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Global food and water insecurity could be serious problems in the upcoming decades

with growing demands from the increasing global population and more frequent effect of

climatic extremes. As the available water resources are diminishing and facing continuous

stress, it is crucial to monitor water demand and water availability to understand the

associated water stresses. This study assessed the water stress by applying the water

supply stress index (WaSSI) in relation to green (WaSSIG) and blue (WaSSIB) water

resources across six major cropland basins including the Mississippi (North America),

San Francisco (South America), Nile (Africa), Danube (Europe), Ganges-Brahmaputra

(Asia), and Murray-Darling (Australia) for the past 17-years (2003–2019). The WaSSIG
andWaSSIB results indicated that the Murray-Darling Basin experienced the most severe

(maximum WaSSIG and WaSSIB anomalies) green and blue water stresses and the

Mississippi Basin had the least. All basins had both green and blue water stresses for at

least 35% (6 out of 17 years) of the study period. The interannual variations in green water

stress were driven by both crop water demand and green water supply, whereas the

blue water stress variations were primarily driven by blue water supply. The WaSSIG and

WaSSIB provided a better understanding of water stress (blue or green) and their drivers

(demand or supply driven) across cropland basins. This information can be useful for

basin-specific resource mobilization and interventions to ensure food and water security.

Keywords: evapotranspiration, green and blue water, water stress, drought, food security

INTRODUCTION

Water resources are critical for providing human needs of water, energy, and food, and preserving
healthy ecosystems (Bhaduri et al., 2016; Vanham, 2016). Increasing water demands from the
growing population and shifting lifestyles are increasing competition within and among water
use sectors (Molden, 2007). Additionally, climate change is deteriorating water resources (Scanlon
et al., 2007) and fueling more stress on water resources (Hanjra and Qureshi, 2010; Siegfried
et al., 2012), resulting in conflicts during water shortages (Eriksen and Lind, 2009; Theisen et al.,
2012; Tang et al., 2018). Water stress assessments at local to regional scale are increasingly crucial
to understand the vulnerability and resiliency of water resources. In particular, assessing water
stress associated with crop water use (or evapotranspiration) and its relationship with green
water (precipitation) or blue water (surface water and groundwater) sources provides integrated
information on food and water status.
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Global water supply is declining but the water demand has
tripled since the 1950s (Gleick, 2003). Approximately 1.4 billion
people live in river basins where water use is larger than water
recharge rates (UNDP, 2006) with the projection that more
than half of the global population will live in areas that suffer
water scarcity at least a month each year by 2050 (WWAP,
2018). Several river basins and regions with large cropland areas
that are heavily dependent on blue water irrigation could face
critical challenges for food and water security because irrigation
is the first sector to lose water when the water scarcity increases
(Molden, 2007). For example, the Ganges-Brahmaputra, the
largest basin in Asia with ∼32% of its total area as irrigated
croplands (Thenkabail et al., 2016), may face reductions in blue
water availability for irrigation due to increasing competition
among the water use sectors (Flörke et al., 2018). The southern
High Plains of the United States (U.S.), a heavy blue water-
dependent irrigated region, is diminishing due to unsustainable
groundwater withdrawal (Scanlon et al., 2012). The continuous
depletion of groundwater level would result in more than a third
of the region being unable to support irrigation within the next
30 years (Scanlon et al., 2012). With the continuous effects of
frequent and severe droughts in agriculture and its projected
effects in the future (Li et al., 2009; van Asten et al., 2011; Howitt
et al., 2014), the irrigated croplands (∼20% of the global cropland
area) may undergo severe water stress due to blue water shortages
and could cause significant reduction to food production (Siebert
and Döll, 2010; Leng and Hall, 2019).

Conversely, rainfed agriculture (∼80% of the global cropland)
is dependent on green water, which contributes to more than
half of the global food production (Rosegrant et al., 2002). Food
production in some regions is completely dependent on green
water-supplied rainfed agriculture such as in Sub-Saharan Africa
(Alexandratos, 1995). River basins with large portion as rainfed
croplands are also under food and water security threat due
to climate change-induced variabilities in precipitation (Kang
et al., 2009). For example, the largest basins in Europe—the
Danube Basin has almost two-third (∼64%) of its area as rainfed
croplands and several sub-regions could face severe water stress
due to the shortage of green water availability from the projected
reduction in precipitation (Bisselink et al., 2018; ICPDR, 2018).
For such green water-dependent cropland basins, indicators for
monitoring the crop water use and green water availability
provide useful information to detect the associated water stress.
Similarly, for the basins with blue water-dependent cropland,
indicators that monitor blue water use and availability are more
useful than other water stress indicators for better decision
making. Thus, the stress indicators that integrate the water use
and water availability information relating to the type of water
resources (i.e., blue and green) will help to better characterize
water stresses.

