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Extreme storm surges can overwhelm many coastal flooding protection measures in

place and cause severe damages to private communities, public infrastructure, and

natural ecosystems. In the US Mid-Atlantic, a highly developed and commercially active

region, coastal flooding is one of the most significant natural hazards and a year-round

threat from both tropical and extra-tropical cyclones. Mean sea levels and high-tide flood

frequency has increased significantly in recent years, and major storms are projected

to increase into the foreseeable future. We estimate extreme surges using hourly water

level data and harmonic analysis for 1980–2019 at 12 NOAA tide gauges in and around

the Delaware and Chesapeake Bays. Return levels (RLs) are computed for 1.1, 3, 5,

10, 25, 50, and 100-year return periods using stationary extreme value analysis on

detrended skew surges. Two traditional approaches are investigated, Block Maxima

fit to General Extreme Value distribution and Points-Over-Threshold fit to Generalized

Pareto distribution, although with two important enhancements. First, the GEV r-largest

order statistics distribution is used; a modified version of the GEV distribution that

allows for multiple maximum values per year. Second, a systematic procedure is used

to select the optimum value for r (for the BM/GEVr approach) and the threshold (for

the POT/GP approach) at each tide gauge separately. RLs have similar magnitudes

and spatial patterns from both methods, with BM/GEVr resulting in generally larger

100-year and smaller 1.1-year RLs. Maximum values are found at the Lewes (Delaware

Bay) and Sewells Point (Chesapeake Bay) tide gauges, both located in the southwest

region of their respective bays. Minimum values are found toward the central bay

regions. In the Delaware Bay, the POT/GP approach is consistent and results in narrower

uncertainty bands whereas the results are mixed for the Chesapeake. Results from this

study aim to increase reliability of projections of extreme water levels due to extreme

storms and ultimately help in long-term planning of mitigation and implementation of

adaptation measures.
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INTRODUCTION

Coastal flooding poses the greatest threat to human life and is
often the source of much of the damage resulting from the storm
surge and waves of coastal weather systems (Blake and Gibney,
2011; Rappaport, 2014; Chippy and Jawahar, 2018;Weinkle et al.,
2018). Relative sea-level rise (SLR) rates and high-tide flooding
frequency andmagnitude along the US East Coast have increased
in recent decades and are expected to continue increasing into the
near future (Sweet et al., 2017a, 2018; Oppenheimer et al., 2019)
with recent studies estimating mean sea levels are rising faster
than predicted (Grinsted and Christensen, 2021). The US Mid-
Atlantic coast is noted for especially high SLR rates (Sallenger
et al., 2012; Kopp, 2013; Boon et al., 2018; Piecuch et al., 2018)
and states and counties in this region view coastal flooding as one
of their most severe and pervasive natural hazards to prepare for
(Callahan et al., 2017; Boesch et al., 2018; Dupigny-Giroux et al.,
2018). Increases in sea levels lead directly to higher frequencies
of coastal flooding from high tides as well as minor and major
coastal storms (Lin et al., 2016; Dahl et al., 2017; Garner et al.,
2017; Rahmstorf, 2017; Sweet et al., 2017b; Muis et al., 2020;
Taherkhani et al., 2020).

Many of the largest coastal flooding events along the US
Mid-Atlantic coast are caused by tropical cyclones (TCs), most
notably Hurricanes Isabel in 2003 and Sandy in 2012. For both
the USAtlantic andGulf Coasts, tropical cyclones are the costliest
and most damaging weather and climate events (Smith, 2021).
Under current global warming scenarios, atmospheric water
vapor content and sea-surface temperatures (SSTs) in the North
Atlantic Ocean are projected to increase, leading to an increase in
the number of severe tropical cyclones, decreases in the forward
translational speed, increases in wind speed, and increases in the
rate of intensification, especially near the coasts (Kossin et al.,
2017; Kossin, 2018; Knutson et al., 2019, 2020; Murakami et al.,
2020; Yang et al., 2020; Wang and Toumi, 2021).

Although TCs may gather much of the attention, the threat
of major coastal flooding in the region is year-round (Dupigny-
Giroux et al., 2018). TCs can account for 40–60% of the top
10 flood events with higher relative percentages in the southern
part of the region (Booth et al., 2016; Callahan et al., 2021b),
however, the great majority of all coastal flood events, ∼85–90%,
in the Mid-Atlantic come from non-tropical weather systems
(Callahan et al., 2021b). East Coast winter storms, surface high

NOAA Tide Gauge Locations: PHL, Philadelphia; RDY, Reedy Point; LEW,

Lewes; CAP, Cape May; ATL, Atlantic City; BAL, Baltimore; ANN, Annapolis;

CAM, Cambridge; LWS, Lewisetta; KIP, Kiptopeke; SEW, Sewells Point;

WAC, Wachapreague.

Abbreviations: BM, Block Maxima; ETC/TC, extratropical cyclone/tropical

cyclone; EVA/EVD, extreme value analysis/extreme value distribution; GEV,

generalized extreme value distribution; GEVr, generalized extreme value r-largest

order distribution; GoF, goodness-of-fit test; GP, Generalized Pareto distribution;

HA, harmonic analysis; MLE, maximum likelihood estimation; MHHW, Mean

Higher-High Water tidal datum; MSL, Mean Sea Level tidal datum; NAVD88,

North American Vertical Datum of 1988; NTDE, National Tidal Datum Epoch;

NTR, non-tidal residual; NWLON,NOAANOSNationalWater Level Observation

Network; PORTS, NOAA National Ocean Service Physical Oceanographic Real-

Time System; POT, points over threshold; RL, return level; SLR, sea-level rise; SST,

sea surface temperature; SE, standard error; TWL, total water level.

pressure systems, extratropical cyclones (ETCs), and frontal
systems regularly impact the region throughout the year (Hirsch
et al., 2001; Thompson et al., 2013). ETCs in the Mid-Atlantic in
the winter and spring are often dictated by the relative position
of troughs in the westerly polar jet stream, directing low-pressure
systems to travel northeastward up the coast over warmer waters,
often intensifying into strong nor-Easter storms. The intensity
and winds of ETCs, as well as associated beach erosion and
other damages due to coastal flooding, are also projected to
increase due to climate change, however projections of ETC
storm tracks and landfalling TCs due to changing synoptic
atmospheric patterns (i.e., “storminess”) in the Mid-Atlantic
is inconclusive (Hall et al., 2016; Mawdsley and Haigh, 2016;
Dupigny-Giroux et al., 2018). Studies have found that US East
Coast sea levels vary with synoptic oscillations (Colle et al., 2015;
Wahl and Chambers, 2015; Sweet et al., 2020), leading, Rashid
Md et al. (2019) to conclude that interannual and multi-decadal
variability of extreme storm surge in the Mid-Atlantic was in a
transition zone between more clear relationships found in the
Northeast and Southeast portions of the US Atlantic Coast.

Water levels in the Delaware and Chesapeake Bays, two of
the largest estuaries in the US located in the Mid-Atlantic, have
been well monitored for several decades by high-quality tide-
gauge networks, well-suited for climate studies (Holgate et al.,
2013; Sweet et al., 2017a; NOAANWLON, 2020; NOAA PORTS,
2020). This highly developed, economically critical region
includesmany commercial industries, vast amounts of public and
private infrastructure, and provides important ecosystem services
(Sanchez et al., 2012; Partnership for the Delaware Estuary
(PDE), 2017; Chesapeake Bay Program, 2020). Impacts and costs
associated with coastal flooding are highly dependent upon both
the natural and social vulnerability, the amount of exposure,
and adaptation measures in place (Hallegatte et al., 2013; Hinkel
et al., 2014). Extreme coastal flooding can overwhelm protections
in place and can have profound negative effects in this region,
such as saltwater intrusion, loss of wetland forests and low-lying
agricultural fields, beach erosion, damage to infrastructure from
surge and waves, and flooding of roads and personal property
putting human life at risk. Extreme events often include multiple
hazards that compound the damage, leading to their net impact
to be greater than the sum of its parts (Kopp et al., 2017;
Moftakhari et al., 2017).

