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South Asian monsoon is a phenomena that plays out during June-September every year,

due to the northward shift of the ITCZ which causes heavy rainfall over many countries

of South Asia, including India. These rains are directly related to the lives and economic

well-being of over a billion people. Indian monsoon is highly heterogeneous, due to the

vast physiographic variations across the country. There is considerable interest among

scientists and other stake-holders about possible future changes to Indian monsoon

due to worldwide climate change. Simulations of future climate by global climate models

under various scenarios can provide important clues for this. However, simulations of

Indian monsoon in the historical period by global climate models under the CMIP5 family

were found to be inaccurate in several aspects. Simulations by the new global climate

models from the CMIP6 family are now available, and scientists are evaluating their ability

to simulate Indianmonsoon. In this work, we focus on one particular aspect of simulations

by these models: the spatial distribution over daily rainfall over the Indian landmass during

monsoon. We use a Machine Learning based probabilistic graphical model that can

identify frequent spatial patterns of rainfall after creating a binary representation of rainfall.

This model also helps us to identify spatial clusters, i.e., homogeneous regions within the

Indian landmass with similar temporal characteristics of rainfall. We identify such frequent

spatial patterns and spatial clusters from observed monsoon rainfall data, and also from

simulations of monsoon rainfall by different CMIP6 models during the period 2000–2014.

We evaluate the models by comparing the patterns and clusters identified from their

simulations with those identified from observed data. We find that some of the CMIP6

models can simulate the spatial distribution of monsoon rainfall to a reasonable degree,

but there are various limitations—most models underestimate extreme rainfall events and

are unable to reproduce the regions of the landmass that are homogeneous with respect

to rainfall.

Keywords: CMIP6, Indian monsoon, spatial pattern, graphical model, simulation

1. INTRODUCTION

Every year, several countries in South Asia including India, Sri Lanka, Burma, Bangladesh, Pakistan
receive heavy rainfall from the South Asian Monsoon system, roughly during the period June-
September. It is caused by formation of a low-pressure region over North-western India, resulting
in northward migration of the Intertropical Convergence Zone (ITCZ). Specifically in case of
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India, the monsoon season accounts for about 80% of the annual
rainfall in about 75% of the landmass, with the exception of
some regions along the south-eastern coast and the hilly north-
eastern region which receive substantial pre-monsoon (April–
May) and post-monsoon (October–November) rainfall. Such
rainfall is extremely important for sustenance of agriculture in
India, which contributes to the lives and livelihood of over a
billion people ( Gadgil and Gadgil, 2006). Indian monsoon is
a highly complex phenomena, exhibiting significant spatial and
temporal variations during its 4-month seasons, as discussed
by Gadgil (2003) and Goswami and Chakravorty (2017). Indian
monsoon is considered by many climate scientists to be linked
to climatic phenomena in other parts of the world through
teleconnections, such as El Nino-Southern Oscillation (ENSO),
Indian Ocean Dipole (IOD), and Madden-Julian Oscillations
(MJO). However, it is well-known that in recent decades the
monsoon circulation has significantly weakened, as pointed out
by Ghosh et al. (2012) and Preethi et al. (2017), while at the
same time extreme rainfall events have increased, according
to Roxy et al. (2017). Naturally, there is significant concern
among scientists and policy-makers about how Indian monsoon
may be affected in future due to worldwide climate change. For
this purpose, we need reliable simulation of future climate under
different scenarios.

Over the last decade, various research groups across the
world have developed global climate models such as General
Circulation models (GCMs) under the aegis of Coupled Model
Intercomparison Project (CMIP), with the aim of studying
the impacts of various natural and anthropogenic forcings
on past, present and future climate. Most of these models
use physics-based differential equations about energy balance
and coupling between land, ocean, and atmosphere. These
models simulate global climate including many geophysical
variables in the past and also the future under hypothetical
scenarios related to greenhouse gas concentration in the
environment (Representative Concentration Pathways) and
socio-economic policies adopted by different countries (Shared
Socioeconomic Pathways).

Simulations of the future by any model is hard to evaluate,
since the ground truth is not known. In order to estimate
the reliability of the future simulations by any model, it is
necessary to evaluate its simulation of the historical period, for
which we do have the ground truth. Usually, some important
statistical measures are calculated from the model simulations,
and compared to the corresponding measures calculated from
the ground truth. The accuracy of a model is based on
such comparisons. Various studies focus on various statistical
measures for such evaluation. Simulations by the third phase
of models (CMIP3) were not very accurate due to their course
resolution and failure to take into account various environmental
factors, but they were improved upon by the fifth phase of the
models (CMIP5). Various studies such as Sperber et al. (2013)
have compared the broad spatial and temporal characteristics of
simulated monsoon rainfall in Southern Asia including India,
and noticed a slight improvement in some aspects, though
other aspects such as teleconnections are still not represented
accurately. A similar study was done for simulation of daily

maximum and minimum temperature and precipitation over
China by models from both families in Sun et al. (2015).
However, it was pointed out by various research groups (e.g.,
Saha et al., 2014; Shashikanth et al., 2014; Jayasankar et al.,
2015; Pattnayak et al., 2017) that these models do not represent
several characteristics of IndianMonsoon very accurately in their
simulations of the historically observed period, and hence their
future projections are less reliable. Singh et al. (2017) found
that regionalized versions of these models, often called Regional
Climate Model (RCM) could not help much. Some studies
like Raju and Kumar (2014) have tried to combine the CMIP5
model simulations to improve the accuracy with respect to a
few statistical measures, and identified a few models as suitable
for India.

