soils
to lay eggs and fresh green vegetation to sustain themselves (Pener, 1991; Collett et al., 1998).
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After hatching, they exist in a hopper phase, when they do not
have wings (Pener, 1991). During the gregarious phase, these
hoppers form bands of many millions of individuals marching
together (Pener, 1991). Upon maturity, the locusts grow wings
and swarm and copulate. Once again, the locusts look for the
right soil conditions to lay eggs. This life cycle takes ∼2–3
months (Pener, 1991). Utilizing synoptic wind patterns, DL
can fly up to 100–150 km per day (Cressman, 2016; Food
and of the United, 2020). Thus, when the right precipitation
conditions occur and egg laying becomes very successful over
a short period of time, swarming occurs (Pener, 1991; Collett
et al., 1998; Sword et al., 2010). DL swarms migrate seasonally
following well documented migratory routes (Homberg, 2015).
These conditions came to fruition in late 2019 following cyclones
in the Arabian Sea. Cyclones Mekunu and Luban in 2018
provided enhanced regional rainfall, particularly on the Arabian
peninsula, and cyclone Pawan in 2019 created wind patterns
enabling the DL to invade East Africa (Salih et al., 2020). An
upsurge occurs when a very large increase in locust numbers and
multiple outbreaks occur, leading to the production of two or
more successive generations of transient-to-gregarious breeding
in complementary seasonal breeding areas (Cressman, 2016).
Since October 2019, rainfall in East Africa was anomalously high
in desert areas, creating favorable conditions for DL activity
including breeding and gregarization. Figure 1 illustrates the
3 month anomalies for the October, November, December
2019 and January, February, March 2020 time periods. These
anomalies were calculated using the Climate Hazards Group
InfraRed Precipitation with Station Data (CHIRPS) using the
deviations from the long term (since 1980) climatology. In
fact, due to the conditions outlined above, and the economic
instability in Yemen reducing strategic control, the FAO noted
in the September 2019 Desert Locust bulletin that the region
was under threat for increasing DL activity. DL migratory
patterns are also well documented, following the synoptic winds
and vegetation green up. During upsurge, a typical 1 km
squared swarm can contain 150 million locusts, and consume
as much food as 35,000 people each day (Food and of the
United, 2020). This can lead to widespread devastation of
vegetation and crops over impacted areas, severely effecting local
food security.

Control strategies vary widely across the DL impacted
areas depending upon the region, growth stage, and resource
availability (Djibo et al., 2006; Klein et al., 2021). The
FAO, the leading organization in DL control, prediction, and
support, operates the Desert Locust Early Warning System,
which uses a combination of remotely sensed, modeled, and
in-situ information to understand DL phase and spread to
inform management and control operations (Djibo et al.,
2006; Cressman, 2013). The countries along the arid regions
in northern Africa and the Arabian Peninsula are frequently
impacted by locust infestations. These “front line countries”
maintain locust control teams and report sightings and
conditions back to the FAO, including the Desert Locust Control
Organization for East Africa (DLCO-EA) and the Commission
for Controlling the Desert Locust in the Western [Africa] Region
(CLCPRO). This information feeds periodic bulletins on regional

locust activity and informs control strategies (Cressman, 2013).
Remotely sensed information, such as vegetation conditions, soil
moisture, and precipitation, provide survey teams with general
locations for favorable DL activity. These targets are of limited
utility due to their large size, coarse resolution, remoteness,
and local instability (Cressman, 2013; Ellenburg et al., 2021).
Although control measures, such as localized spraying, burning,
or trapping, ideally target sedentary eggs, widespread use of
pesticides is also common during the swarming stage. During
the most recent outbreak in West Africa, 13 million liters of
pesticides were distributed to affected countries at a cost of
about 280 million USD (Djibo et al., 2006). Many East African
countries, who do not see upsurges often, lack the national
capacity and ground presence to implement control measures
effectively (Salih et al., 2020).