Estimating frequency and severity of extreme coastal flooding
is difficult as, by definition, these events do not occur often.
This lack of observational data makes it difficult to develop
robust statistical or physical predictive models at the usual level
of confidence although planning and design for extremes are
essential to avoid the most severe consequences (Walton, 2000;
Calafat and Marcos, 2020). Numerous hazard/risk assessments
and flood insurance premiums rely on the FEMA 100-year
(i.e., 1% annual chance) base flood elevations. However, many
local decisions on infrastructure development, major capital
investments, and adaptation planning require estimates of
extreme flood levels at shorter-term return periods. Construction
and maintenance of paved surfaces (10–20 years) and major
roadways and bridges (50–70 years or more) for transportation as
well as for wastewater treatment plants, residential development,
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dams/levees, beach replenishment, and wetland restoration are
examples of projects in the region that require estimates of
return level probabilities at time periods <100 years (DNREC,
2012; Johnson, 2013; Callahan et al., 2017; Delaware Emergency
Management Agency (DEMA), 2018).

A commonmethod to estimate the frequency of extremes (i.e.,
extreme value analysis, or EVA) is by assuming the largest values
from an observational record can be modeled by a statistical
distribution distinct from the parent distribution. Two families of
extreme value distributions have been shown to model extreme
values well: the generalized extreme value (GEV) distribution
and the Generalized Pareto (GP) distribution (Coles, 2001). The
GEV distribution can be fit to the set of maximum values of
discrete, non-overlapping blocks within a time series, such as
annual maximum values; this is termed the Block Maxima (BM)
approach. Data points using this approach are evenly distributed
over time, however, non-extreme data points from years with
abnormally low values may be forced into the model fit, biasing
the results. In contrast, the GP distribution can be fit to the
upper tail of the parent distribution, i.e., the set of values that
are greater than a pre-selected threshold; this is termed the
Points-Over-Threshold (POT) approach. POT is a more natural
interpretation of modeling extreme results although the data
points may come in temporal clusters and selection of a threshold
is subjective.Which approach is considered “better” is non-trivial
and dependent upon the parent distribution of the data, time
period, sample size, as well as the metric used to measure each
model performance (Walton, 2000; Wong et al., 2020).

Numerous studies have performed EVA of total water levels
(TWL) using a variety of methods along the US coastlines; a
few recent examples can be found in Wahl et al. (2017), Kopp
et al. (2019), Oppenheimer et al. (2019), Sweet et al. (2020), and
Wong et al. (2020). TWL is an important measure of flooding,
however, it is inherently influenced by location-specific tidal
ranges and timing of the storm event relative to the phase of
the tide whereas storm surge is generally more closely associated
with the characteristics of the storm. EVA of storm surge has been
performed along the US Atlantic coasts using both the BM/GEV
(Grinsted et al., 2012; Sweet et al., 2014) and POT/GP (Bernier
and Thompson, 2006; Tebaldi et al., 2012; U. S. Army Corps of
Engineers, 2014; Booth et al., 2016; Hall et al., 2016) approaches,
or comparing the twomethods (Walton, 2000;Wong et al., 2020).
EVAmethods such as bootstrap simulations (U. S. Army Corps of
Engineers, 2014; Garner et al., 2017) and global modeling (Muis
et al., 2020) on storm surge have also been investigated.

The aforementioned studies defined storm surge as the
maximum difference between TWL and predicted tide, often
called the maximum non-tidal residual (NTR). Skew surge,
however, is arguably a more accurate measure of storm surge
and most appropriate for long-term planning and estimating
extreme flood levels. It is defined as the difference between
the maximum observed TWL and the maximum predicted tide
during a tidal cycle, even if the observed and predicted tidal peaks
are offset (i.e., skewed) from each other (Pugh and Woodworth,
2014). It represents the meteorologically-forced increase of water
levels due to the net effect of winds, atmospheric pressure

(i.e., inverse barometer effect), nearby river discharge, and wave
setup, and is more clearly separated from the astronomically
forced-tides and potential complex hydrodynamics of tide-
surge interactions (Batstone et al., 2013; Mawdsley and Haigh,
2016; Williams et al., 2016; Stephens et al., 2020). Skew surge
levels are consistently less than the measures of maximum
NTR up to 30% (Hall et al., 2016; Callahan et al., 2021a).
There have been few studies of skew surge in the Mid-Atlantic.
Mawdsley and Haigh (2016) analyzed long term trends of skew
surge and Williams et al. (2016) investigated tide-skew surge
independence, but only a few Mid-Atlantic tide gages were
included in those analyses and neither performed traditional
EVA on skew surges. Callahan et al. (2021a) computed skew
surge at the same tide gauges as the current study but only
analyzed TCs.

Specific goals of this study are two-fold. First goal is to estimate
extreme skew surges within the Delaware and Chesapeake Bays
and investigate sub-bay geographic differences. Many tide gauges
in these bays started collecting data in the late 1970s and
only recently has there been sufficient geographic coverages
of gauges with records of at least 40 years of continuous
hourly data. Second goal is to compare the two common
traditional EVA approaches by implementing objective criteria
for model parameter selection. The BM approach is enhanced
to incorporate the GEVr distribution, a slightly modified form
of the GEV distribution that allows for the inclusion of multiple
values (the r-largest orders) per year instead of only the annual
maximum (see Skew Surge Return Levels section for details),
addressing the primary issue with the traditional BM approach
of the low number of data incorporated in the model. It is
not the intent of this paper to determine the “best” EVA
approach to use in all cases, but rather to better understand
the differences between them and to increase reliability of
projections of extreme water levels due to storms, ultimately
helping in long-term planning of mitigation and implementation
of adaptation measures.

MATERIALS AND METHODS

Study Region
The Delmarva Peninsula, located in the US Mid-Atlantic, is
flanked on both sides by the Delaware and Chesapeake Bays
(Figure 1). Tidal water levels and storm surges are influenced
by the geomorphological environment, geometry of the coastline,
bathymetry, bottom friction/dissipation effects, and reflection of
the wave near the head of the bay (Lee et al., 2017). Storm surge
is additionally influenced by storm size and direction of travel,
duration, atmospheric pressure, wind speed and wind direction
relative to the coastline (Ellis and Sherman, 2015). The Delaware
Bay has a classical funnel shape, with pockets of deep scour in
the wider lower bay, amplifying tidal range and storm surge in
the northern regions (Wong and Münchow, 1995; Lee et al.,
2017; Ross et al., 2017). The Chesapeake Bay, by contrast is
longer, shallower, exhibits a more dendritic tributary landscape,
and its lowest tidal ranges are toward the center (Zhong and
Li, 2006; Lee et al., 2017; Ross et al., 2017). Although coastal
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FIGURE 1 | Map of the Delaware and Chesapeake Bays with the 12 NOAA

tide gauges used in the current study: PHL, Philadelphia; RDY, Reedy Point;

CAP, Cape May; ATL, Atlantic City; BAL, Baltimore; ANN, Annapolis; CAM,

Cambridge; LWS, Lewisetta; KIP, Kiptopeke; SEW, Sewells Point; WAC,

Wachapreague.

storms threaten the region year-round, mean water levels follow
a bimodal seasonal distribution with the maximum in fall (Oct)
and secondary maximum in late spring (May–Jun), primarily
caused by periodic fluctuations in atmospheric weather systems
and coastal water steric effects (NOAA CO-OPS, 2020a). The
largest coastal flood events typically occur either during peak
hurricane season (Sept–Nov) or during the winter/early spring
from nor’easters (Dec–Mar).