Water stress at a basin scale is commonly quantified as a ratio
of water demand (or water use) to water availability (Falkenmark
et al., 2007; Sun et al., 2008; Richey et al., 2015). One of the
several water stress indices to detect water stress at basin scale
is the water supply stress index (WaSSI) (Sun et al., 2008),
originally developed to simulate water stress based on water
demand and water supply on an annual time-step (Sun et al.,

2015). The WaSSI has been applied to model and predict water
stress caused by increasing human population, land-use change,
and climate change (Sun et al., 2008, 2015; Caldwell et al., 2012;
Duan et al., 2019) across several basins worldwide (Ji et al., 2012;
Eldardiry et al., 2016; McNulty et al., 2016; Tang et al., 2018;
Zhang et al., 2018). However, only a few studies have applied
the WaSSI to understand the contribution of different water
use sectors to basin water stress. Averyt et al. (2013) assessed
the contribution of different water use sectors across the 8-digit
Hydrological Unit Code (HUC8) (Seaber et al., 1987) scale basins
in the U.S. The study reported agriculture as the main sector
contributing to water stress at about two-thirds of the water-
stressed HUC8 basins in the U.S. Larger contributions to water
stress from the agricultural sector were observed across HUC8
basins in the western U.S., where there are fewer surface water
resources compared to the eastern U.S. (Averyt et al., 2013).
Similar studies with further investigation of green and blue water
use and availability across agricultural regions would help to
understand the vulnerability and resiliency of those regions for
food and water security.

This study aims to assess water stress of six major cropland-
dominated basins from six continents (Mississippi in North
America, Sao Francisco in South America, Danube in Europe,
Nile in Africa, Ganges-Brahmaputra in Asia, and Murray-
Darling in Australia) by applying the WaSSI and by associating
the index with green (WaSSIG) and blue (WaSSIB) water
resources. The WaSSIG and WaSSIB were generated for the
time period from 2003 to 2019 to investigate the significance of
green or blue water resources and associated water stresses. The
water stress information with integration to green and blue water
resources is useful for resource mobilization and interventions to
improve and ensure food and water security for human use and
the environment.

MATERIALS AND METHODS

Study Site
The six major river basins from six continents were selected
for this study (Figure 1). The selection of these basins was
based on being one of the major basins in each continent that
has large cropland areas facing challenges on water availability
for food production. The basin sizes are between 52.0 × 104

km2 (Sao Francisco Basin in South America) and 344.7 × 104

km2 (Mississippi Basin in North America). These basins have
croplands (rainfed and irrigated) varying between ∼20% (Nile
Basin in Africa) and ∼72% (Danube Basin in Europe) of their
basin area (Table 1). All basins have larger rainfed cropland areas
than irrigated cropland areas except the Ganges-Brahmaputra in
Asia, which has ∼30% of basin area irrigated and ∼22% rainfed.
The study basins cover wide variations in climate from warm
temperate humid in southeastern regions of theMississippi Basin
to arid desert in northern regions of the Nile Basin (Kottek
et al., 2006). Among the basins, the Murray-Darling (Australia)
had the lowest average annual precipitation of 436 mm/year
and the Ganges-Brahmaputra had the highest average annual
precipitation of 1,268 mm/year during the study period from
2003 to 2019 (Table 1).
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FIGURE 1 | The global map showing the location of six study basins (A), including Mississippi (B), Sao Francisco (C), Danube (D), Nile (E), Ganges-Brahmaputra (F),

and Murray-Darling (G). The dashed black color line inside the basins represents the major rivers. The croplands map is from the Global Food Security Support

Analysis Data (https://lpdaac.usgs.gov/products/gfsad1kcmv001/) and basin boundaries are from World Resources Institute (https://www.wri.org/).
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TABLE 1 | Study basins with respective continents, basin area, cropland area, irrigated area, and average (2003–2019) annual precipitation.

Basin Continent Basin area, ×104

km2

Cropland area, ×104

km2 (% of basin)

Irrigated area, ×104

km2 (% of basin)

Precipitation,

mm/year

Mississippi North America 344.7 200.8 (58%) 36.4 (11%) 817

Sao Francisco South America 52.0 24.3 (47%) 1.1 (2%) 896

Danube Europe 93.8 67.7 (72%) 5.2 (6%) 799

Nile Africa 255.9 50.7 (20%) 8.5 (3%) 654

Ganges-Brahmaputra Asia 151.0 78.2 (52%) 44.9 (30%) 1,268

Murray-Darling Australia 100.1 37.8 (38%) 7.6 (8%) 436

The basin boundaries from World Resources Institute (https://www.wri.org/) were used to calculate zonal statistics aggregated over each basin. Cropland area and irrigated area were

calculated using cropland maps from the Global Food Security Support Analysis Data (https://lpdaac.usgs.gov/products/gfsad1kcmv001/). Basin-averaged annual precipitation was

calculated using precipitation maps from Oregon State University (https://prism.oregonstate.edu/).