Satellite EO can complement and augment ground
observations and monitoring, providing the potential to
consistently monitor surface conditions, particularly over remote
and hard to access locations. EO data have been successfully
used to identify pest breeding locations (Ellenburg et al., 2021),
monitor habitat (Klein et al., 2021), and predict distributions
(Klein et al., 2021). As it is impractical to directly map DL from
satellite observations due to spatial resolution requirements,
typically other parameters are monitored to predict where
DL are likely to thrive. For example, soil moisture and wind
direction have been used to predict the likely spread of DL
swarms for targeted interventions (e.g., Ellenburg et al., 2021).
DL populations have also been successfully forecast through
mapping emerging vegetation (Latchininsky, 2013).

Many EO-based studies include the use of optical imagery
such as Aqua and Terra MODIS and the Landsat series, deriving
Normalized Difference Vegetation Index (NDVI) and land cover
from these datasets to arrive at DL habitat as described in the
review by Klein et al. (2021). Thermal infrared sensors as well
as active radar sensors have been used to measure temperature,
precipitation, and soil moisture to identify DL habitat (Klein
et al., 2021). Limitations of using remote sensing to monitor
these proxy variables include low spatial and temporal resolution,
as DL have localized impacts and yet travel rapidly over large
areas. In addition, many EO-data layers, such as land cover and
meteorological variables, that could be useful for DL detection
are often out of date and can be time consuming and expensive
to generate.

Few studies quantify damage from DL using remote sensing
techniques, focusing instead on parameters such as NDVI,
precipitation, and wind (Klein et al., 2021). Anomalous behavior
of satellite observations such as vegetation conditions can
provide significant information on the impact of pest infestations
on vegetation (Wójtowicz et al., 2016). There have been instances
where remote sensing has been used to assess pest damage or
plant stress, but not in context of DL. Studies mapping locust
damage such as the above have not focused on S. gregaria and
the majority have relied on very high spatial resolution (VHR)
imagery or hyperspectral data (Chavez, 1994; Genc et al., 2008;
Pekel et al., 2011; Cressman, 2013). However, these data are not
widely available and are expensive and hence the methods cannot
be applied systematically (Klein et al., 2021).
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FIGURE 1 | Three month precipitation anomalies derived from the Climate Hazards Group InfraRed Precipitation with Station Data (CHIRPS) for October, November,

and December 2019 (A), and January, February, March 2020 (B). The region experienced ∼50–300 mm more precipitation than average 3-monthly periods leading to

enhanced greenness throughout the region (C) showing MODIS derived NDVI anomalies from the second dekad in January 2020.

Remote sensing of vast areas using multispectral and high
spatial resolution (between 10 and 30 m) has become more
accessible in recent years, thanks in part to the launch of the
Sentinel-2 constellation that complements the Landsat series, as
well as increased access to cloud computing resources to process
high data volumes, including platforms such as Google Earth
Engine (GEE), (Nakalembe et al., 2021). Nonetheless, damage
caused by DL can be difficult to quantify with EO-data due to the
sporadic and localized nature of infestations, agro-climatology

and timing of the event. Yet, this information is valuable,
supplementing ground based surveys that inform ground control
operations, and aid distribution. In 2020, EO-based assessment
were even more critical for capturing the full spatial scale of
the DL upsurge limited ground operations due to COVID-19
related travel restrictions. Moreover, the regions in which DL
are often active are remote and sparsely populated, limiting
accessibility required to quantify impacts. However, these same
remote regions often provide valuable resources for pastoral
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FIGURE 2 | The study area includes Burundi, Djibouti, Eritrea, Ethiopia, Kenya, Rwanda, Somalia, parts of Sudan and South Sudan, Uganda, and Tanzania.

communities, wildlife, and subsistence cropland areas. With
increased variability in regional climates and control measures
hampered by global geopolitics, regional and national insecurity,
DL outbreaks of large magnitude such as the 2019–2020 upsurge
in Eastern Africa will likely increase, and the need to develop and
improve methods to detect DL damage from remote sensing will
become more valuable.