The sixth phase of models (CMIP6) which have been released
recently, operate at much higher spatial resolutions and take into
account more small-scale or localized processes. An excellent
overview of these models is provided by Eyring et al. (2016).
CMIP6 models such as Wu et al. (2019) have raised hopes
of researchers. Some research such as Gusain et al. (2020),
have already explored the improvements in the representation
of Indian Monsoon and its different characteristics in the
simulations of the historical period by some of these models.
The monsoon characteristics studied by Gusain et al. (2020) from
these model simulations include mean seasonal precipitation
across Indian landmass, seasonal climatology of daily rainfall
during the June-September period over the Monsoon Zone
of Central India, extreme rainfall events across the landmass,
and the duration and frequency of active and break spells—an
important feature of Indian monsoon denoting intra-seasonal
oscillations (studied in great details by many scientists such
as Rajeevan et al., 2010; Nair et al., 2018). The study found that
the CMIP6 models show a greater statistical consistency with
observed data than models from CMIP5 or CMIP3 families,
though the spatial variations are yet to be represented accurately.
Similar studies have been made for other regions affected by
monsoon systems, such as China (Xin et al., 2020). This study
too focuses on the representation of various characteristics of
rainfall over China, such as spatial correlation between simulated
and observed data, mean seasonal precipitation across Chinese
landmass, inter-annual trends of seasonal precipitation, and
relation between rainfall and horizontal winds.

The aim of this work is to focus on spatial distribution of
daily monsoon rainfall over India. Our aim is to see if the daily
distribution of rainfall as simulated by these models have any
similarity with the actual daily distribution of monsoon rainfall.
However, since the model simulations are not synchronized with
observations on daily basis, a direct day-by-day comparison
between model simulations and observations is not possible. We
wish to evaluate CMIP6 models by identifying frequent spatial
patterns of daily rainfall in the simulations of monsoon by these
models, and comparing these patterns with those identified from
observed data. Spatial patterns have generally been considered
as Empirical Orthogonal Functions (EOF) in the Earth Sciences
community, including for spatial analysis of Indian Monsoon,
such as Suhas et al. (2013). However, a different approach was
considered in the recent works by Mitra et al. (2018), where a
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model based on Machine Learning was used to create a binary
representation of the precipitation data. This representation
was used to create a few canonical spatial patterns, such that
the spatial distribution (map) of rainfall on each day can be
approximated using one of these patterns. Unlike EOF-based
patterns, these patterns are not additive, and have both binary
and real-valued representations. The binary representations are
spatio-temporally coherent, and hence more comprehensive
and suitable for studying different climatic variables, as done
by Sharma et al. (2021). Additionally, the model is able to identify
spatial clusters, i.e., compact regions on the landmass with similar
intra-seasonal and inter-seasonal variation in rainfall. In this
work we use the same approach to identify such canonical spatial
patterns of daily rainfall and spatial clusters from monsoon
rainfall data obtained from observations by India Meteorological
Department (IMD) during the period 2000–2014. Next, we apply
the same technique on the monsoon rainfall simulated by seven
models from CMIP6 family, to identify spatial patterns and
clusters from them. The patterns and clusters obtained from
each of these models are compared to those obtained from the
IMD observations. We define and evaluate several measures
of compatibility between these patterns. On the basis of these
measures, we classify the 7 CMIP6 models. It turns out that
some of the models can capture the spatial patterns partially
well, but not the others. None of the models are able to account
for the heavy-to-extreme rainfall events. The regions of spatial
homogeneity, as identified by the simulations from most of the
models, are not very homogeneous with respect to the actual
observations. Thus, we conclude that CMIP6 models are only
somewhat accurate in reproducing daily spatial distribution of
monsoon rainfall over India.

2. MATERIALS AND METHODS

2.1. Datasets
In this work, we consider precipitation data over the landmass
of India during the monsoon months of June-September, for
the period 2000–2014. The reason for considering this period is
that it is recent and relatively less well-studied in literature. We
obtain ground truth data from India Meteorological Department
(IMD)1. We also collect the data related to simulation of Indian
Monsoon rainfall by the following CMIP6 models: ACCESS-
ESM1.5 developed by Australian Community Climate and Earth
System Simulator (ACC) (see Ziehn et al., 2020 for details),
Beijing Climate Center Climate System Model (BCC) (see Wu
et al., 2019 for details), Canadian Earth System Model Version
5 (CAN) (see Swart et al., 2019 for details), Earth Consortium
Model Version 3 (EC) (seeWyser et al., 2020 for details), Institute
of Numerical Mathematics Climate Model Version 4.8 (INM)
(see Volodin et al., 2018 for details), Max Plank Institute Earth
System Model Version 1.2 (MPI) (see Mauritsen et al., 2019 for
details), and Norwegian Climate Center Earth System Model
Version 2.0 (NOR) (see Seland et al., 2020 for details).

The datasets specifically related to Indian Monsoon
simulation by these models are available at https://zenodo.