Green and Blue WaSSI
Water demands from different water use sectors such
as agriculture, industry, public supply, and others are
primarily supplied by precipitation (green water) and surface
water/groundwater (blue water). In this study, the water supply
stress index (WaSSI), a ratio of water use to water available,
was generated for croplands to evaluate the water stress
associated with water use and water availability. The WaSSI
was partitioned into green WaSSI (WaSSIG) and blue WaSSI
(WaSSIB) based on the supply source for either green or blue
water in the study basins. Because the green water is applied
to all croplands regardless of rainfed or irrigated, all cropland
area was used for computing WaSSIG. But this could create
an exaggerated WaSSIG over irrigated areas because part of
the crop water use (or actual evapotranspiration, ETa) is met
by irrigation. However, due to the difficulty of quantifying
the partial contributions of precipitation and irrigation to the
index, the inter-basin differences are driven by the supply source
(precipitation or runoff) to meet the ETa, representing the
total crop water demand that is met. In all basins, the relative
proportion of rainfed areas is much larger than irrigated area
except for the Ganges-Brahmaputra Basin (Table 1), thus the
basin-scale estimates are in proportion to the relative area under
rainfed or irrigation for WaSSIG. For computing WaSSIB, only
ETa from the irrigated cropland area was used as the blue water
is supplied to irrigated croplands only. Similar to WaSSIG, the
total ETa over the irrigated areas was used for WaSSIB, but the
supply is attributed to the runoff instead of precipitation. The
WaSSIG and WaSSIB for each basin and year were computed as:

WaSSIG =

1
n

∑n
1 All cropland water use (ETa)

1
n

∑n
1 Green water available (precipitation)

(1)

WaSSIB =

1
n

∑n
1 Irrigated cropland water use (ETa)

1
n

∑n
1 Blue water available (runoff)

(2)

where n is the number cropland pixels at each basin, and ETa is
the actual evapotranspiration.

The water used by crops or actual evapotranspiration (ETa)
is driven by crop water demand and availability of supply. Thus,
ETa represents the crop water demand that was met by available

water from green and blue water sources. The separation of
ETa for representing green and blue water components requires
running a water balance model (including additional data)
which will introduce additional uncertainties. Thus, the total
ETa (both green and blue water), estimated using a surface
energy balance model (detailed in the following section Data
Preparation), from the cropland and irrigated areas was assumed
to represent the green and blue water demands to compute
WaSSIG and WaSSIB, respectively. Precipitation only over the
cropland area (not for basin) was considered as the available
green water to computeWaSSIG. Not all precipitation is expected
to have been available for crop water use due to various losses
(e.g., canopy interception and runoff); however, to develop the
index, total precipitation was used to minimize uncertainties
associated to determining effective precipitation for soil moisture
and ETa. The total runoff from the basin was assumed as the
available blue water for irrigated area to compute WaSSIB.
The use of runoff as blue water instead of surface water and
groundwater is due to the limitation of obtaining reliable data
at the study basins, specifically for the groundwater that is
declining in many places, and quality data on remaining volume
and drawdown rates are limited (Reilly et al., 2008). The use
of runoff as the blue water availability assumes that there is a
strong hydraulic linkage between surface water and groundwater
at basin scales.

The evaluation of WaSSIG and WaSSIB was made at an
annual scale. The values of the indices vary from zero to infinity.
The values closer to zero indicate lower stress and the larger
values indicate higher water stress. Previous studies (Ji et al.,
2012; Averyt et al., 2013) have applied a threshold of one (1)
to represent no-stress (<1) and stress (>1) including the water
demand from several water use sectors. However, as this study
was focused on the water demand for croplands, anomalies
(deviation from the average value) of WaSSIG and WaSSIB were
used to detect the severity (magnitude) and duration of green and
blue water stresses. The WaSSIG and WaSSIB anomalies larger
than their average (2003–2019) values were considered stress and
the anomalies equal to or smaller than their average values were
considered no-stress.

WaSSIG anomaly =
WaSSIG, i − WaSSIG, avg.

WaSSIG, avg.
× 100

}
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> 0% stress (green water)

≤ 0% no− stress (green water)
(3)

WaSSIB anomaly =
WaSSIB, i − WaSSIB, avg.