This research presents methodologies that could be used
to systematically identify vegetation damage caused by DL.
The methods are applied to the 2019–2020 DL upsurge
in East Africa described at the worst upsurge in 25 years
for Somalia and Ethiopia and worst in 70 years for Kenya
(Nakalembe, 2020). Aiming to fill gaps in the research on
using EO observations for DL detection, this work focuses on
damage detection and acknowledges the need to distinguish
DL damage from normal senescence and other confounding
factors. The methods described were designed to take into
account vegetation cycles, as migratory patterns of DL follow
peak vegetation greenness (Pekel et al., 2011; Cressman, 2013;
NOA, 2016). This investigation includes a data fusion approach
combining higher resolution data and Sentinel 1 Synthetic-
aperture radar (SAR) data. Few studies have applied Sentinel
1, VHR, and data fusion to DL damage detection (Klein et al.,
2021). Successfully identifying DL damage would enhance the
efficiency of distributing aid and measuring the efficacy of
control measures.

2. MATERIALS AND METHODS

2.1. Study Area
This study focuses on the Greater Horn of Africa (GHA) region
that experienced the 2019–2020 DL upsurge. First reports of DLs
in the GHA were received by the FAO in late 2019 (Salih et al.,
2020). Djibouti, Eritrea, and Ethiopia began their control efforts
as swarms growth increased significantly in Yemen and DLmade
their way across the Red Sea. Further, the typically “dry” season of
January–March saw abnormally high rainfall (Figure 1), creating
the perfect egg laying conditions across the arid and semi arid
regions of the GHA. Soil texture, moisture and temperature are
limiting factors for DL breeding and egg incubation, and are also
leading indicators for vegetation growth (Batten, 1969; Mukerji
and Gage, 1978; Padgham, 1981; Peng et al., 2020; Ellenburg
et al., 2021). The incubation period and subsequent life stages of
the DL vary widely depending on soil and air temperature. The
incubation period ranges between 14 and 22 days and the hopper
life stage can last for 35–45 days (NOA, 2016). Therefore, it is
expected that egg laying occurred 3–10 weeks prior to hopper
observations (Ellenburg et al., 2021) corresponding to vegetation
green up. This analysis focused on the period from December
2019 to June 2020 time frame in the GHA (Figure 2). This
time frame thus includes any areas that would be utilized for
rangelands or croplands and would directly impact food security
in the region.
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TABLE 1 | Remote sensing datasets used in this study.

Satellite Operating Spatial Temporal

Agency Resolution Resolution

AQUA/TERRA MODIS NASA 250 × 250 m Daily

Landsat 8 OLI USGS 30 × 30 m 16 days

Sentinel-2 MSI ESA 10 × 10 m 5 days

Sentinel-1 SAR ESA 10 × 10 m 12 days

2.2. Data Sets
2.2.1. Remote Sensing Data
Awide variety of remotely sensed datasets were used in this study
in order to complement spatial or temporal shortcomings of any
particular mission (Table 1). Optical data from the Moderate
Resolution Imaging Spectroradiometer (MODIS) sensor on
board the AQUA and TERRA satellites offer a daily temporal
resolution but are limited spatially at 250m.Whereas the Landsat
8 and Sentinel-2 missions have revisit times of 16 and 5 days,
respectively, but have much higher spatial resolutions (30 and 10
m). The relatively low revisit periods of the Landsat and Sentinel
satellites often results in data gaps due to cloud cover. Thus, a
harmonized Landsat-Sentinel (HLS) product was created in GEE
according to the specifications outlined in Claverie et al. (2018).
The HLS dataset was used in addition to using MODIS, Landsat
8, and Sentinel-2 separately to compute vegetation condition
indices such as the NDVI (Rouse et al., 1974) and Modified Soil
Adjusted Vegetation Index (MSAVI) (Qi et al., 1994).