1https://imdpune.gov.in/Clim_Pred_LRF_New/Grided_Data_Download.html.

org/record/3873998#.X_g60dgzaUk. This dataset was created
based on the study by Mishra et al. (2020). In these simulations,
the precipitation data for Indian monsoon is available at a
resolution of 0.25 × 0.25◦ (see Pai et al., 2014). For ease of
computations, we coarsen them to 1× 1◦ resolution using spatial
averaging, following the same grid system as the widely-used
dataset published by Rajeevan et al. (2006). For the ground-truth
dataset also, we use the same grid structure. According to this
grid system, the landmass of India consists of 357 grid-locations.
For every location, we have daily rainfall data for the June-
September season (122 days) of the period 2000–2014, i.e., we
have totally 122× 15 = 1, 830 days. In case of the CMIP6 models
mentioned above, the years are not synchronized to the actual
years, so we must limit our analysis to statistics calculated across
the years for a fair comparison.

2.2. Probabilistic Graphical Model
We fit a probabilistic graphical model developed by Mitra et al.
(2018) on to each of these datasets. Consider S locations and T
time-points, i.e., here S = 357 and T = 1, 830. For every location
s, we consider a set of neighboring locations �(s), which are
within a distance of 1◦ from s along either latitudes or longitudes.
We denote by X(s, t), the precipitation at any spatial location s
on day t. For any day t, the vector X(t) = {X(s, t)}Ss=1 is called the
spatial map or spatial distribution of rainfall on that day. Similarly
for any location s, the vector X(s) = {X(s, t)}Tt=1 is called the
time-series of rainfall at that location.

The model aims to find a binary representation Z(s, t) of
X(s, t). Z(s, t) = 1 essentially indicates high value of rainfall at
location s on day t (wet day), while Z(s, t) = 2 indicates a low
value of the same (dry day). However, there is no hard threshold
between high and low values. Assignment of Z(s, t) is done based
on local climatology of daily rainfall at s, and also on the influence
of neighboring values Z(s′, t), where s′ ∈ �(s) so that spatio-
temporal coherence is maintained, i.e., neighboring locations are
likely to have the same value of Z. Thus, for each day t during
the period under consideration, we have a real-valued spatial
map X(t) of rainfall as well as a binary-valued spatial map Z(t)
over the geographical domain. The model assigns each day t to
a cluster denoted by U(t), such that days with “similar” spatial
maps are assigned to the same cluster. A cluster is represented
by a binary spatial pattern denoted by θd which is the mode of
the binary spatial maps across the constituent days of that cluster,
and also by a real-valued spatial pattern denoted by θ which is
the mean of the real-valued spatial maps across the constituent
days. Similarly, the model assigns a spatial cluster index V(s) to
each locations s, such that locations with “similar” time-series
of Z-values over the entire period of T days, are assigned to the
same cluster. Also, neighboring locations are likely to be assigned
to the same spatial clusters, so that spatial compactness of the
clusters is maintained. Just like clusters of U, each cluster of V
is represented by a canonical time-series φd of binary values and
φ of real values.

In this model, all of the variables X, Z, U, V , are considered
as random variables, while θ , θd, φ, and φd are considered as
unknown parameters to be estimated. First of all, we construct
a probabilistic graphical model using (Z,U,V), which is shown
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FIGURE 1 | The probabilistic graphical model. The rows indicate spatial locations {1,S}, and the columns indicate days {1,T}. The observation nodes for X are

marked in blue, while the latent variable nodes for Z,U,V are marked in gray.

in Figure 1. Each node of the model represents a specific random
variable, such as X(s, t), Z(s, t), U(t), or V(s). Any two Z-nodes
are joined by spatial edges if they are spatially adjacent, for e.g.,
Z(s, t) and Z(s′, t) where s′ ∈ �(s). Again, two Z-nodes are joined
by temporal edges if they are temporally adjacent, for e.g., Z(s, t)
and Z(s, t+1). Again, Z(s, t)-node andX(s, t)-node are connected
by data edges. Additionally, all Z(s, t)-nodes and X(s, t)-nodes
for each day t are connected to the node U(t), though in the
figure U(t) is shown to be connected to Y(t), which is a dummy
node representing Y(t) =

∑S
s=1 X(s, t). Similarly, all Z(s, t)-

nodes of each location s are connected to the corresponding
V(s)-node. Each of the edges are provided with an edge potential
function 9 . The spatial edge potential functions are defined in
such a way that it takes a high value when Z(s, t) = Z(s′, t),
and low value otherwise. Temporal edge potentials are defined
likewise. The data edge potentials between Z(s, t) and X(s, t)
are defined as the PDF of a Gamma distribution on X, whose
shape and scale parameters are specific to location s and the
value of Z(s, t), i.e., we assume that X(s, t) ∼ Gamma(αsk,βsk)
with k = Z(s, t). This means that the rainfall at any location
is modeled by a Gamma mixture distribution with two modes
[as Z(s, t) is binary], one for high values and one for low values.
The daily binary spatial map Z for any day t is modeled as a
Bernoulli-corrupted version of the corresponding spatial pattern

θd[U(t)]. Similarly, the binary time series Z for any location s
is modeled as a Bernoulli-corrupted version of the canonical
time-series φd[V(s)].