WaSSIB, avg.
× 100

}

> 0% stress (blue water)

≤ 0% no− stress (blue water)
(4)

where i in WaSSIG,i and WaSSIB,i represents the study years
from 2003 to 2019. TheWaSSIG,avg. andWaSSIB,avg. are the basin
average (2003–2019) WaSSIG and WaSSIB, respectively. The
responses of WaSSIG andWaSSIB were also evaluated during dry
(lowest basin precipitation) and wet (highest basin precipitation)
years both at pixel [following Equations (1, 2) for each pixel] and
basin scales.

Data Preparation
For generating the WaSSIG and WaSSIB, four primary datasets
were used: actual evapotranspiration (ETa), runoff, precipitation,
and land cover. The ETa data were generated from the
Operational Simplified Surface Energy Balance (SSEBop) model
(Senay et al., 2013; Senay, 2018) using the Moderate Resolution
Imaging Spectroradiometer (MODIS) imagery and global
gridded weather datasets. The SSEBop model uses the surface
energy balance approach to estimate daily ETa for the satellite
overpass dates. The MODIS-scale (daily, 1-km) ETa maps were
summed to generate annual ETa maps for the study basins from
2003 to 2019. These ETa datasets were validated with 12 flux
tower sites across the six continents. The data are applied by the
U.S. Geological Survey (USGS) Famine Early Warning Systems
Network (FEWSNET) for droughtmonitoring and early warning
purposes (Senay et al., 2020). The ETa data are freely available
for download from the USGS FEWS NET Data Portal (https://
earlywarning.usgs.gov/fews).

Runoff datasets were generated using the VegET water
balance model (Senay, 2008). The VegET is a root-zone water
balance model driven by precipitation and remotely sensed
land surface phenology (Senay, 2008). Modeled runoff was used
instead of observed runoff due to limitation of complete runoff
observations for the study basins during the study period (2003–
2019). For the calibration purpose, in the first step, the modeled
runoff was compared with an observation-based global gridded
runoff (GRUN) dataset (Ghiggi et al., 2019). In the second step,
when themodeled runoff data was not within±10% of the GRUN
runoff, the modeled runoff was adjusted (by percentage) with the
global composite runoff data (Fekete et al., 2002) from the global
runoff data center (GRDC). The GRUN runoff was applied as
reference data to filter the basins for the calibration of modeled
runoff with GRDC runoff. Except for the Ganges-Brahmaputra
Basin, where the modeled runoff was within ±10% of GRUN
runoff, modeled runoff for all other basins was adjusted with the
GRDC data.

Precipitation data were obtained from the Climate Hazards
Group Infrared Precipitation with Stations (CHIRPS; https://
www.chc.ucsb.edu/data/chirps). The CHIRPS rainfall data
(0.05◦×0.05◦ spatial resolution) are generated by integrating

infrared imagery, climatology, and observed rainfall records,
and have global coverage (50◦S−50◦N, 180◦E−180◦W) ranging
from 1981 to near-present (Funk et al., 2015). These rainfall
data have been applied to support the drought monitoring
efforts by FEWS NET, especially in areas where observed
rainfall data are sparse. The land cover map to distinguish
irrigated and rainfed croplands was obtained from the Global
Food Security Support Analysis Data Crop Mask Global 1-
km dataset (GFSAD1KCM; https://lpdaac.usgs.gov/products/
gfsad1kcmv001/). The GFSAD1KCM map provides irrigated
(major and minor) and rainfed (rainfed, minor fragments, and
very minor fragments) croplands for the nominal year of 2010
(Teluguntla et al., 2015). All other globally consistent irrigated
and rainfed maps were limited for all study years; thus, the
GFSAD1KCMmap was applied in this study.

RESULTS

Dynamics of Green and Blue WaSSI
The interannual variation ofWaSSIG andWaSSIB of the six study
basins is shown in Figure 2. Overall, WaSSIG was greater than
WaSSIB for all basins except theMurray-Darling Basin indicating
more water stresses associated with green water (precipitation)
compared to blue water (runoff in this study). The average
(2003–2019) WaSSIG values were less than one (1) for all
basins (Table 1). The WaSSIG is the largest for Sao Francisco
(0.91), followed by Nile (0.78), Mississippi (0.71), Murray-
Darling (0.69), Ganges-Brahmaputra (0.69), and Danube (0.50)
(Table 2). The larger interannual variation of WaSSIG (max.
WaSSIG–min. WaSSIG) was observed for the Murray-Darling
Basin (Figure 2), indicating vulnerability to green water stress
compared to other basins. In contrast, the smallest interannual
variation of WaSSIG was for the Mississippi Basin reflecting
resiliency to green water stress.