In addition to optical datasets, C-Band synthetic aperture
radar (SAR) data from the Sentinel 1 missions were also used.
SAR provides information about the texture of the Earth’s surface
and is not limited by cloud cover. Specifically, Sentinel-1 C-band
vertical-vertical (VV) and vertical-horizontal (VH) backscatter
are known to be sensitive to changes in vegetation conditions,
such as damage caused by hail (Bell et al., 2020) and above
ground biomass (AGB) (Pereira et al., 2018). Areas that have been
damaged by DL are expected to have lower backscatter power
due to a reduction in vegetation cover. As the cross-polarized
signal is dominated by vegetation cover, rather than the surface
(Woodhouse, 2005), the VH analysis is expected to be more
useful for distinguishing potential locust impact.

2.2.2. Ground Data
The FAOmaintains a publicly available database of locust reports
(FAO, 2020b). These reports are compiled from many sources,
but in most cases contain the geographic location of the sighting
and the life cycle stage of the locust. The general stages of
gregorious DL include egg, hopper bands, and swarm. After the
eggs hatch, juvenile DL form large groups of hoppers or hopper
bands. At this life stage the DL cannot fly. These observation
points, particularly at the swarm and hopper band stages, were
used as in-situ reference dataset for this study. Non-locust
observations, where no DL were observed at that time and place,
were acquired from PlantVillage and are available from March
2020. January and February had no non-locust locations with
which to compare the swarm and band locations. Observations

were not evenly distributed throughout the study period. Bands
and none observations increased from December 2019 to June
2020. Swarm observations increased as well, except for a lull in
May 2020.

In addition to the ground based data sets available through
FAO, the researchers also compiled ancillary information. These
ancillary datasets included survey data from the United States
Agency for International Development. This supplementary
information was used for qualitative comparisons of locust
sighting locations.

2.3. Time Series Analysis
Using the HLS and MODIS data, time series at each of the
band, swarm, and non-locust observations were analyzed for
every available non-cloudy pixel. This analysis utilized vegetation
indices such as NDVI andMSAVI tomap the presence and health
of vegetation. Typically NDVI is used tomap vegetation, however
MSAVI was developed to account for the impact of soil in areas
with low vegetation density (QI1994119) such as is prevalent in
GHA. Despite MSAVI’s expected advantages in detecting actual
vegetation conditions, the analysis showed that both NDVI and
MSAVI had very similar temporal dynamics. Thus, only the
NDVI results were used in this study for analysis and discussions.

The MODIS NDVI was compared to HLS NDVI over band,
swarm, and non-locust observations based on the number of
days before and after the observation. The HLS NDVI at the
pixel corresponding to the band sighting was averaged with
the surrounding eight pixels for all available scenes in the
study period. This time series was then smoothed using cubic
interpolation (McKinney, 2010) to remove anomalous highs and
lows. NDVI before and after the event, i.e., the time of the
band/swarm sighting, was divided by NDVI during the event.
This is termed relative NDVI. Using relative NDVI normalizes
the impact of the natural vegetative cycle and different timings
of sighting. Relative NDVI from HLS was then compared with
the equivalent MODIS NDVI. Two examples are presented
here, located in Ethiopia (Figure 3). These sites were selected as
representative of the region after a thorough analysis of random
sites distributed across the GHA. It was expected that if damage
due to DL was detected, the NDVI values would decrease after a
band sighting by a larger amount for the higher resolution HLS
data set when compared to the lower resolution MODIS data set.