This graphical model forms a Markov Random
Field (Kindermann, 1980). The joint distribution P(X,Z,U,V)
is the product of all the edge potentials functions. Among
the random variables mentioned above, X is observed. The
computation of values of (Z,U,V), is done with the aim of
maximizing P(X,Z,U,V). Clearly, a configuration with more
spatial and temporal coherence, will have a higher probability,
due to nature of the potential functions on the spatial and
temporal edges. Since standard maximum-likelihood or
Expectation-Maximization are not tractable here due to the
complex coupling between the variables, we use the approach of
Gibbs Sampling under the paradigm of Markov Chain Monte
Carlo methods (Neal, 1993). In this approach, we iteratively
sample each random variable from its conditional distribution,
holding all the other variables constant at their current values.
The process is repeated hundreds of times, samples collected
at regular intervals, and the modal values of these samples
are used as Maximum A-posteriori (MAP) estimates of the
random variables.

Interpretation of the values of Z, θ , θd, and V are important
to understanding the results of this model. First of all, Z provides
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TABLE 1 | The spatial statistics of X and Z, as computed from CMIP6 model simulations and compared against the IMD observations.

IMD ACC BCC CAN EC3 INM MPI NOR

nZ1 − ℓ2 0 2.3 1.3 2.5 1.8 1.9 2.0 1.7

nZ1 − cr 1 0.77 0.91 0.78 0.92 0.89 0.87 0.9

X1 − ℓ2 0 103 68 135 60 90 74 59

X1 − cr 1 0.62 0.59 0.58 0.79 0.62 0.66 0.73

X2 − ℓ2 0 18 9 22 12 10 9 10

X2 − cr 1 0.55 0.72 0.58 0.74 0.78 0.80 0.77

spCh 0.85 0.93 0.91 0.94 0.92 0.91 0.9 0.92

spCr 0.59 0.89 0.88 0.93 0.86 0.89 0.86 0.9

The measures are explained in section 3.1. For each measure, the CMIP6 model whose results are closest to the IMD data are highlighted.

a binary representation of the observed data X. If we look at the
spatial map of X(t) on a particular day t, then its corresponding
binary representation Z(t) is a binary map where locations
having high rainfall have Z(t) = 1, while those locations
having low rainfall have Z(t) = 2. These binary maps are
more spatially coherent than the real-valued ones, where high-
rainfall and low-rainfall regions are more clearly demarcated.
Coming to the spatial patterns θ , θd, each day’s spatial map
X(t) can be approximated with a real-valued θ-pattern while
each day’s binary spatial map Z(t) can be approximated with a
binary θd-pattern.

The number of canonical patterns is not fixed, but estimated
by the model based on the data. There are user-tuneable
hyperparameters (mentioned inMitra et al., 2018) which indicate
how closely a canonical pattern must approximate the daily
spatial maps/patterns, which have the effect of increasing or
decreasing the number of canonical patterns. But generally
about 10 patterns, each of which account for at least 60 of
the 1,830 days from at least 8 of the 15 years, can cover
70–90% of the days. We call such patterns as prominent
patterns, and these patterns contain the information regarding
the usual daily spatial distribution of rainfall. The remaining
days which are assigned to non-prominent or rare patterns are
days with unusually high rainfall, spread over large parts of
the country.

3. RESULTS

Now, we come to the comparison of the different CMIP6 models
with the observed data, as obtained from India Meteorological
department. For this purpose, we fit the probabilistic graphical
model discussed above to the daily rainfall observations X from
all these datasets (observations and CMIP6 model simulations).
Parameters and hyperparameters used for the model (as listed
by Mitra et al., 2018) are the same for each of the datasets,
for meaningful comparison. Let us denote by XIMD, ZIMD,
θ IMD, and θ IMD

d
the IMD observations and corresponding binary

representation and spatial patterns. Similarly, we denote by
XMODEL, ZMODEL, θMODEL, and θMODEL

d
the daily rainfall values

and corresponding binary representation and spatial patterns
from any CMIP6 model (for specific models, we will use XBCC,
θNOR etc).

3.1. Quantitative Analysis of the Binary
Representations
We begin our quantitative comparison of the CMIP6 model
simulations and the actual observations from IMD in terms of
interpreting the binary representations, i.e., ZIMD and ZMODEL.
For each of the 357 locations, we compute the mean rainfall
values across all wet days for which Z = 1 and also for all dry
days for which Z = 2 separately. We also calculate the fraction
of wet days (Z = 1) at each location over the study period.
These indicate how wet are the wet and dry days in different
locations, in the actual IMD dataset as well as in the simulations
by CMIP6 models.

We denote these quantities by nZ1(s) = 1
T

∑T
t=1 I(Z(s, t) =

1), X1(s) =
∑T

t=1 X(s,t)I(Z(s,t)=1)
∑T

t=1 I(Z(s,t)=1)
, X2(s) =

∑T
t=1 X(s,t)I(Z(s,t)=2)
∑T

t=1 I(Z(s,t)=2)
where

I is the indicator function. Since these quantities are calculated at
all S locations, we compare them between the model simulation
datasets and the actual IMDobservations using ℓ2 norm (denoted
by nZ1−ℓ2,X1−ℓ2,X2−ℓ2) and correlation coefficient (denoted
by nZ1 − cr, X1 − cr, X2 − cr). The results are shown in Table 1.

Another issue which we consider is spatial correlation—
whether the rainfall volume at adjacent locations are correlated
or not. For every pair of locations s, s′ such that s′ ∈ �(s),
we compute the spatial correlation coefficient between the
time-series X(s) and X(s′), denoted by spCr(s, s′). Similarly, we
compute the spatial coherence between the binary time-series

Z(s) and Z(s′), i.e., spCh(s, s′) = 1
T

∑T
t=1 I[Z(s, t) = Z(s′, t)]. The

mean values of these quantities are then computed over all pairs
of (s, s′). These are repeated for both the IMD dataset as well the
CMIP6 simulation datasets, and shown in Table 1.