Similar to theWaSSIG values, the averageWaSSIB values were
also less than one (1) for all basins with the exception for the
Murray-Darling Basin (Table 1). The largest WaSSIB was for
Murray-Darling (1.59), followed by Ganges-Brahmaputra (0.52),
Mississippi (0.41), Nile (0.22), Danube (0.09), and Sao Francisco
(0.09). The largest interannual variation of WaSSIB was at the
Murray-Darling Basin. This basin also had the largest WaSSIG
variation, indicating greater vulnerability to both green and blue
water stresses compared to other study basins. The smallest
variation ofWaSSIB was at the Sao Francisco Basin showingmore
resilience to blue water stress.

The plots of WaSSIG and WaSSIB anomalies (percent
deviation from the average value) show the blue and green water
stress at study basins from 2003 to 2019 (Figure 3). In general,
the WaSSIG anomalies were within ±43% of their 2003–2019
average values for all basins. In contrast, WaSSIB anomalies are
relatively larger within ±103% of their average values except for
a maximum of 224% for the year 2006, which was the driest year
for the Murray-Darling Basin. During the study period, the most
severe (maximum anomaly) green water stress was observed at
the Murray-Darling Basin (average positive WaSSIG anomaly of
+16%) and the least severe (minimum anomaly) green water
stress at the Mississippi Basin (average positive WaSSIG anomaly
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FIGURE 2 | Interannual variations of green (WaSSIG) and blue (WaSSIB) water supply stress indices across study basins including Mississippi (A), Sao Francisco (B),

Danube (C), Nile (D), Ganges-Brahmaputra (E), and Murray-Darling (F) from 2003 to 2019.

TABLE 2 | The average, minimum, maximum, and standard deviation of green (WaSSIG) and blue (WaSSIB) water supply stress indices of study basins from 2003 to 2019.

Basin WaSSIG WaSSIB

Avg. Min. Max. Std. Dev. Avg. Min. Max. Std. Dev.

Mississippi 0.71 0.63 0.76 0.04 0.41 0.31 0.52 0.06

Sao Francisco 0.91 0.77 1.12 0.11 0.09 0.04 0.17 0.03

Danube 0.50 0.37 0.63 0.05 0.09 0.06 0.19 0.03

Nile 0.78 0.69 1.05 0.08 0.22 0.16 0.40 0.06

Ganges-Brahmaputra 0.69 0.51 0.94 0.09 0.52 0.40 0.65 0.07

Murray-Darling 0.69 0.50 0.98 0.13 1.59 0.70 5.16 1.02

of +5%). For the blue water stress, the most severe was also
at the Murray-Darling Basin (+61%) and the least was at the
Mississippi Basin (+12%). Thus, the most severe blue and green
water stresses were observed at the Murray-Darling Basins and
the least severe at the Mississippi Basin.

During the 17-year study period, the WaSSIG and WaSSIB
anomalies were greater than zero (0) for at least six (6) years and
>5% for at least two (2) years for all basins. In other words, these
basins faced both green and blue water stresses for at least 35%
of the study years from 2003 to 2019. The maximum number
of years with WaSSIB anomalies greater than zero was observed
for the Mississippi (9 years) andMurray-Darling (9 years) basins.

Similarly, themaximumnumber of years withWaSSIG anomalies
greater than zero was observed at the Mississippi Basin (9 years).
These results indicate that the Mississippi Basin had the longest
period (>50% of study years) of both green and blue water
stresses. However, this basin had the least severe blue and green
water stresses compared to other basins (Figure 3).

Responses of Green and Blue WaSSI
During Dry and Wet Years
The WaSSIG and WaSSIB showed green and blue water stresses
during the dry years (Figure 4; Table 3). The intensity of green
and blue water stresses during dry years varied within and
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FIGURE 3 | Anomalies (percent deviation from average value) of green (WaSSIG) and blue (WaSSIB) water supply stress indices across study basins including

Mississippi (A), Sao Francisco (B), Danube (C), Nile (D), Ganges-Brahmaputra (E), and Murray-Darling (F) from 2003 to 2019.

across the study basins. For example, the western regions of the
Mississippi Basin faced more green and blue stresses compared
to the eastern regions of the basin (Figure 4) in the dry year of
2012. The central region of the Sao Francisco Basin had more
stress than the northern or southern regions of the basin in
the dry year 2012. Similarly, the central and eastern regions of
Danube, southern region of the Nile Basin, central region of the
Ganges-Brahmaputra Basin, and eastern region of the Murry-
Darling Basin faced maximum stress during dry years (Figure 4).
The spatially distributed maps of WaSSIG are visually clearer
than WaSSIB maps showing several green water stress regions
during the respective dry and wet years for all basins. In contrast,
blue water stress indicated by WaSSIB maps for Sao Francisco,
Danube, and Nile Basins is less evident due to the lower irrigated
area (<6%) compared to other basins.