2.4. Monthly Composites Analyses
2.4.1. Harmonized Landsat Sentinel 2 Analysis
Using theHLS data, NDVI andHue were calculated on amonthly
basis to account for regional cloud cover, particularly prevalent
during the rainy seasons. The benefits of using NDVI were stated
in the previous section. Hue was selected as some studies have
found value in using the hue values as a proxy for vegetation
condition in the arid and semi arid regions where locusts inhabit
(Pekel et al., 2011). Hue, saturation, and value, can be converted
from any band, however the red, green, blue, and SWIR bands
(bands 4, 3, 2, 7, and 6, respectively) were used for this analysis.
This transformation was completed for the HLS data set on
a monthly scale. Median NDVI pixel values for each month
from December 2019 to June 2020 were calculated. Monthly
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FIGURE 3 | Band observation sites in Ethiopia where NDVI derived from HLS was compared with NDVI derived from MODIS.

composites of median NDVI for the time period of 2015 (Sentinel
2 launch) through November 2019 were also created as a baseline
reference period. This represented the longest term similar data
set for comparison due to the recency of Sentinel 2 data.

2.4.2. Sentinel 1 Analysis
Cloud cover was frequently an issue, therefore, a multitemporal
analysis of Sentinel 1 C-band data was conducted, as SAR
data is able to penetrate through cloud cover (Woodhouse,
2005). Backscatter power for locust and non-locust locations
were compared to see if there were changes indicating the
presence of locust damage. First, the median backscatter was
selected from a 3-month moving window over the study area
for December 2019–June 2020. The resulting six median layers
were extracted by known DL locations [band (N = 3,799) and
swarm (N = 2,646)], and non-locust locations (N = 13,502)
to see if there was a difference in the medians of these
groups. Sightings were grouped by the same time periods as
the Sentinel 1 imagery. VH and VV backscatter power were
extracted by swarm and band sites and non-locust locations
and compared. A similar analysis was repeated at a monthly
time step to take greater advantage of the temporal resolution
of Sentinel 1. A similar analysis was repeated at a monthly
time step to take greater advantage of the temporal resolution
of Sentinel-1. Single scenes, which would have taken full
advantage of the higher temporal resolution of the Sentinel-
1 dataset, were not investigated. Evaluating monthly medians
also reduced potential impacts from speckle, or natural variation
that occurs even over homogeneous surfaces, per Woodhouse
(2005). Another reason for using the Sentinel-1 data at a monthly
timescale was that it also made the analysis comparable to
the one done using the Harmonized Landsat Sentinel-2 (HLS)
dataset, which, due to cloud cover, was likewise generated
at a monthly timescale. For that reason, use of Sentinel-1
imagery at a monthly timescale was therefore determined to be
more appropriate.

3. RESULTS

3.1. MODIS Time Series Analysis
The NDVI values were compared for MODIS and HLS at known
band, swarm, and non-locust observation sites as a function
of days before and after the observation date (Figure 4). Over
locust and non-locust sites, the relative HLS NDVI varied more
than the relative MODIS NDVI, indicating that the HLS may
have recorded greater changes in vegetation than the MODIS.
Sixteen days after the observation, themedian relative HLSNDVI
dropped slightly (<0.1) for band and non-locust sites while the
median relative NDVI at swarm sites remained nearly the same.
This indicates that the relative HLS NDVI is not immediately
detecting notable vegetation change at locust locations.

The case studies of individual band sites, #1321 (Figure 5B)
and #1700 (Figure 5A), illustrated that the average relative NDVI
over the average of the pixel corresponding to the band sighting
and the surrounding eight pixels from the HLS followed the same
trends as the relative NDVI fromMODIS, although in general the
magnitude of HLS NDVI values were lower. For example, NDVI
lows occurred at site #1321 in October, February, and May for
both datasets. Similarly, for site #1700, the peaks in November
and June appeared in both datasets. Since NDVI from both HLS
andMODIS follow the same general trends over the study period,
the differences in the NDVI change between the HLS andMODIS
during or after a band observation were potentially attributed to
vegetation change occurring at a higher spatial resolution, for
example DL damage. However, the NDVI trends at site #1321
and site #1700 do not convincingly demonstrate DL damage. At
site #1321, the HLS NDVI decreased (<0.05) at the observation
date. However, the MODIS NDVI also decreased (∼0.1). This
suggests that the vegetation change occurred over an area larger
than would be expected than if it were due to DL damage. At
site #1700, the HLS NDVI decreased (<0.05) while the MODIS
NDVI increased (∼0.05). This lack of a clear pattern in direction
and magnitude of NDVI change between HLS and MODIS
does not lend itself to identification of DL damage. Ultimately,
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FIGURE 4 | Relative NDVI of MODIS vs. HLS compared over band (A), swarm (B), and non-locust (C) sites [n = 36,820, n = 24,696, n = 72,863].