It turns out that for most of the measures related to local
statistics, the models BCC-CSM, EC-3, MPI-ESM-1,2, and NOR-
ESM-2 perform comparable to each other, while ACC-ESM-
1.5, CAN-ESM-5, and INM-CM-4.8 are found to lag behind.
The spatial coherence and spatial correlation are significantly
overestimated in all the models, which may indicate that only
processes at larger spatial scales are simulated by these models.

3.2. Visual Analysis of Prominent Spatial
Patterns
In this paper, we are specifically interested in the spatial patterns
of daily rainfall, as obtained from the different CMIP6 models
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FIGURE 2 | The nine prominent binary spatial patterns found from the observations from India Meteorological Department (IMD). Pink indicates wet locations and blue

indicates dry locations. Patterns are numbered from left to right across each row, top to bottom.

TABLE 2 | Mean daily rainfall for prominent spatial patterns identified from different CMIP6 models in mm/day/location, sorted in ascending order.

Model Pat1 Pat2 Pat3 Pat4 Pat5 Pat 6 Pat7 Pat8 Pat9 Pat10 Pat11

IMD 2.4 4.4 5.5 7.7 7.9 7.9 8.5 11.5 11.6 – –

ACC 1.2 2.9 4.8 5.3 7.2 7.8 11.0 – – – –

BCC 1.5 3.4 4.7 6.6 7.6 7.6 9.5 9.9 9.9 13.1 –

CAN 1.2 2.2 2.7 3.2 4.0 4.7 6.1 7.4 9.8 – –

EC3 1.7 3.8 6.0 8.0 8.8 9.0 11.6 11.6 14.8 – –

INM 2.1 3.2 6.0 7.5 7.7 8.1 8.4 10.0 10.9 11.2 12.2

MPI 1.6 3.8 5.8 5.9 6.3 8.2 8.4 10.7 12.0 – –

NOR 1.7 2.8 5.2 5.6 7.2 8.6 9.2 10.3 10.6 13.0 –

and from the observations. For each dataset, we identify the
spatial patterns θd, θ as mentioned in section 2. For each dataset,
we focus on the set of prominent spatial patterns, which are
a subset of the spatial patterns identified by the probabilistic
graphical model. As already mentioned, a prominent spatial
pattern appears on at least 60 of the 1,830 days, from at least 8
of the 15 years during the study period considered. It turns out
that for all datasets, there are 7–11 prominent spatial patterns.

3.2.1. IMD Dataset

The prominent patterns (binary) obtained from the IMD dataset
are shown in Figure 2. There are nine prominent spatial patterns,
which cover 94% of the 1,830 days in the study period. The
patterns are sorted in ascending order of mean all-India rainfall,
as indicated in Table 2. The first three patterns are associated
with low rainfall, either scattered or limited to the North-
eastern region (pattern 2) or the western coast (pattern 3). In
pattern 4 too the rainfall is mostly limited to the western coast
and North-east, though it is heavier magnitude. In patterns
5 and 8, the wet areas are mostly in the Gangetic plain and

foot-hills of the Himalayas, while in patterns 6, 7, and 9 the
rainfall is concentrated in the monsoon zone of Central India.
These patterns seem to indicate that rainfall does not happen
simultaneously in Gangetic plains and Central India. Although
the patterns 5, 8 as well as 6, 7, 9 look nearly identical in the binary
representation, they differ in the volumes of rainfall associated
with them. These rainfall volumes are indicated in the real-
valued versions of these prominent patterns are shown in the
Supplementary Figure 1.

3.2.2. ACCESS-ESM-1.5 Dataset

The seven prominent patterns (binary) obtained from the
ACCESS simulation dataset are shown in Figure 3. The patterns
are sorted according to the mean daily rainfall rates (all-India),
as given in Table 2. These seven patterns cover 79% of the days.
Here we find 2 patterns where most of the landmass is dry,
just like the IMD dataset. In patterns 3, 4, 5, 6, 7 we find the
rainfall concentrated along the western coast and the foothills
of the Himalayas, North of the Gangetic planes. None of the
patterns show much rainfall along major parts of the Gangetic
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FIGURE 3 | The seven prominent binary spatial patterns found from ACCESS-ESM-1.5 model. Pink indicates wet locations and blue indicates dry locations. Patterns

are numbered from left to right across each row, top to bottom.

plains, Central India and the Eastern coast. Some parts of the
central India are covered in patterns 5 and 7, but simultaneously
with Himalayan foothills. So many of the patterns obtained from
simulations of this model do not agree well with IMD dataset.
The real-valued versions of these prominent patterns are shown
in Supplementary Figure 2.

3.2.3. BCC-CSM Dataset

The 10 prominent patterns (binary) obtained from the BCC-
CSM simulation dataset are shown in Figure 4. The patterns
are sorted in ascending order of mean all-India rainfall rates, as
given in Table 2. These 10 patterns cover 85% of the days. Here
once again we find the first four patterns corresponding to low
all-India rainfall, which are concentrated in the western coast
and North-East. Pattern 5 covers the entire peninsular region
including the south-eastern parts, which are known to remain
dry during this period. This pattern is in disagreement with the
patterns from the IMD dataset. Similarly pattern 8, which shows
rainfall only in the eastern side (roughly the states of Bihar,
Odisha, Bengal, and the North-east), is not found in the IMD
dataset. Patterns 6, 9, 10 show rainfall in Central India, and 9, 10
include the eastern coast as well. These are broadly in agreement
with the patterns 6, 7, 9 of the IMD dataset, though located a bit
Northward. Pattern 7 shows rainfall in the Gangetic plain, much
like patterns 5, 8 of the IMD dataset. The real-valued versions of
these prominent patterns are shown in Supplementary Figure 3.