During the dry years across all basins, the largest green
water stress (28% above average) was observed at the Ganges-
Brahmaputra Basin for the dry year 2009 when the basin
precipitation was 11% below the average precipitation. Similarly,
the largest blue water stress (224% above average) was at
the Murray-Darling Basin for the dry year 2006 when the
precipitation was 35% below average. For wet years, the least
green water stress (15% below average) was at the Sao Francisco

Basin when the precipitation was 24% above average and the
least blue water stress (52% below average) was for the Murray-
Darling Basin when the precipitation was 35% above average.
These results show that WaSSIG and WaSSIB variations followed
the trends of basin precipitation; however, the magnitudes of
green and blue water stresses varied across and within basins.
Thus,WaSSIG andWaSSIB indices can be applied for monitoring
green and blue water stresses at basin scales. For basins with the
potential spatial disconnect between the available water (runoff
and precipitation) and the point of water use (irrigation), pixel-
scale applications of WaSSIG and WaSSIB may benefit from
additional in-situ information before decisions can be made.

DISCUSSION

Drivers of Green and Blue Water Stresses
The interannual plots of WaSSIG and WaSSIB indicate the large
variations of green and blue water stresses within and across the
study basins (Figures 2, 3). These variations are primarily driven
by either demand or supply of green and blue water at the basins.
Based on the water demand and water available for crops applied
in this study, the interannual variations of green water stresses
were driven by both the demand (ETa) and supply (precipitation)
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FIGURE 4 | Spatial variation of green (WaSSIG) and blue (WaSSIB) water supply stress indices during dry- and wet-years across study basins.

for most of the basins. The differences of the percent coefficient
of variation (CV) between the green water demand and the
green water supply were within ±7% for all basins except for the
Murray-Darling Basin (Supplementary Table 1). The Murray-
Darling Basin is the basin with the largest interannual variations
in green water stress (Figure 3). The basin had the percent CV
of green water demand that was 16% greater than that of green
water supply, indicating the larger influence of water demand for
greenwater stress variations. For the blue water stress, the percent
CV of blue water supply (runoff) was larger than the percent

CV of demand (ETa) for all basins (Supplementary Table 1). The
smallest difference between the percent CVs of water demand
and supply was for the Ganges-Brahmaputra Basin (4% larger
CV for supply) and the largest difference was for the Murry-
Darling basin (29% larger CV for supply). Thus, the variation
in blue water stress was driven more by water supply than by
water demand.

The cropland area within a basin can affect green and blue
water stresses. Basins with large cropland areas tend to have
higher green and blue (when irrigated) water demands and
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TABLE 3 | Summary of green (WaSSIG) and blue (WaSSIB) water supply stress indices during dry and wet years across study basins.

Basin Dry year Wet year

Year Precipitation mm/year WaSSIG WaSSIB Year Precipitation mm/year WaSSIG WaSSIB

Mississippi 2012 646 0.71 0.52 2019 989 0.65 0.33

Sao Francisco 2012 682 1.06 0.08 2004 1,120 0.77 0.05

Danube 2011 613 0.63 0.19 2010 950 0.46 0.07

Nile 2004 548 0.81 0.26 2019 747 0.75 0.18

Ganges-Brahmaputra 2009 1,128 0.94 0.60 2013 1,384 0.62 0.48

Murray-Darling 2006 283 0.62 5.16 2010 708 0.84 0.76

therefore are more prone to water stress when the water supply
is limited. Among the study basins, the Danube Basin had the
largest cropland (∼72%); however, the maximum magnitude of
water stress (both green and blue water) was observed at the
Murray Darling Basin. Similarly, the Nile Basin had the smallest
cropland (∼20%) but the minimum water stress magnitude was
observed at theMississippi Basin. Although theMississippi Basin
had the least water stress magnitude, this basin had the longest
duration of both green and blue water stresses (9 out of 17
years). These results indicate the percent area of cropland is
not the primary factor to drive green and blue water stresses
(magnitude and duration) at these studied basins. However, the
spatial distribution of cropland within the basins can affect the
green and blue water stresses. For example, irrigated cropland
with easy access to available water may not suffer more blue water
stress during droughts compared to cropland that is far from the
available water within a basin. Other factors such as climate, crop
types (high or low water demand), infrastructure development
for irrigation systems (high or low water use efficiency), and local
and regional water management policies can influence variations
in green and blue water stresses across the basins.