investigating a higher resolution dataset with this method may
yield interesting results for DL damage detection.

3.2. Monthly Composites Analyses
3.2.1. Harmonized Landsat Sentinel-2 Analysis
The monthly HLS composite analysis did not show definitive
evidence of damage. Band and swarm data sets were compared
to non-locust points for the months of March through June
2020 using both NDVI (Figure 6A) and Hue calculated with the
shortwave infrared band combination 7, 5, 4 (Figure 6B). Hue

was also calculated using the natural color bands (4, 3, 2) and
the shortwave infrared, near infrared, and red channels (6, 5, 4)
but the pattern was very similar to the 7, 5, 4 combination and
therefore only 7, 5, 4 is presented here.

The NDVI values showed a normal distribution and student
pair wise t-tests were performed for each month comparing band
against non locust and swarm against non locust data points.
All comparisons resulted in significant differences between the
data sets with p-values <0.05. In all months if damage was
identified, we would have expected NDVI to be higher at the
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FIGURE 5 | Time series of NDVI from MODIS and averaged HLS at site #1700 (A) and site #1321 (B). The vertical grey line indicates the date the band was observed.

none points, however this was not the case. In March and April,
NDVI is higher for the bands and swarms compared to the none
points. The reverse is true in May, and in June the means are
all very close. There was high variability in NDVI within each
month, therefore even when an NDVI value was lower it was not
conclusively due to locust activity.

The hue transformation showed a similar pattern to NDVI,
but reduced the range of values toward 0. This made
interpretation more difficult as the means became closer together
and the variance remained large across all categories. In this case
the use of hue as an index was less useful than NDVI.

3.2.2. Sentinel-1 Analysis
Results of the multitemporal analysis were inconclusive,
suggesting that a shorter time frame could reveal more
information than the multitemporal, 3-month composites. For
the monthly analysis, the VV values for bands, swarm, and none
points ranged −26 to 4 db whereas VH ranged from −33 to −4
db (Figure 7). Thus, the median backscatter power for VV tends
to be higher than VH for all locust and non-locust locations. This
trend is expected, as VV and VH respond differently to surface
characteristics. More importantly, the differences between the
median backscatter power of both swarm and band locations vs.
the non-locust locations did not clearly signal vegetation change,
including the presence of locust damage.

Taking a closer look at the median backscatter power for
VH (Figure 7), for March and April, the median backscatter
power for non-locust sites was less than the median backscatter
power for bands and swarms. For March, the absolute difference
between the non-locust the and swarm medians and the absolute
difference between the non-locust and band medians were both
<0.5 db. For April, the absolute difference between the non-
locust and swarmmedians was 0.7 db and the absolute difference
between the non-locust and band medians was 1.2 db. For May
and June, the median backscatter power for non-locust sites
was greater than the median backscatter power for bands and
swarms. For May, the absolute difference between the non-locust
and swarm medians was 1.6 db and the absolute difference
between the non-locust and band medians was 2.9 db. For
June, the absolute difference between the non-locust and swarm

medians was 1.0 db and the absolute difference between the non-
locust and band medians was 1.6 db. In addition, the ranges
for all location type had a large amount of overlap overall for
each month.