Water Level Data and Computation of
Skew Surge
Tide gauges selected for this study were limited to NOAA
operational tide gauges in and immediately around the Delaware
and Chesapeake Bays. Requirements were that each gauge
maintained nearly continuous record of hourly water levels
for the time period 1980–2019, evenly located throughout the
region, a set of harmonic constituents identified for making tidal
predictions, and a vertical tidal datum conversion factor to North
American Vertical Datum of 1988 (NAVD88). In all, 12 gauges
were selected; 5 associated with the Delaware Bay and 7 with the
Chesapeake (Figure 1; Table 1). All selected gauges are part of
NOAA NWLON and PORTS networks.

TABLE 1 | Tide gauges used in the current study.

Station Code NOAA ID Bay Large data

gaps

Percent hourly

Philadelphia PHL 8545240 Delaware 0 99.23%

Reedy Point RDY 8551910 Delaware 5 95.61%

Lewes LEW 8557380 Delaware 0 99.73%

Cape May CAP 8536110 Delaware 2 98.35%

Atlantic City ATL 8534720 Delaware 2 98.08%

Baltimore BAL 8574680 Chesapeake 0 99.66%

Annapolis ANN 8575512 Chesapeake 1 98.70%

Cambridge CAM 8571892 Chesapeake 1 98.84%

Lewisetta LWS 8635750 Chesapeake 2 98.72%

Kiptopeke KIP 8632200 Chesapeake 0 99.78%

Sewells Point SEW 8638610 Chesapeake 0 100.00%

Wachapreague WAC 8631044 Chesapeake 6 89.30%

Percent hourly data based upon total number of hours in 1980–2019. Number of large

data gaps represent continuous gaps of 745 h (∼1 month) or more.

Hourly and High/Low water level data were obtained from
the NOAA Center for Operational Oceanographic Products and
Services (NOAA CO-OPS, 2020b). High/Low data represent the
exact time and magnitude of each Higher-High, High, Low,
and Lower-Low tidal peak. Hourly data represent the observed
water level on each hour (e.g., 21:00, 22:00). The 40 years of
hourly data at each gauge were manually inspected for errors
and inconsistencies. A few small data clusters (of 2–16 h) within
larger gaps of missing data were removed (on seven occasions
across all gauges) and small data gaps of 1–2 h (<10 across all
gauges) were filled using linear interpolation. Table 1 lists the
number of data gaps that spanned 745 h (∼1 month) or greater
as well as the percentage of valid hourly data points used in the
analysis. Wachapreague had the largest amount of missing data
due to a 2.5-year period (200511–200804) when valid Hourly and
High/Low data were unavailable.

Skew surge was computed at each tidal peak over 1980–2019
using modeled predicted time series as reference. Total count was
a maximum of 28,231 tidal peaks over the study time period, less
any missing data. The observed maximum TWL at each peak was
extracted from the High/Low dataset; the maximum hourly value
was used if High/Low data were not available. The observed and
predicted peaks were aligned within ±3 h of each other, which
was extended to ±6 h if no High/Low or TWL peak alignment
was found, such as due to prolonged surge; this occurred for
<100 peaks over the entire study time period and only for gauges
in the Chesapeake Bay.

Predicted tides were generated through Harmonic Analysis
(HA) based on hourly water levels. The HA incorporated
37 tidal constituents defined by NOAA for their official tide
predictions in this region (NOAA CO-OPS, 2020c) and seven
tidal constituents noted by Harris (1991) relevant for the US
East Coast. Computations were performed in 1-year increments
(3-year increments if greater than 1 month of data were
missing within a year). Annual computations minimize timing
errors that can lead to the leakage of tidal energy into the
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non-tidal residual (Merrifield et al., 2013). It also essentially
removes the SLR trend andminimizes inherent constituent biases
when computed over long time periods, which could result
from changing physiographical environmental conditions (Ross
et al., 2017) or from changing seasonal weather patterns that
strongly influence the Sa (solar annual) and SSa (solar semi-
annual) constituents (NOAA CO-OPS, 2007). More details on
the computation of skew surge can be found in Callahan et al.
(2021a).

Mean and standard deviation of skew surge, as well as
maximum TWL for comparison, were computed to get a
sense of the overall parent distribution. To help achieve
stationarity and independence of data samples required by
EVA, two further processes were performed on each gauge’s
time series. First, the data were linearly detrended about
the 1980–2019 mean (Table 2). Second, maximum peaks of
skew surge were separated temporally by 30 h to ensure at
least two high tides between each extreme event. Specifically,
multiple surges above each selected threshold (defined following
approaches in Block Maxima/GEVr Approach and Points-Over-
Threshold/GP Approach sections) within 30 h of each other were
treated as from a single event and only the maximum value
was chosen.

Block Maxima/GEVr Approach
The BM approach of modeling extreme values is to select
the maximum value within equal, independent blocks of time
over the study period, which are usually fit to the GEV
distribution. One-year blocks are commonly chosen (as in the
current study) since a common ultimate goal is to estimate
water levels of multiyear-based return periods for long-term
planning purposes. Using the BM approach in this traditional
way results in 40 data points over the years 1980–2019. The
GEV distribution actually represents the combined generalized
form of the Fréchet, Weibull, and Gumbel distributions,

TABLE 2 | Mean and standard deviation of maximum total water level (TWL) and

skew surge for all tidal peaks observed during 1980–2019.

Station Max TWL Skew surge Tidal datum

Mean SD Mean SD MHHW MSL GT

PHL 1.01 0.27 0.02 0.19 1.09 0.12 2.04

RDY 0.81 0.25 −0.01 0.17 0.99 −0.02 1.78

LEW 0.52 0.26 0.01 0.16 0.62 −0.12 1.42

CAP 0.65 0.26 0.01 0.15 0.74 −0.14 1.66

ATL 0.51 0.26 0.02 0.16 0.61 −0.12 1.40

BAL 0.19 0.24 0.00 0.18 0.25 −0.01 0.51

ANN 0.16 0.22 0.00 0.17 0.20 −0.02 0.44

CAM 0.25 0.20 0.00 0.16 0.29 −0.03 0.62

LWS 0.21 0.20 0.00 0.14 0.21 −0.02 0.46

KIP 0.27 0.20 0.01 0.14 0.32 −0.15 0.90

SEW 0.33 0.21 0.01 0.15 0.35 −0.08 0.84

WAC 0.50 0.24 0.02 0.15 0.57 −0.11 1.36

Mean Seal Level (MSL), Mean Higher-High Water (MHHW), and Great Diurnal Range

(GT) tidal datums defined by NOAA for the current National Tidal Datum Epoch (NTDE)

1983–2001. Water levels and datums referenced to NAVD88 meters.

which have cumulative distribution functions (CDF) defined
by Equation 2.1.

F (x|µ, σ , ξ)

= Pr (X > x) =







exp
[

−
(

1+ ξ
( x−µ

σ

))−1/ξ
]

, ξ 6= 0,

exp
[

− exp
(

−

(

x− µ
σµ

))]

, ξ = 0,
(2.1)

where the quantity 1 + ξ (x− µ) /σ =

max (1+ ξ (x− µ) /σ , 0), with location parameter µ, scale
parameter σ > 0, and shape parameter ξ. The shape parameter
controls the shape of the tail. The second line of Equation 1 (ξ
= 0) represents the Gumbel distribution and is found by taking
the limit as ξ → 0. When ξ > 0 (Frechet), the tail is thicker
than the Gumbel (i.e., “heavy-tailed”) with no upper bound,
whereas for ξ < 0 (Weibull), the distribution has a hard upper
limit at µ – σ/ξ. Coles (2001) provides a detailed description of
the BM/GEV approach.