Limited studies have applied theWaSSI approach for assessing
water stress across basins considered in this study. A study by
Averyt et al. (2013) in the U.S. reported about 9% (193 out of
2103) of the HUC8 basins were stressed in 2013. The agricultural
sector was the main contributor to the water stress, mostly in the
lower Mississippi Basin and most of the western U.S. Although
our study was further extended to link with green and blue
water resources, the spatial distribution of water stress regions
in the Mississippi Basin (Figure 4) is consistent with Averyt et al.
(2013). Several other studies have accounted blue and green water
availability and consumption (Schuol et al., 2008; Wada et al.,
2011; Hoekstra et al., 2012), and the potential factors that can
affect water availability for croplands (Rost et al., 2008; Liu and
Yang, 2010). For example, Ferrarini et al. (2020) reported the
potential expansion of irrigated areas in the upper and middle
regions of Sao Francisco Basin due to water availability. Our
study shows that the blue water stress at the Sao Francisco
Basin is among the lowest (Table 2); however, expansion of
irrigated areas may add stress on blue water resources in the
basin. The larger blue water stress in the Ganges-Brahmaputra
Basin and Murray-Darling Basins (Table 2) indicates the higher
vulnerability of croplands in the basin to extreme water stress,
especially during the dry seasons/years, that may lead to complete

desiccation and substantial economic disruption (Hoekstra et al.,
2012).

Model Parameter Estimation Uncertainties
Three primary parameters (precipitation, ETa, and runoff) were
applied to assess green and blue water stresses across the study
basins. The precipitation data were obtained from the gauge-
adjusted CHIRPS datasets. The CHIRPS precipitation data have
been widely validated across the globe (Paredes-Trejo et al.,
2017; Prakash, 2019; Tarek et al., 2020). A recent global-scale
evaluation of CHIRPS monthly precipitation from 2000 to 2016
with the Global Precipitation Climatology Center gauge-based
precipitation data reported error (including random and bias
components) within ±2.5% across Europe, Africa, Australia,
United States, and South America (Shen et al., 2020). The
Southeast China region had a relatively larger error at 5.6%
(Shen et al., 2020); however, this region does not cover the large
cropland areas included in this study. Additionally, these errors
are at a monthly scale and the annual scale error is smaller at
−0.06% (Shen et al., 2020).

ETa data were from the surface energy balance based SSEBop
model. The SSEBop ETa products have been applied across
different climates and land covers for monitoring water use from
a field to regional scales (Singh et al., 2014; Alemayehu et al.,
2017; da Motta Paca et al., 2019; Schauer and Senay, 2019).
The continental-scale validated ETa maps across several land
covers (Senay et al., 2020) were applied in this study which
captured seasonal and interannual variations when compared
with flux tower observations. For croplands, the SSEBop tends
to underestimate ETa at a monthly scale in North America
and Europe (up to −33%) compared to flux tower observations
without energy balance closure (Senay et al., 2020). Considering
the energy balance closure issue with flux towers, which often lag
in the order of 20% (Wilson et al., 2002), errors from SSEBop ETa
would be lower when aggregated to longer temporal scales such
as monthly and annual scales (Senay et al., 2016). Further, green
and blue water stresses in this study are evaluated at a basin-scale
(unlike a few 100m in the flux tower footprint) and therefore
these ETa-related errors are expected to be lower for monitoring
interannual water stress variations at basin scales.

Runoff estimations from the water balance VegET model
were calibrated with the observation-based GRUN and the
climatology runoff data fromGRDC. Although the VegETmodel
was calibrated when the differences in annual runoff values
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were > ±10%, the runoff estimation uncertainty may still exist
when applying the model for evaluating blue waters stress for
basins with relatively low percent cover of irrigated croplands
(for example, the Sao Francisco and Nile Basins). However, the
evaluation of green and blue water stresses severity (magnitude)
and duration with the baseline of 17-year (2003–2019) average
values, rather than the absolute values of WaSSIG and WaSSIB
for each year, would minimize the potential uncertainties from
the model parameter estimations.

Advantages and Limitations of Partitioning
Green and Blue Water Stresses
The idea of partitioning water consumed by crops into green
and blue water sources is a fairly new approach (Falkenmark and
Rockström, 2006; Rost et al., 2008; Liu and Yang, 2010; Velpuri
and Senay, 2017). The assessment of green and blue water use at
varying scales helps to identify the areas to efficiently manage and
use the available water. This study demonstrated an approach for
monitoring green and blue water stresses for croplands, which
is directly associated with food and water status. The current
study of green and blue water stresses across the six major
cropland basins provides an insight on how green and blue water
stresses vary (demand vs. supply driven) with time and space, and
identified the basins that need to address the associated water
stresses. For example, most basins had green water stress larger
than the blue water stresses highlighting the uncertainty in food
production as most of the global food production comes from
green water-dependent rainfed systems. Similarly, the Murray-
Darling Basin had the most severe (maximum WaSSIG and
WaSSIB anomalies) green and blue water stress, which indicates
that adoption of measures to improve the overall water use
efficiency for sustaining food production may be beneficial.
Proven methods and technologies can help to efficiently manage
the available water. For example, Chukalla et al. (2015) reported
that change in irrigation and mulching strategies in irrigated
agriculture can reduce the green and blue water footprint up
to 28%. Identification of regions or basins with green and blue
water stresses could be useful for specific resource allocation
and potential infrastructure development for improving green
water and blue water use efficiency. Additionally, while blue
water-based policies have been focused in the past (Sulser et al.,
2010), the basin-specific green and blue water integrative plans
and polices would help to minimize water stress and increase
food production.