Taking a closer look at the median backscatter power
for VV (Figure 7), for March, May, and June, the median
backscatter power for non-locust sites was greater than the
median backscatter power for bands and swarms. For March,
the absolute difference between the non-locust the and swarm
medians and the absolute difference between the non-locust
and band medians were both <1.0 db. For April, the median
backscatter power for non-locust sites was less than the median
backscatter power for bands and swarms. For June, the absolute
difference between the non-locust and swarm medians and the
absolute difference between the non-locust and band medians
were both <2.0 db. For May, the absolute difference between
the non-locust and swarm medians was 1.20 db and the absolute
difference between the non-locust and band medians was 2.63
db. As with the VH, the ranges for all location types overlapped
greatly each month. Thus, there is also no consistent pattern of
VV or VH backscatter power that indicates locust damage at this
temporal and spatial resolution with this method.

4. DISCUSSION

Several methodologies were tested to attempt to detect DL
impact, however, only the HLS monthly composite analysis
showed very slight potential evidence of damage and only during
March andApril. There were several limitations, including spatial
and temporal resolution, for each methodology that did not
overcome their hypothesized utility. Time series data did not
clearly indicate vegetation change. However, these data were very
noisy and specific conclusions are uncertain. It is clear that spatial
scale could play a role in damage detection of DL.

Leveraging SAR data was also challenging. There is not an
extensive catalogue of openly available SAR data to compare
current conditions with previous, as Sentinel 1A was launched
in 2014 and 1B in 2016. This study chose to also focus on
monthly medians which did not take full advantage of the
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FIGURE 6 | (A) NDVI values at locust swarm, band, and non locust observations for the months of March through June 2020. (B) Hue values from the 7, 5, 4 band

combination at the locust swarm, band, and no locust observations for the months of March through June 2020. Neither index showed distinct differences between

locust activity and non locust activity.

temporal resolution of the Sentinel-1 data set. Future work
may want to evaluate every available SAR image for changes
in backscatter as opposed to monthly composites. Finally,
speckle, or natural backscatter variation that occurs even over
homogeneous surfaces (Woodhouse, 2005), may obscure the
relatively small areas of locust damage.

There were several confounding factors thatmade this analysis
challenging despite utilizingmethods designed to overcome these

limitations. Due to the intense rainfall from late 2019 into 2020,
the region was exceptionally green. This reduced the utility of
comparisons to similar years or anomaly analyses and we did
not systematically incorporate these methods for that reason.
This enhanced greenness not only made damage assessment
challenging, but it also may reduce the successful application
of such information for food security assessments. For example,
regionally, pasture land had higher than normal vegetation due
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FIGURE 7 | Box plots of monthly VV (A) and VH (B) median backscatter power from Sentinel 1 C-band at swarm, band, and non-locust locations for March through

June 2020.

to the enhanced rainfall, and we could expect that grazing
communities had sufficient fodder for their animals and therefore
may not have experienced food insecurity despite DL impacts.

Seasonality can also play an important role in impact analysis.
Natural senescence grasslands or crop harvesting in agricultural
areas will also confound DL damage assessments using remotely
sensed data. For this reason, disaggregating the vegetation cover
by land use type may prove important in future analyses.

The Food Security and Nutrition Working Group (FSNWG)
at the FAO completed several iterations of East African ground
based DL impact assessments after harvest (FAO, 2020a, 2021).
The first assessment involved interviews from over 10,000
agricultural households across East Africa in June and July of
2020. These interviews were conducted largely after the period
included in our remote sensing analysis. They found roughly
a third of livestock or cropping households reported losses,
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and half of those reporting indicated high losses (FAO, 2020a).
These in-person interviews do not align temporally with the
remotely sensed information we gathered from this study and
were aggregated spatially to protect individual identities. Further,
participants were asked to report presence or absence of locusts
and did not provide exact dates that could have been correlated to
results from this analysis. However, it is important to recognize
that farmers are reporting damage while the remotely sensed
information does not conclusively detect it.