3.2.4. CAN-ESM-5 Dataset

The nine prominent patterns (binary) obtained from the CAN-
ESM-5 simulation dataset are shown in Figure 5. The patterns
are sorted in ascending order of mean all-India rainfall rates, as
given in Table 2. These nine patterns cover 85% of the days. The
patterns 1, 2, 3 resemble the corresponding dry patterns from the
IMD dataset. But patterns 4, 5, 7, 8 show rainfall concentrated

only in the eastern and north-eastern region, while in case of
pattern 9 most of the eastern coast and the peninsular India are
simultaneously wet. These patterns seem to be in disagreement
with the IMD patterns. There is no pattern which covers Central
India (except 9, though only partially) and western parts of
the Gangetic plain including the foothills of Himalayas. The
real-valued versions of these prominent patterns are shown in
Supplementary Figure 4.

3.2.5. EC-3 Dataset

The nine prominent patterns (binary) obtained from the EC-3
simulation dataset are shown in Figure 6. The patterns are sorted
in ascending order of mean all-India rainfall rates, as given in
Table 2. These 11 patterns cover 75% of the days. Once again,
patterns 1, 2, 3 show rainfall limited to the north-eastern region
and western coast, like the IMD dataset. Patterns 4, 5, and 7 show
rainfall over the Gangetic plain and foothills of the Himalayas,
like patterns 5, 8 from the IMD dataset. But patterns 6, 8, 9 show
rainfall occurring simultaneously over Central India and large
parts of the Gangetic plain, which is in disagreement with the
patterns from the IMD dataset. The real-valued versions of these
prominent patterns are shown in Supplementary Figure 5.

3.2.6. INM-CM-4.8 Dataset

The 11 prominent patterns (binary) obtained from the INM-CM-
4.8 simulation dataset are shown in Figure 7. The patterns are
sorted in ascending order of mean all-India rainfall rates, as given
in Table 2. These 11 patterns cover 82% of the days. Here we have
dry patterns 1, 2, 3 like all other datasets. Pattern 5 shows rainfall
over the Gangetic plain, while patterns 6, 11 shows rainfall over
Central India, like the patterns from the IMD dataset. However,
patterns 7 shows rainfall along the entire eastern coast, which
is not observed in the IMD dataset. In patterns 4, 5, 8, 9, 10
we see rainfall simultaneously in Central India and the Gangetic
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FIGURE 4 | The 10 prominent binary spatial patterns found from BCC-CSM model. Pink indicates wet locations and blue indicates dry locations. Patterns are

numbered from left to right across each row, top to bottom.

FIGURE 5 | The nine prominent binary spatial patterns found from CAN-ESM-5 model. Pink indicates wet locations and blue indicates dry locations. Patterns are

numbered from left to right across each row, top to bottom.

plain, which too is in disagreement with the IMD patterns. The
real-valued versions of these prominent patterns are shown in
Supplementary Figure 6.

3.2.7. MPI-ESM-1.2 Dataset

The nine prominent patterns (binary) obtained from the MPI-
ESM-1.2 simulation dataset are shown in Figure 8. The patterns
are sorted in ascending order of mean all-India rainfall rates,
as given in Table 2. These nine patterns cover 75% of the days.
Just like all other datasets, we have 3 dry patterns, but unlike
othermodels, none of them show rainfall along theWestern coast
only. Patterns 6 and 9 show rainfall mostly over the Gangetic

plain, like patterns 5, 8 from the IMD dataset. Pattern 8 shows
rainfall over central India. But pattern 4 where the rainfall is over
peninsular India only, as well as patterns 5,7 where the rainfall
occurs from eastern coast (around Odisha state) till western
parts of the Gangetic plains excluding the eastern parts of the
Gangetic plain, are in disagreement with the IMD dataset. The
real-valued versions of these prominent patterns are shown in
Supplementary Figure 7.

3.2.8. NOR-ESM-2 Dataset

The 10 prominent patterns (binary) obtained from the NOR-
ESM-2 simulation dataset are shown in Figure 9. The patterns
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FIGURE 6 | The nine prominent binary spatial patterns found from EC-3 model. Pink indicates wet locations and blue indicates dry locations. Patterns are numbered

from left to right across each row, top to bottom.

FIGURE 7 | The 11 prominent binary spatial patterns found from INM-CM-4.8 model. Pink indicates wet locations and blue indicates dry locations. Patterns are

numbered from left to right across each row, top to bottom.

are sorted in ascending order of mean all-India rainfall rates,
as given in Table 2. These 10 patterns cover 76% of the days.

Here too we have three dry patterns like the IMD dataset.
Patterns 5,8,9 show rainfall over the Gangetic plains including

Himalayan foothills. However, pattern 4 which show rainfall over

the Eastern region only, and patterns 6 and 10 where rainfall
covers Central India and Gangetic plain simultaneously, are
in disagreement with the patterns from the IMD dataset. The
real-valued versions of these prominent patterns are shown in
Supplementary Figure 8.