A drawback of this approach is the limited number of data
points (i.e., one per year) used to fit the model. Therefore,
this method was generalized to include more than one value
for each independent block of time by Weissman (1978)
and later justified for use in hydrological studies, including
modeling sea level extremes, by Tawn (1988). This extension
of the BM approach allows for the use of the r-largest order
statistics per year, permitted that r << total number of events
per year. The key distinction of fitting data to the GEVr
distribution, as opposed to the GEV distribution, is the choice
of r. At r = 1, the GEV and GEVr are identical distributions.
Since r is not a specific parameter in the GEVr probability
density function, it cannot be estimated in the same way as
µ, ξ , or σ .

Several orders of r were tested from 1 to 20 events per
year. For each r, model parameters were estimated, and a series
of hypothesis tests run. The upper limit choice of 20 was
subjective but reasonable, as it would increase the number of
data points significantly (20 × 40 years = 880, ∼3% of all tidal
peaks over 1980–2019) while keeping r << 730, the maximum
number of twice-daily skew surge events per year. Ideally, r
should be large enough to include enough points to improve
the robustness of the model but not large enough to introduce
bias from the parent distribution and contaminating the EVD
model fit.

A set of rules were developed by G’Sell et al. (2016) and
furthered by Bader et al. (2017) to automate the selection of
an optimum value of r. These rules are based on the sequential
hypothesis tests for each r using the ForwardStop score and
unadjusted p value generated from parametric bootstrap and
entropy difference tests. The ForwardStop score is an adjusted
p-value to control for the incremental false discovery rate, similar
to a weighted mean of p-values of all tests on previous r values
(Bader et al., 2017). The over-riding principal here is to start
with a minimum number of data points and slowly increase the
sample size until the data points do not satisfactorily fit the GEVr
distribution. Following guidance provided in Bader et al. (2017),
the following procedure was adopted to identify the optimum r.

1. Start with r = 1 and note the ForwardStop score from the
parametric bootstrap test. Incrementally increase r by 1 until
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the ForwardStop score fails hypothesis test at the α = 0.05
level. If a failure occurs, that r is rejected and select the r just
prior to the failed test.

2. If no r values are rejected after traversing all 20, use the
ForwardStop score from the entropy difference test and repeat
Step 1.

3. If no r values were rejected following Step 2, then repeat Steps
1–2 using the unadjusted p-values computed for each r instead
of the ForwardStop score.

4. If no r values were rejected following Step 3, increase α to 0.10
and repeat Steps 1-3.

Using these guidelines, an optimum r was selected for each gauge.
The Goodness-of-Fit (GoF) was then tested between the Gumbel
distribution (ξ = 0) fit and the Fréchet/Weibull distribution (ξ
6= 0) fit using the negative log-likelihood ratio test (ratio must
be greater than 0.95) and Akaike Information Criterion (AIC)
test (the difference in AIC score between sequential tests must
be > 2, described in Burnham and Anderson, 2004). Maximum
likelihood estimation (MLE) was used for all GEVr model fits.
Temporal declustering of skew surge peaks was performed on an
annual basis in order for each of the r-largest orders per year to
be an independent event.

Points-Over-Threshold/GP Approach
In contrast to the BM approach, the POT approach is a more
natural way of statistically modeling the upper tail of a parent
distribution. The entire study period is treated as a single block
and the EVD includes only observations over a certain threshold
value (i.e., exceedances) regardless of time the event occurred.
The threshold is derived from a suitably high quantile level
(e.g., 97% quantile is commonly used). Exceedances are then
fit to the Generalized Pareto (GP) distribution. Like the GEV,
the GP distribution represents a family of three distributions,
differentiated by the model shape parameter, the CDFs of which
are in Equation 2.2.

F
(

x|µ, σµ, ζ
)

= Pr (X < x | X > µ) =







1−
[

1+ ξ
(

x−µ
σµ

)]−1/ξ
, ξ 6= 0,

1− exp
[

−

(

x− µ
σµ

)]

, ξ = 0,
(2.2)

where the quantity inside the brackets
[

y
]

= max
([

y
]

, 0
)

,
suitably high threshold µ, threshold-dependent scale parameter
σµ > 0, and shape parameter ξ. The condition is that all values
of x must be larger or equal to the threshold µ. Behavior
of the parameters is similar to that in the GEV. The shape
parameter controls the shape of the tail. The second line of
Equation 2.2 is found by taking the limit as ξ → 0, resulting
in the Exponential distribution. A heavy tail occurs when ξ

> 0 (Pareto distribution) with no upper bound, whereas a
thinner tail and a fixed upper bound occurs when ξ < 0 (Beta
distribution). Coles (2001) provides a detailed description of the
POT/GP approach.

Threshold quantiles were tested from 90–99.5% exceedance
probabilities in increments of 0.5% (from 1 to 20 thresholds),
resulting in the maximum number of possible skew surge
peaks used to model GP to be ∼2,920 (90%) to 146 (99.5%).

A threshold should be chosen to include enough upper tail
exceedances that will improve the robustness of the model
but not too many exceedances such that the lower values
introduce bias from the parent distribution. Scarrott and
MacDonald (2012) reviewed various methods on selecting the
optimum threshold, including numerical tests and graphical
diagnostics, such as Quantile-Quantile and Mean Residual Life
plots. Many of these selection methods are subjective, time-
consuming when investigating many sites, and often result
in multiple acceptable answers. Diagnostic plots were used
in the current study (Supplementary Figures 1–24), however,
to better compare results with BM/GEVr approach, a similar
standardized methodology was employed for selecting an
optimum threshold.

The rules developed by G’Sell et al. (2016) and Bader et al.
(2017) were applied to automate the selection of the optimum
threshold of the POT/GP approach in Bader et al. (2018).
Unadjusted p-values from Anderson-Darling test were chosen
in Bader et al. (2018) for threshold sequential hypothesis testing
after a comparison among several other GoF tests. Although,
Bader et al. (2018) recommends using ForwardStop score, based
on skew surge data in the current study, ForwardStop rejects very
few thresholds and the unadjusted p-values performed well in
Bader et al. (2018) tests. Using the same over-riding principal
here as with the BM/GEVr approach, start with the least number
of data points and slowly increase the sample size until the data
points do not satisfactorily fit the GP model. This is essentially
working backwards, from the highest to lowest threshold, noted
as the RawDown approach in Bader et al. (2018). A RawUp
approach, working upwards from the minimum threshold (i.e.,
most data points) until a hypothesis test was accepted, was
also described in Bader et al. (2018) but carries a higher
chance for contaminating the EVD than the RawDown approach.
Ultimately, the following rules were adopted to identify the
optimum threshold.

1. Start with highest threshold percentage (99.5%) and note
the unadjusted p-value from the Anderson-Darling test.
Incrementally decrease the threshold percentage by 0.5% until
the GP model fit fails hypothesis test at α = 0.05 level.
If a failure occurs, that threshold is rejected and select the
threshold just prior to the failed test.

2. If the highest threshold (99.5%) is rejected on the first
test but the second (99.0%) is not rejected, then skip the
highest threshold and continue working downward until next
rejection occurs. This allows for the opportunity to include
more exceedances in the model and assumes the rejection
occurred by chance.

3. If no thresholds were rejected following Step 2, increase α to
0.10 and repeat Steps 1–2.

Using these guidelines, an optimum threshold was selected
for each gauge. Temporal declustering was performed
separately for each threshold on all exceedances over
the entire study period at once. Declustering therefore
significantly reduced the actual number of skew surge
events used in fitting the GP model by ∼30–70%.
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As with the GEVr model, MLE was used for all GP
model fits.

Skew Surge Return Levels
Lastly, return level (RL) skew surges were estimated for 1.1,
3, 5, 10, 25, 50, and 100-year return periods for each EVA
modeling approach. A RL represents a threshold that the
probability of exceedance in any 1 year is the inverse of the
return period. For example, 100-year RL has a 1.0% (0.01)
probability of being exceeded in any 1 year. Since the 1-year RL
is undefined within the BM/GEVr approach, 1.1-year was used
instead for comparison.