Besides the advantages of partitioning green and blue water
resources, limitations exist when implementing the partitioning
approach in this study. Our study is primarily focused on
identifying an index to account for both green and blue water
stress and their variations across time and space, rather than
to accurately quantify green and blue water use as explored
in previous studies (Siebert and Döll, 2010; Hoekstra, 2019).
Thus, the equations used to compute WaSSIG and WaSSIB
and assumptions made in this study must be considered before
making decisions. For example, effective precipitation would
have applied to compute WaSSIG for an ideal condition.
However, due to additional data required for partitioning

precipitation to canopy interception, runoff, soil moisture, and
effective precipitation, and additional uncertainties associated
with these estimations, total precipitation was applied to compute
WaSSIG. The use of total precipitation may have exaggerated
WaSSIG, especially for irrigated areas due to the contribution of
blue water and reached the basin-scale WaSSIG more than one
(1). Basin-scale WaSSIG values were less than 1 for most basins
but a year (2009) in the Nile Basin and 6 years (2003, 2007, 2010,
2012, 2014, and 2019) in the Sao Francisco Basin. The frequent
WaSSIG values of more than 1 in the Sao Francisco Basin may
indicate a larger contribution of blue water across irrigated
croplands. For computing WaSSIB, reliable groundwater data
was not available. For this reason, surface runoff was considered
available blue water with the assumption of interconnections
between the surface water and groundwater at a basin-scale
analysis. This assumption may add bias to the blue water stress
estimations. For example, WaSSIB for the dry year 2006 in
the Murray-Darling Basin was relatively high, compared to
other years (Figure 2), primarily due to a substantial reduction
(87% below average) in the modeled runoff. The exclusion of
groundwater may have exaggerated the blue water stress for
the dry year in this basin. However, the calculated blue water
stress anomalies are based on the 17-year (2003–2019) average,
and therefore, the biases on the anomalies were not influenced
primarily by the unavailability of groundwater data. The green
and blue water stress anomalies are presented at an annual
scale to capture water used by all crops including main crops
grown during the growing season and other crops (e.g., cover
crops, secondary crops) grown during the non-growing season.
Thus, the annual scale analysis does not reflect monthly or
seasonal stresses. The potential water transfer (blue water) from
a year to the following year that is stored in reservoirs is not
accounted for by WaSSI indices. Another limitation included the
unavailability of consistent land cover data for all years during
the study period. Therefore, this study used the cropland data
for the nominal year 2010 based on several studies from 2007
to 2012 (Thenkabail et al., 2016). The cropland area may have
changed in the other years, which could change the water stresses.
However, the water stresses are generalized at a basin-scale and
may have minimal effects on the overall outcome of this study.
Additionally, previous studies have suggested refinement of green
and blue water estimation in croplands such as by computing soil
water balance components (Siebert and Döll, 2010), which could
improve the spatiotemporal accuracy and further enhancement
of similar green and blue water stress indices.With the availability
of consistent finer scale land cover data, groundwater data,
and associated dataset, the WaSSIG and WaSSIB indices can
be improved and implemented for monitoring water stress and
have potential applications for creating and implementing basin-
specific adaptive decision support systems to ensure food and
water security.

CONCLUSION

An approach to assess the water stress across croplands based
on green and blue water resources is demonstrated by applying
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the water supply stress index across six large cropland basins
across the globe. The results from the 17-year (2003–2019)
study show that all basins had both green and blue water
stresses for at least 35% (6 out of 17 years) of the study period.
The most severe (maximum WaSSIG and WaSSIB anomalies)
green and blue water stresses were observed for the Murray-
Darling Basin in Australia and the least severe (minimum
WaSSIG and WaSSIB anomalies) stress for the Mississippi Basin
in North America. The interannual variations in green water
stress were driven by both crop water demand and green
water supply, whereas the blue water stress variations were
primarily driven by blue water supply. This study identified the
basins and regions that may benefit from basin-specific adaptive
measures and policies for the efficient use and management
of available water. Similar studies can be implemented to
monitor the green and blue water stresses at varying scales
for developing decision support systems to ensure food and
water security.
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