3.3. Quantitative Analysis of Prominent
Spatial Patterns
We now carry out a quantitative analysis of the spatial patterns
obtained from the different CMIP6 models and the ground truth
data. The first analysis is to see how well the spatial patterns from
each CMIP6model can fit the ground truth data. For each day, we
choose among the prominent spatial patterns from a particular
CMIP6 model, that pattern which is the closest approximation
of the spatial maps XIMD(t) and ZIMD(t). For this we calculate
τMODEL(t) = min ||XIMD(t) − θMODEL|| and τMODEL

d
(t) =
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FIGURE 8 | The nine prominent binary spatial patterns found from MPI-ESM-1.2 model. Pink indicates wet locations and blue indicates dry locations. Patterns are

numbered from left to right across each row, top to bottom.

FIGURE 9 | The 10 prominent binary spatial patterns found from NOR-ESM2 model. Pink indicates wet locations and blue indicates dry locations. Patterns are

numbered from left to right across each row, top to bottom.

min ||ZIMD(t) − θMODEL
d

||, where || denotes a suitable distance
measure.We use ℓ2 norm for τ andHamming distance for τd.We
take the mean value of τMODEL and τMODEL

d
over all the days, and

denote these by PatternScore and dPatternScore. This essentially
indicates, howwell the prominent spatial patterns identified from
the models can describe actual spatial maps of daily rainfall.

Analogously, for each day’s rainfall map XMODEL as simulated
by the models, we try to approximate them with the prominent
spatial patterns identified from the IMD dataset. For each
simulated day, we calculate κMODEL(t) = min ||XMODEL(t) −
θ IMD|| and κMODEL

d
(t) = min ||ZMODEL(t) − θ IMD

d
||, where ||

denotes a suitable distance measure. We use ℓ2 norm for X and
Hamming distance for Z. We take the mean value of κ and
κd over all the simulated days, and denote it by MapScore and
dMapScore. This essentially indicates how well the daily spatial
maps simulated by the models can resemble the prominent
spatial patterns identified from the actual data.

The results may be seen in Table 3. We find that for the
IMD dataset, dPatternScore is 0.81, which means that on any
day during the study period, the binarized rainfall agrees with
value predicted by the corresponding spatial pattern (binary) at
about 81% of the locations on average. For other models, this
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TABLE 3 | Quantitative comparison of the spatial patterns and daily rainfall maps obtained from the IMD dataset and those obtained from different CMIP6 model

simulations.

IMD ACC BCC CAN EC3 INM MPI NOR

PatternScore 251 266 254 265 257 257 257 257

dPatternScore 0.81 0.75 0.78 0.77 0.79 0.79 0.78 0.79

MapScore 251 173 214 144 209 183 200 224

dMapScore 0.81 0.83 0.81 0.84 0.81 0.80 0.79 0.80

The model giving best result with respect to the corresponding measure is shown in bold.

TABLE 4 | The number of extreme rainfall events in different datasets, i.e., the number of (location,day) pairs at which the volume of rainfall exceeds thresholds as

mentioned in the leftmost column.

IMD ACC BCC CAN EC3 INM MPI NOR

>200 mm 278 89 93 94 126 45 62 194

>150 mm 793 358 497 304 514 245 319 634

>100 mm 3,133 1,578 2,286 1,174 2,223 1,218 1,626 2,502

>50 mm 16,941 11,190 13,925 6,502 14,954 10,090 12,749 15,519

score is somewhat lesser. The same trend holds when we consider
PatternScore, where the actual rainfall values at each location are
compared to that predicted by the corresponding spatial pattern.
This indicates that the CMIP6models have not been very effective
in recognizing that there exist spatial patterns of daily rainfall.
Not only do the patterns extracted from the simulation datasets
not resemble those obtained from the IMD dataset, in fact the
patterns are not very pronounced in their own rainfall maps.

When we consider the daily spatial maps of rainfall as
simulated by the models, we see somewhat unexpected results.
We find that ACCESS-ESM-1.5 and CAN-ESM-5 models, which
have generally been less accurate, return the least values of
MapScore, indicating that the daily rainfall maps simulated by
them resemble the actual spatial patterns (obtained from the real
data) better, compared to other models. In fact, the MapScore is
worst from the IMD dataset itself. Yet, on deeper investigation,
we realize that this is due to the presence of many more extreme
rainfall events in the real dataset than those simulated by the
models, as shown in Table 4. We find that CAN-ESM-5 model
has the least number of rainfall events above 50 mm, while for
NOR-ESM-2 this number is the highest, and closest to the actual
number. The real-valued spatial patterns (θ) do not contain high
values of rainfall, due to which the ℓ2 norms used for calculation
ofMapScore is high.

3.4. Analysis of Spatial Clusters
Now, we turn our attention to the spatial clusters obtained from
the V-variable of the probabilistic graphical model. All locations
assigned the same value of V constitute a spatial cluster, implying
that their rainfall time-series are nearly identical. The number
of spatial clusters is not fixed by the user, but determined by
the model from the data. The maps showing the spatial clusters
may be seen in Figure 10, where each cluster is indicated with
a different color. It may be observed that all the spatial clusters
obtained are spatially contiguous. The number of clusters, as
indicated in Table 5, varies in the range 32–55. We find that
in all cases, certain geographically special regions such as the

Thar desert and the Rann of Kutch in the west, come as single
clusters. In case of the clustering obtained from IMD dataset, the
rain shadow region of the Deccan plateau in the south comes
as a single cluster, though this feature does not show up in
other models.