Although probability quantiles can be easily extracted from
the GP theoretical distribution using the fitted parameters,
they cannot be viewed as annual probabilities of return levels,
such as can be done using the BM/GEVr approach. Therefore,
an estimate of the probability of a skew surge exceeding a
selected threshold in a year on average must be included in
RL calculations using the POT/GP approach. This is found by
dividing the total number of declustered skew surge events above
the selected threshold by the total number of years (40).

A qualitative review was performed on the estimated model
parameters and return levels, with their 95% standard errors (SE)
modeled using the selected optimum r (BM/GEVr) and threshold
(POT/GP). Differences between the EVA modeling approaches
and spatial variations were noted.

The harmonic analysis and tidal data processing work was
done using the U-Tide package (Codiga, 2011) and standard
modules in the Matlab programming environment. Temporal
declustering was performed using the POT package (Ribatet and
Dutang, 2019) and the EVAmodel fitting and RL extraction were

performed using the eva package (Bader and Yan, 2020), both of
the R statistical computing software environment.

RESULTS

Skew Surge
Mean skew surges are consistent and very close to zero across
all tide gauges whereas TWL shows much larger geographic
variation (Table 2). Although differences are minor, largest skew
surges (0.2m) are at PHL and the open ocean gauges at ATL
and WAC. TWL is consistently higher in the Delaware Bay than
the Chesapeake Bay. Within each bay, the Delaware Bay upper
regions have higher max TWL than the lower regions, whereas
this pattern is reversed in the Chesapeake Bay. Spatial pattern of
max TWL aligns with the Mean Higher-High Water (MHHW)
and Great Diurnal Range (GT) tidal datums (Figure 3), which
do not align with the spatial pattern of skew surge. Standard
deviations of skew surge show slightly more geographic variation
(ranging 0.14–0.19m) with a similar spatial pattern to the max
TWL and Mean Sea Level (MSL) tidal datum. Largest deviations
are in the upper bays and lowest in the central Chesapeake Bay.

None of the gauges showed statistically significant trends in
skew surge except for PHL, which showed a slight negative
trend of ∼ −0.3 mm/year, nevertheless, all gauge time series
were detrended. Note that for comparison, all gauges showed
statistically significant increasing trends in max TWL consistent
with local SLR rates (further analysis was not performed on max
TWL within this study.)

As an example of the parent vs. upper tail distributions,
Figure 2 (left panel) shows the histogram of all detrended skew
surges for the LEW tide gauge over the entire study time period
with a zoomed-in view of the upper tail (right panel). The

FIGURE 2 | Example demonstrating the “fat tail” nature of skew surge distribution for the NOAA tide gauge at Lewes, DE. Histogram includes all detrended skew

surges over 1980–2019 (left panel). Upper tail of the same data with Normal distribution model fitted to all data points (right panel). Note the upper tail of the

theoretical parent distribution under-represents empirical skew surge.
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FIGURE 3 | Example demonstrating GEVr Unadjusted p-values (top panel) and ForwardStop (bottom panel) results based on the Parametric Bootstrap and Entropy

Difference tests for r = 1–20, as defined in Bader et al. (2017). Following the guidelines outlined for the current study, optimum r = 14. Skew surge data for the NOAA

Lewes tide gauge over 1980–2019.

Normal distribution fit the parent distribution at p < 0.01, yet
significantly underestimates the empirical data in much of the
upper tail, emphasizing the importance of modeling extremes of
skew surge separately from the parent distribution.

Model Parameter Selection
Figure 3 shows an example of the GEVr sequential hypothesis
testing for the LEW gauge. No rejections occurred (below α

= 0.05) using ForwardStop score from either the parametric
bootstrap or entropy difference procedures. Starting from r
= 1 and sequentially comparing the unadjusted p-values, the
first rejection occurs at r = 15, resulting in the optimum
r = 14. Testing for the optimum threshold in the POT/GP
approach worked in the same way, albeit starting on the right
side of the unadjusted p-values plot and working downward
until a rejection occurs following guidance in Points-Over-
Threshold/GP Approach Section.

Table 3 and Figure 4 show resultant model parameters
estimated after selecting the optimum r in the BM/GEVr
approach at each gauge. The number of skew surge events per
year that were fit to the GEVr distribution, ranges from N =

120 (r = 3 at CAP, ANN, SEW) to N = 560 (r = 14 at LEW).
Both the location and scale parameters have small, consistent SE
relative to their magnitude across all sites. The shape parameter is
the most uncertain of all the parameters, although SE is relatively
consistent across all sites. Uncertainty is inversely related to the
total number of skew surge events ultimately used in the EVA
after declustering; the lower the number of events, the smaller the
SE. Shape parameter is positive at all sites except at WAC where
it is slightly negative. Based on the negative log-likelihood ratio
and AIC difference tests, none of sites favor the use of the GEVr

TABLE 3 | Results from GEVr distribution model fit of extreme skew surges for

tide gauges in the Mid-Atlantic region.

Station r Npks Location Scale Shape

PHL 7 280 0.636 (0.017) 0.134 (0.012) 0.082 (0.058)

RDY 11 440 0.547 (0.015) 0.117 (0.010) 0.039 (0.046)

LEW 14 560 0.699 (0.023) 0.180 (0.017) 0.102 (0.044)

CAP 3 120 0.602 (0.018) 0.128 (0.013) 0.121 (0.083)

ATL 6 240 0.700 (0.022) 0.166 (0.014) 0.034 (0.059)

BAL 12 480 0.611 (0.016) 0.128 (0.012) 0.113 (0.047)

ANN 3 120 0.566 (0.016) 0.112 (0.012) 0.165 (0.085)

CAM 11 440 0.561 (0.014) 0.111 (0.010) 0.062 (0.047)

LWS 10 400 0.507 (0.013) 0.106 (0.009) 0.064 (0.049)

KIP 4 160 0.566 (0.019) 0.140 (0.013) 0.075 (0.071)

SEW 3 120 0.671 (0.025) 0.178 (0.017) 0.093 (0.081)

WAC 11 418 0.691 (0.020) 0.156 (0.012) −0.057 (0.043)

R is the number of largest maxima per year included in the analysis. Npks is the number

of skew surge events after 30-h temporal declustering and is equal to r multiplied by

the number of years of data. Location, scale, and shape are model parameters fit using

maximum likelihood estimation with 95% standard error in parentheses.

Gumbel (ξ = 0) distribution over the GEVr Fréchet/Weibull (ξ
6= 0) distribution.

Similarly, Table 4 and Figure 3 summarize the results after
selecting the optimum threshold using the POT/GP approach
at each gauge. Threshold percentages range from 94.5% (ATL,
N = 732) to 99.0% (LEW, ANN, KIP, and SEW, N = 160, 194,
139, and 142, respectively.) Gauges that have the same optimum
threshold still result in different total number of skew surge
events due to temporal declustering. Scale parameter SE is low
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FIGURE 4 | Model fit parameters of extreme skew surges to the GEVr (red, top row) and GP (blue, bottom row) distributions. Location is a model parameter only for

GEVr distribution. Dotted lines represent the 90% confidence interval. Mean Sea Level (MSL), Mean Higher-High Water (MHHW), and Great Diurnal Range (GT) tidal

datums defined by NOAA for the current National Tidal Datum Epoch 1983–2001 referenced to NAVD88 meters.

TABLE 4 | Results from GP distribution model fit of extreme skew surges for tide

gauges in the Mid-Atlantic region.