In general the ground data collected by the FAO proved to
be challenging to use as a proxy for damage. While the creation,
deployment, andmomentum around crowd sourced information
is highly commendable in such a short period of time, it became
clear through this analysis that a positive or negative locust
sighting, and subsequent life stage, was not sufficient to support
the identification of locust damage with remotely sensed data.
Numerous characteristics associated with these DL populations
may also have proven important. For example, size of the swarm,
density, or activity of DL could have helped identify which DL
points might be expected to show vegetation damage. While
this type of information was available for some points, it was
not available for the majority. In many cases, DL could have
been reported while flying to other locations, so while the data
we have show locust observations at a specific latitude and
longitude, it is not known if damage would be expected at that
location. Further, DL are capable of traveling extensively and
quickly over vast distances. Thus, the same swarm may have
been reported by several individuals in the same time period,
diluting the relevant ground observation data. The successes of
the application development and deployment show significant
promise for future crowd sourced data, and what has been
collected during the course of this upsurge has been incredibly
valuable for ground based, real time DLmonitoring and other DL
applications such as supporting a finer resolution soil moisture
product for DL breeding ground forecasting (Ellenburg et al.,
2021). We hope this research will be able to inform application
updates in order to create data that can be utilized more
effectively for this purpose in the future.

Literature and personal testimonies show that Locust damage
is sporadic yet highly destructive, similar to that of a tornado;
leaving one field totally destroyed while their neighbor is spared
(Krall and Herok, 1997; Latchininsky, 2013). The spatial and
temporal resolution of the publicly available Earth observation
datasets used for this study are unlikely to capture the level
of detail associated with that destruction pattern, and may
even leave time for vegetation regrowth before a new satellite
observation can occur. The higher spatial resolution datasets, like
the Sentinel 2 satellites (10 m) have 5 day revisit times during
cloudless conditions, which are unlikely in this region.While a 10
m pixel may have a slight decline in greenness due to DL damage,
it may not be large enough to convincingly identify decline.
Therefore, establishing a decline in vegetation conditions due to
DL with data that may not temporally align with cloudless before,
during, and after satellite overpasses was challenging. Further,
creating cloud free mosaics extends the temporal time scale in
order to ensure cloud free pixels. In this region, during this time
of year, even monthly scales had cloud contaminated pixels. An

additional confounding factor is vegetation recovery. There is
limited research on how vegetation damage from DL rebounds
and with extended revisit time periods vegetation recovery may
dilute a remotely sensed signal. MODIS data, at daily revisit
times, and an extensive historical record might prove important,
however the spatial scale of 250 × 250 m was too large in this
case to assess the sporadic event. The results do show promise as
high spatial resolution data sets were evaluated, therefore, there
is potential for higher spatial resolution data from the private
sector, such as Planet, to support these types of analyses although
these data are not publicly available.

It seems as though both the complexities associated
with tracking and recording ground observations of DL,
and the limitations (spatial and temporal) associated with
current publicly available EO capabilities compound to create
circumstances that our current understanding of remote sensing
cannot overcome. The influence of these confounding factors
is challenging and frustrating, particularly in this area where
utilizing remote sensing can be an incredibly powerful tool to
help overcome data gaps and inform decisions. Nevertheless, as
more sophisticated ground data techniques evolve, additional
satellite capabilities come on line, and big data techniques
become more accessible, there is potential to continue to explore
remote sensing for these types of questions. This is particularly
important to acknowledge as climate change is currently creating
more erratic precipitation patterns in East Africa, which are
predicted to become more unpredictable with time (Thornton
et al., 2014). It is likely that these erratic precipitation patterns
will create more opportunities for DL to survive and thrive in
their current range and potentially expand that range to new
regions. While this event was a once in 70 year disaster, it is
unlikely that another 70 years will pass before seeing a similar
event (Salih et al., 2020). Supporting the infrastructure to design
and implement ground observations and remote sensing of
vegetation conditions for food security are essential to building
more resilient communities.
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