Now, we investigate the quality of these spatial clusters. A
cluster is useful only if it is homogeneous. For any cluster k,
we calculate the mean time-series XMODEL

k
of rainfall. We then

calculate the correlation coefficients between XMODEL
k

and the

rainfall time-series XMODEL(s) for each location s within that
cluster, i.e., VMODEL(s) = k, which indicates how well the rainfall
time-series at each location is correlated to that of its spatial
cluster. We take the mean of these correlation coefficients for
all locations and refer to it as model-smoothness. This process
is repeated for all the datasets, including IMD and CMIP6
simulations. Next, we examine if the spatial clusters obtained
from the CMIP6 model simulations make any physical sense,
i.e., are those regions homogeneous with respect to actual rainfall
data? For this purpose, we repeat the same exercise as above using
XIMD as rainfall time-series, butVMODEL to define the clusters, for
eachmodel separately.We call these statistics as data-smoothness.

These statistics are available in Table 5. We find that
some models like ACCESS-ESM-1.5 and CAN-ESM-5 produce
significantly less number of spatial clusters than the IMD dataset.
The values of model-smoothness indicate that clusters from all
datasets are relatively homogeneous. However, there may not
be a strong physical basis of the spatial clusters obtained from
the CMIP6 models, as the data-smoothness values from them
are relatively low compared to that from the IMD dataset. The
numbers are particularly poor for ACCESS-ESM-1.5 and CAN-
ESM-5 models, and relatively better for MPI-ESM-1.2.

4. DISCUSSIONS

Finally, we come to a discussion of the results. First of all, a
major observation is that spatial correlation of monsoon rainfall
is heavily overestimated in all the CMIP6 models, indicating
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FIGURE 10 | The spatial clusters obtained from IMD dataset and all CMIP6 model simulation datasets. Each color denotes one cluster. (Top) (left to right): IMD

dataset, ACCESS-ESM-1.5, BCC-CSM, CAN-ESM-5; (Bottom) (left to right): EC-3, INM-CM-4.8, MPI-ESM-1.2, NOR-ESM-2.

TABLE 5 | Statistics of the spatial clusters computed from the IMD dataset and different CMIP6 model simulations, as mentioned in section 3.4.

IMD ACC BCC CAN EC3 INM MPI NOR

#sp.clus 48 32 50 34 47 51 55 46

Model-smoothness 0.92 0.89 0.9 0.92 0.87 0.91 0.9 0.9

Data-smoothness 0.92 0.69 0.75 0.7 0.73 0.74 0.76 0.72

that rainfall is spatially smoother in the model simulations than
in the actual data. This may indicate that the models simulate
monsoon rainfall through large-scale processes which cover
many grids, leading to such spatial correlation. They may be
missing out on localized convective events, or missing out on
spatial heterogeneity of large-scale processes during monsoon.
It turns out that the probabilistic graphical model is able to
identify a small number (7–11) or prominent spatial patterns
from each of the datasets including the IMD observations and the
CMIP6 simulations. However, there are two major differences:
(i) While the rainfall maps on a large fraction of the days
conform to any of these prominent spatial patterns in case of
the IMD dataset, this fraction is less in case of all the CMIP6
model simulations; (ii) The spatial patterns identified from the
model simulations do not match well with those from the IMD
dataset, and hence these model-based patterns cannot fit the
spatial maps of actual daily rainfall. The second point is made
based on both the visual inspection of section 3.2 and the
quantitative analysis of section 3.3 using the PatternScore and
dPatternScoremeasures. Additionally, we also see thatmost of the
models seriously underestimate the number of extreme rainfall
events. Coming to spatial clusters, we can find a number of
reasonably homogeneous spatial clusters from the IMD datasets
as well as from the CMIP6 model simulations, but most of
the clusters formed by models do not seem to have a strong
physical basis, as they are not very homogeneous with respect

to actual rainfall from IMD observations, as indicated by the
data-smoothnessmeasure.

Among the different CMIP6 models we considered, we find
that there is a variation in performance. The ACCESS-ESM-1.5
and CAN-ESM-5 are found to be unsuitable on almost all the
measures we considered, including the spatial statistics (Table 1),
number of extreme events, and suitability of their spatial patterns
and spatial clusters to actual rainfall data. INM-CM-4.8 is found
to perform poorly on somemeasures, especially the local statistics
and number of extreme events, but decently on other measures.
Several of the spatial patterns identified from this model are in
disagreement with the spatial patterns from IMD dataset, but this
is somehow not captured by the dPatternScore measure where
INM-CM-4.8 does well. But the other models, namely BCC-
CSM, EC-3, MPI-ESM-1.2, and NOR-ESM-2 are found to be
quite robust on most of the measures that we consider.

More than hindcasting of historical data, the biggest utility of
these GCMs is in simulation of future climate. It is well-known
that no individual model is reliable enough for simulations,
which is why multi-model ensembles are considered for most
studies regarding simulation of future scenarios. However, it is
important to assign weights to the ensemble members based on
their performance on the historical period, since that can be
evaluated against ground truth. We hope this work will enable
such weighing of climate models, especially for studies about
spatial properties of Indian monsoon under future scenarios.
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