Station Threshold Npks Scale Shape

PHL 94.50 744 0.124 (0.006) 0.020 (0.037)

RDY 96.50 497 0.108 (0.007) 0.034 (0.046)

LEW 99.00 160 0.166 (0.019) 0.032 (0.082)

CAP 93.50 784 0.129 (0.007) 0.004 (0.036)

ATL 94.00 732 0.146 (0.008) 0.034 (0.038)

BAL 98.50 301 0.087 (0.008) 0.187 (0.068)

ANN 99.00 194 0.097 (0.010) 0.123 (0.081)

CAM 96.00 641 0.104 (0.006) 0.016 (0.040)

LWS 98.50 211 0.094 (0.009) 0.071 (0.074)

KIP 99.00 139 0.144 (0.017) −0.015 (0.084)

SEW 99.00 142 0.174 (0.021) 0.044 (0.088)

WAC 98.00 224 0.151 (0.015) 0.052 (0.070)

Npks is the number of skew surge events above threshold percent quantile after 30-

h temporal declustering. Scale and shape are model parameters fit using maximum

likelihood estimation (MLE) with 95% standard error in parentheses.

while the shape parameter SE is relatively high across all sites.
Shape parameter is positive at all sites except at KIP where it
is slightly negative. Spatial patterns and relative uncertainties of
both the scale and shape parameter estimates are generally similar
between the two approaches.

Supplementary Figures 1–12 (BM/GEVr) and 13–24

(POT/GP) show diagnostic plots of the model fit using the
optimally selected r and threshold values at each tide gauge.
Included are probability-probability (PP) and quantile-quantile
(QQ) plots of the modeled vs. empirical data, and histograms

overlaid with model fit PDF curve. The PP plots and histograms
show good agreement between the model and observations. For
most gauges, the QQ plots show a few outliers with the observed
skew surge levels higher than modeled quantile estimates. The
LEW gauge did not show this behavior but rather at the largest
values, the modeled quantiles were larger than the observed data.

Skew Surge Return Levels
Skew surge return levels for 1.1, 3, 5, 10, 25, 50, and 100-year
return periods with 90% confidence intervals (i.e., uncertainty)
are shown in Table 5 for BM/GEVr and Table 6 for POT/GP.
For the sake of brevity and ease of comparison, only the
mean values are plotted in Figure 5. Note the more traditional
continuous RL curves with confidence intervals are included
in Supplementary Figures 25–26, and additionally plotted with
empirical data in panel 4 of Supplementary Figures 1–24. RLs
increase in a consistent manner with longer return periods
at all sites under both modeling approaches. For BM/GEVr,
100-year RLs range from 1.07m (LWS) to 1.79m (LEW)
with generally largest values starting in the lower bay regions,
decreasing to a minimum in the central regions, then increasing
toward the upper regions. This pattern is similar across all RLs.
LEW and SEW have the largest RLs for most return periods,
except for the 1.1-year return period, where the maximum
RL is at ATL (although several other sites are very close).
Longer return periods demonstrate more spatial variation in
RLs. Using POT/GP, 100-year RLs range from 1.08m (LWS) to
1.56m (LEW), with approximately the same spatial pattern as
with BM/GEVr.

There are few differences in RLs between approaches (Table 7;
Figure 6). The most noticeable is that the 1.1-year RLs using
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TABLE 5 | Estimated skew surge return levels for 1.1, 3, 5, 10, 25, 50, and 100-year return periods modeled using the BM/GEVr approach for tide gauges in the

Mid-Atlantic region.

Station 1.1-year 3-year 5-year 10-year 25-year 50-year 100-year

PHL 0.52 (0.04) 0.76 (0.12) 0.85 (0.16) 0.97 (0.25) 1.13 (0.40) 1.25 (0.55) 1.38 (0.74)

RDY 0.45 (0.04) 0.65 (0.09) 0.73 (0.12) 0.82 (0.18) 0.95 (0.27) 1.04 (0.35) 1.14 (0.45)

LEW 0.55 (0.06) 0.87 (0.16) 0.99 (0.23) 1.16 (0.35) 1.38 (0.55) 1.56 (0.75) 1.76 (0.99)

CAP 0.50 (0.05) 0.72 (0.12) 0.81 (0.18) 0.93 (0.30) 1.10 (0.54) 1.24 (0.81) 1.39 (0.99)

ATL 0.56 (0.06) 0.85 (0.14) 0.96 (0.20) 1.09 (0.30) 1.26 (0.48) 1.39 (0.66) 1.53 (0.88)

BAL 0.50 (0.04) 0.73 (0.11) 0.82 (0.15) 0.94 (0.23) 1.10 (0.36) 1.24 (0.49) 1.38 (0.65)

ANN 0.47 (0.04) 0.67 (0.11) 0.76 (0.16) 0.87 (0.26) 1.04 (0.47) 1.18 (0.64) 1.34 (0.72)

CAM 0.47 (0.04) 0.66 (0.09) 0.74 (0.13) 0.83 (0.20) 0.95 (0.31) 1.05 (0.41) 1.15 (0.54)

LWS 0.42 (0.03) 0.61 (0.09) 0.67 (0.12) 0.76 (0.18) 0.88 (0.27) 0.98 (0.37) 1.07 (0.48)

KIP 0.45 (0.05) 0.70 (0.13) 0.79 (0.19) 0.91 (0.31) 1.07 (0.55) 1.20 (0.79) 1.33 (1.11)

SEW 0.52 (0.07) 0.84 (0.16) 0.96 (0.24) 1.12 (0.39) 1.33 (0.70) 1.51 (1.02) 1.69 (1.43)

WAC 0.55 (0.06) 0.83 (0.11) 0.92 (0.14) 1.02 (0.19) 1.15 (0.26) 1.24 (0.32) 1.32 (0.39)

90% confidence intervals in parentheses.

TABLE 6 | Estimated skew surge return levels for 1.1, 3, 5, 10, 25, 50, and 100-year return periods modeled using the POT/GP approach for tide gauges in the

Mid-Atlantic region.

Station 1.1-year 3-year 5-year 10-year 25-year 50-year 100-year

PHL 0.66 (0.06) 0.79 (0.11) 0.86 (0.14) 0.95 (0.19) 1.08 (0.27) 1.18 (0.35) 1.28 (0.44)

RDY 0.56 (0.06) 0.68 (0.10) 0.74 (0.27) 0.83 (0.18) 0.95 (0.26) 1.04 (0.34) 1.14 (0.43)

LEW 0.72 (0.08) 0.90 (0.16) 0.99 (0.22) 1.12 (0.35) 1.29 (0.61) 1.43 (0.88) 1.56 (1.23)

CAP 0.62 (0.06) 0.75 (0.11) 0.82 (0.14) 0.91 (0.19) 1.03 (0.27) 1.12 (0.34) 1.21 (0.42)

ATL 0.71 (0.08) 0.88 (0.14) 0.97 (0.18) 1.08 (0.25) 1.25 (0.36) 1.37 (0.46) 1.50 (0.58)

BAL 0.61 (0.06) 0.76 (0.13) 0.84 (0.19) 0.97 (0.30) 1.16 (0.52) 1.33 (0.77) 1.53 (1.09)

ANN 0.58 (0.06) 0.71 (0.11) 0.78 (0.16) 0.88 (0.25) 1.03 (0.42) 1.16 (0.60) 1.30 (0.84)

CAM 0.58 (0.05) 0.69 (0.09) 0.74 (0.11) 0.82 (0.15) 0.93 (0.21) 1.01 (0.27) 1.09 (0.34)

LWS 0.52 (0.05) 0.63 (0.10) 0.69 (0.13) 0.77 (0.20) 0.89 (0.32) 0.98 (0.44) 1.08 (0.60)

KIP 0.59 (0.07) 0.73 (0.12) 0.80 (0.16) 0.89 (0.25) 1.02 (0.41) 1.11 (0.58) 1.20 (0.80)

SEW 0.69 (0.09) 0.88 (0.16) 0.98 (0.23) 1.12 (0.35) 1.31 (0.60) 1.46 (0.85) 1.61 (1.17)

WAC 0.68 (0.08) 0.85 (0.22) 0.94 (0.36) 1.07 (0.32) 1.25 (0.51) 1.38 (0.77) 1.53 (1.25)

90% confidence intervals in parentheses.

BM/GEVr (0.45–0.56m) are significantly lower than using
POT/GP (0.52–0.72m) at all sites. At the other extreme,
BM/GEVr 100-year RLs are generally higher, mostly in the upper
bay regions, with LEW (0.19m) and CAP (0.17m) showing the
largest positive differences betweenmethods. BAL (−0.15m) and
WAC (−0.20m) are exceptions, with higher 100-year RLs using
POT/GP. Most return periods between 3-year and 50-year show
small differences in RLs across most gauges.

Uncertainty also increases with longer return periods under
both approaches, as expected. At 1.1-year return period the
uncertainties are <0.10m, and range 0.18–0.39m at 10-year, and
0.30–1.43m at 100-year. Sites in the Chesapeake Bay, under both
approaches, exhibit spatial variation in uncertainty similar to that
of the mean RL estimates, with the largest uncertainties in the
lower bay regions, smallest in the central regions, and increasing
in the upper regions. WAC is an exception to this with small
uncertainty under BM/GEVr. Sites in the Delaware Bay also show
this same pattern in uncertainty with BM/GEVr but not POT/GP,

under which CAP and ATL (sites in the lower bay region) show
small uncertainties.

Generally, uncertainties under both approaches are very
similar to each other at shorter return periods. At longer
return periods in the Delaware Bay, uncertainties are smaller
using POT/GP for most sites. At longer return periods in the
Chesapeake Bay, generalization is more difficult; BAL (−0.44m
at 100-year) and WAC (−0.87m at 100-year) have significantly
smaller uncertainties using BM/GEVr while many other sites
have smaller uncertainties using POT/GP.

DISCUSSION

The focus areas of the current study is to investigate the
magnitude and geographic variation within the Delaware and
Chesapeake Bays of estimated return levels of skew surge for
∼1-year to 100-year return periods and to compare the two
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FIGURE 5 | Estimated skew surge return levels for periods of 1.1, 3, 5, 10, 25, 50, and 100 years using the BM/GEVr (left panel) and POT/GP (right panel)

approaches for tide gauges in the Mid-Atlantic region, 1980–2019.

TABLE 7 | Difference in estimated skew surges and 90% confidence intervals (in parentheses) for 1.1, 3, 5, 10, 25, 50, and 100-year return periods modeled from GEVr

and GP distribution for tide gauges in the Mid-Atlantic region.

Station 1.1-year 3-year 5-year 10-year 25-year 50-year 100-year

PHL −0.13 (−0.02) −0.03 (0.01) −0.01 (0.02) 0.01 (0.06) 0.05 (0.13) 0.07 (0.20) 0.11 (0.30)

RDY −0.11 (−0.02) −0.03 (−0.01) −0.02 (−0.15) −0.01 (0.00) −0.01 (0.00) 0 (0.01) 0 (0.02)

LEW −0.17 (−0.03) −0.03 (0.01) 0 (0.01) 0.04 (0.00) 0.09 (−0.06) 0.14 (−0.13) 0.19 (−0.23)

CAP −0.12 (−0.02) −0.03 (0.01) −0.01 (0.04) 0.02 (0.11) 0.07 (0.27) 0.12 (0.47) 0.17 (0.57)

ATL −0.16 (−0.02) −0.03 (0.00) −0.01 (0.02) 0 (0.05) 0.01 (0.12) 0.02 (0.20) 0.03 (0.30)

BAL −0.11 (−0.02) −0.02 (−0.03) −0.02 (−0.04) −0.03 (−0.08) −0.06 (−0.17) −0.10 (−0.28) −0.15 (−0.44)

ANN −0.11 (−0.02) −0.03 (−0.01) −0.02 (0.00) −0.01 (0.02) 0 (0.05) 0.02 (0.05) 0.04 (−0.12)

CAM −0.11 (−0.02) −0.02 (0.01) −0.01 (0.02) 0.01 (0.05) 0.03 (0.09) 0.05 (0.14) 0.07 (0.21)

LWS −0.10 (−0.02) −0.02 (−0.01) −0.01 (−0.01) −0.01 (−0.02) −0.01 (−0.04) −0.01 (−0.07) −0.01 (−0.12)

KIP −0.14 (−0.02) −0.03 (0.01) −0.01 (0.03) 0.01 (0.06) 0.05 (0.13) 0.09 (0.21) 0.13 (0.31)

SEW −0.17 (−0.02) −0.04 (0.00) −0.02 (0.01) 0 (0.04) 0.03 (0.10) 0.05 (0.18) 0.08 (0.26)

WAC −0.13 (−0.02) −0.03 (−0.11) −0.03 (−0.22) −0.05 (−0.13) −0.10 (−0.26) −0.15 (−0.45) −0.20 (−0.87)

Negative values mean GP estimates are greater than GEVr estimates.

most common traditional EVA approaches. Although skew surge
is arguably one of the best and simplest measures of the
meteorological drivers of coastal flooding, as it is the portion
of flood depth above the high tide level, its wider use in
literature has only recently gained attention. This work was
done strictly through empirical data (rather than using simulated
events or scenario-based projections) over the past 40 years
and statistically analyzed through stationary EVA on detrended
skew surges. Observational data showed minimal trends over
this time period, hence results from this study should not be
appreciably different than non-stationary EVA that allows for
temporally varying or multivariable dependent location and scale
parameters. To test the robustness of the methods, the POT/GP

approach presented here was applied to max TWL and resulting
return levels compared against those found in U. S. Army Corps
of Engineers (2014), who performed a similar EVA using longer
time periods. Seven tide gauges were analyzed in both studies:
LEW, CAP, ATL, BAL, ANN, CAM, and SEW. Although they
used different thresholds, detrending methods, and reference
periods, the general spatial and temporal trends were consistent
between the two studies, including the intervals between the 50-
year and 100-year RLs. Largest differences were found for longer
return periods at BAL and ANN, sites that have experienced
extreme coastal flooding outliers (Callahan et al., 2021b).

Due to the approximate independence of skew surge to
SLR and tidal phase (i.e., likely minor influences of tide-surge
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FIGURE 6 | Estimated return levels (solid line) and 90% confidence intervals (dotted line) using the BM/GEVr (red line) and POT/GP (blue line) approaches.

interactions at our sites), extreme return levels can reasonably be
linearly added to future SLR scenarios as a first approximation
for planning (Delaware Flood AvoidanceWorkgroup (DE FAW),
2016; Federal Emergency Management Agency (FEMA), 2016).
For example, if a structure is designed to withstand the 50-
year flood event, the 50-year return levels can be added
to the expected high tide (either the MHWW or Highest
Astronomical Tide datum) under an appropriate SLR planning
scenario. It should be noted that skew surge computed in this
study includes contributions from other aspects associated with
extreme flooding events, such as nearby river discharge and
wave setup, which ultimately likely benefits many long-term
planning activities. As well, trends in skew surge were minor
and mean values were within a few centimeters of zero over
1980–2019 (Table 2), however, an adjustment to skew surge
RLs due to detrending could be performed. Care is warranted
when making linear adjustments too far into the future due
to the expected exponential increase in SLR and uncertainty
in future extreme storm conditions along the Mid-Atlantic
(Callahan et al., 2017, 2021b).

Largest return levels across most return periods occur within
the bay boundaries in the lower regions, and not in the upper
regions of the bays and ocean coast sites that typically show
higher surges and TWLs. Specially, LEW and SEW gauges,
both located on the southwest side of the mouth of each bay,

consistently show the largest RLs throughout the region. One
explanation is that many large coastal flood events are associated
with ETCs, often as traditional nor’easters. For these storms, the
low-pressure center off the coast brings strong northeast winds,
which drives enhanced surges into the bays through Ekman
transport as well as direct winds piling up water on the southwest
sides of the lower bays. This would be most effective in the
lower Delaware Bay, where the width of the Bay reaches 45 km.
The upper Delaware Bay, although it experiences large tidal
ranges and increased surges (due to conical shape of coastline
and from the increased volume of water entering the bay from
southeasterly to easterly winds), may not experience the worst
impacts from the most extreme storm events and may actually
see decreases in surges from northerly winds that also occur
during nor’easters. The upper Chesapeake Bay does not exhibit
the same high TWL, MHHW, or surges as in the upper Delaware
Bay (primarily due to the overall size, shape, and depth of the
Chesapeake Bay), however, extreme skew surge RLs in both upper
regions are comparable to each other. This supports results in
Callahan et al. (2021a), which found the upper bays were highly
correlated with each other from TC-caused skew surges, more so
than with their respective lower bay regions. TCs can account
for close to 40–60% of the largest (top 10) coastal flooding
events in the Mid-Atlantic, with smaller relative percentages over
larger number of events (Booth et al., 2016; Callahan et al.,
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2021b). In particular for the upper Chesapeake Bay, Hurricane
Isabel in 2003 caused extreme coastal flooding compared to
other events, directly influencing higher return period RLs and
their uncertainties.

RLs tend to be at a minimum within each bay closer to the
central regions, CAM and LWS in the Chesapeake and RDY
in the Delaware Bays. These areas have the lowest mean skew
surges throughout the region and typically do not experience
the worst wind-driven impacts from coastal storms. Likewise,
these areas also exhibit the smallest uncertainties throughout the
region across many return periods.

A secondary focus of this study is to provide insight into
the two most common approaches of stationary EVA applied to
Mid-Atlantic skew surge. To that end, the GEVr distribution was
combined with the BM approach to address the small sample
size of the traditional annual max BM/GEV approach, and a
standardized method for selecting optimum r and threshold was
incorporated. The use of GEVr increases the robustness of the
model fit and puts the number of data points more comparable
to the POT/GP approach, however, there are some disadvantages
of using a BM approach. Large surge events could be missed, for
example, if an individual year hasmoremajor coastal flood events
than the selected optimum r (i.e., false positives). At the other
end, non-extreme surge events could be included, for example,
if an individual year has less major coastal flood events than the
selected optimum r, introducing bias from the parent distribution
(i.e., false negatives). Use of the POT/GP approach circumvents
these issues as it is irrespective of time, solely focused on the
upper tail of the parent distribution. A potential trade-off is if
the majority of extreme events occur toward either end of the
study time period, direct interpretation of annual return levels
from the mean number of events per year is more difficult. From
review of the data used in the current study, clustering of major
skew surge events occurring on either end of the time period was
not present.

The choice of optimum r or threshold is a tricky problem
to address. It is usually a subjective process, including graphical
and numerical diagnostic information, and choosing among
multiple appropriate candidates. The current study incorporates
a standardized methodology of sequential hypothesis texting
that can be applied to all sites simultaneously while allowing
for variable r/threshold selection per site. Although stopping
rules and goodness of for tests are still subjective within
this methodology, they are data-driven, based on statistical
results from Bader et al. (2017, 2018). Choice of stopping
rules influences the number of data points (r-largest orders
or threshold exceedances), and hence, directly influence the
uncertainty in model parameters. Uncertainty in RLs do not
consistently show strong dependence on the number of peaks
included in the model fit. This potential relationship of RL
uncertainty and optimum r/threshold should be explored further
in future work.

Changes in storm frequency and intensity (“storminess”),
either observed or projected due to climate change, were
not addressed in this study. As stated above, skew surge is
closely related to the meteorological characteristics driving
the flooding and relatively independent of SLR or tides.

Trends in skew surge are therefore influenced by oscillations
and trends in oceanic-atmospheric circulation patterns that
support enhanced cyclogenesis or steer storms along the coast.
Common teleconnections associated with the frequency or
magnitude of surges in theMid-Atlantic region include the North
Atlantic Oscillation, Pacific-North American oscillation, El
Nino/Southern Oscillation, and AtlanticMeridional Overturning
Circulation, several of which have been included as covariates
in non-stationary EVA or joint-probability models of surges in
recent years (Ezer et al., 2013; Sweet et al., 2014; Hamlington
et al., 2015; Wahl and Chambers, 2015; Kopp et al., 2019; Little
et al., 2019; Rashid Md et al., 2019). The 40-year time period of
the current study is long enough to capture several oscillations
of many of these teleconnections, essentially averaging out
their influence. Extreme RLs then can be viewed as based on
relative average synoptic conditions, however, the probability
of occurrence of an extreme surge event in any single year is
dependent upon the presence and strength of teleconnection
patterns, and assessment should be performed as near to the year
in question as possible.

Other aspects of this study could have influenced extreme
surge estimates. Most notably is the length of the data record,
as is usually the case in EVA. Although there exists general
agreement with results in U. S. Army Corps of Engineers (2014),
40 years of data to estimate 100-year RL is not ideal. Comparing
EVA results on skew surge using the methods presented in the
current study on a subset of gauges with much longer records,
perhaps one gauge per sub-bay region, could offer insight into the
robustness of the current study statistical results. Additionally,
the set of 44 constituents used in the HA computation of the
predicted tide may not capture all the tidal oscillations present at
every site, thereby impacting the magnitude of skew surge (albeit
these changes likely would be minimal). The choice of 30 hours
was subjective and may not be optimum at all sites to separate
individual skew surge events, although it is rare for a single storm
event to reach extreme surge levels multiple times separated by
two or more high tides.

CONCLUSION

Understanding extreme events is important because of their
potential for disproportionate damage and threat to public
health, which will aid in mid- to long-term planning of many
coastal communities and critical ecosystems along their shores.
Across most of the return periods, the largest return levels occur
at LEW and SEW, which are within the bay boundaries in
the southwest side of the lower regions of their respective bay.
Likewise, minimum return levels occur near the central regions
of each bay, at RDY and LWS. This may seem counterintuitive
for the Delaware Bay where the upper bay (PHL) experiences
high water levels and tidal ranges but is consistent with wind and
ocean current patterns for offshore storms in this region.

Determination of which approach is “best” for modeling
extreme skew surge events in the Mid-Atlantic is not a goal of the
current study. Nevertheless, differences between the approaches
are highlighted and some general recommendations can bemade.
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Overall, both approaches provide similar results. Confidence
in model parameters is good and consistent across all sites
between both approaches, with narrow confidence intervals for
the location and scale parameters. Confidence is less for shape
parameter but is generally the same for both approaches. Not
many differences in magnitude of RLs exist, especially for 3-year
to 100-year return periods, which helps justify comparisons of
extreme levels of surge among previous EVA studies in this region
(at least for skew surge).

For the 1.1-year return period, the POT/GP approach
provides more consistent values in respect to other return
periods across both bays. This is likely due to the effects of
estimating RLs from the GEVr distribution close to 1-year. For
the Delaware Bay at longer return periods, the POT/GP also
seems to perform well (lower uncertainty) at most sites and
therefore could be used at all return periods up to 100 years.
This finding is supported by U. S. Army Corps of Engineers
(2014) statements that traditional BM/GEV approach tends to
overestimate and have larger uncertainties when compared to
POT/GP. Recommendations are more mixed for the Chesapeake
Bay for return periods at 3-year and above. Results at ANN
and LWS are nearly identical for both approaches. For KIP and
SEW, sites in the lower Chesapeake Bay, lower uncertainties
and slightly lower RLs tend toward the POT/GP approach.
Conversely, BAL (upper region) and WAC (ocean coast) tend
toward the use of the BM/GEVr approach.
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particularly in the Mid-Atlantic region. However, by definition,
extreme events are rare and difficult to model due to small
sample sizes. Results from this study provide estimates of
extreme skew surge, a less often studied but robust measure
of the meteorological component of coastal flood levels, for
return periods of 1.1 to 100 years. This study also aims to
increase understanding and reliability of projections of extreme
water levels using methods commonly found in the literature
and ultimately help in long-term planning of mitigation and
implementation of adaptation measures.
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