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Resting-state fMRI activation is
associated with parent-reported
phenotypic features of autism in
early adolescence
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Introduction: Autism Spectrum Disorder (ASD) is characterized by deficits in social
cognition, self-referential processing, and restricted repetitive behaviors. Despite
the established clinical symptoms and neurofunctional alterations in ASD,
definitive biomarkers for ASD features during neurodevelopment remain
unknown. In this study, we aimed to explore if activation in brain regions of the
default mode network (DMN), specifically the medial prefrontal cortex (MPC),
posterior cingulate cortex (PCC), superior temporal sulcus (STS), inferior frontal
gyrus (IFG), angular gyrus (AG), and the temporoparietal junction (TPJ), during
resting-state functional magnetic resonance imaging (rs-fMRI) is associated with
possible phenotypic features of autism (PPFA) in a large, diverse youth cohort.
Methods: We used cross-sectional parent-reported PPFA data and youth rs-
fMRI brain data as part of the two-year follow-up of the Adolescent Brain
Cognitive Development (ABCD) study. Our sample consisted of 7,106 (53%
male) adolescents aged 10-13. We conducted confirmatory factor analyses
(CFAs) to establish the viability of our latent measurements: features of autism
and regional brain activation. Structural regression analyses were used to
investigate the associations between the six brain regions and the PPFA.
Results: We found that activation in the MPC (β= .16, p < .05) and the STS
(β= .08, p < .05), and being male (β= .13, p < .05), was positively associated
with PPFA. In contrast, activation in the IFG (β=−.08, p < .05) was
negatively associated.
Discussion: Our findings suggest that regions of the “social brain” are associated
with PPFA during early adolescence. Future research should characterize the
developmental trajectory of social brain regions in relation to features of ASD,
specifically brain regions known to mature relatively later during development.

KEYWORDS

rs-fMRI (resting state fMRI), default mode network (DMN), features of autism spectrum,
preadolescence, neuroactivation

1 Introduction

Autism spectrum disorder (ASD) is associated with deficits in social cognitive

processes and self-referential processes (1, 2). In addition to social impairment, ASD is

clinically associated with restricted, repetitive behaviors and interests (3). ASD

symptoms can be observed at a sub-clinical threshold, and it is established that a broad

autism phenotype exists, which captures a range of social functioning on a continuum (4).
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TABLE 1 Participant demographics.

N (%)
Age (mean, SD) 11.95, 0.65

Race

White 3,954 (55.63%)

Hispanic 1,371 (19.29%)

Black/African American 919 (12.93%)

Asian 138 (1.94%)

Other 726 (10.21%)

Sex assigned at birth

Male 3,749 (52.74%)

Female 3,359 (47.26%)

Gender identity

Male 3,742 (52.64%)

Female 3,353 (47.17%)

Trans male 1 (0.01%)

Trans female 3 (0.04%)

Gender queer 2 (0.03%)

Different [than provided options] 4 (0.06%)

Refused to answer 1 (0.01%)

Don’t know 2 (0.03%)
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Neurofunctional substrates of ASD have been characterized by

atypical brain activation (5) and altered functional connectivity

(FC) among brain regions (6) during resting-state functional

magnetic resonance imaging (rs-fMRI). Studies consistently

highlight abnormalities in several key brain networks associated

with social cognition, communication, and sensory processing.

For instance, reduced connectivity within the default mode

network (DMN), including regions such as the medial prefrontal

cortex (MPC) and posterior cingulate cortex (PCC), has been

linked to social deficits in ASD (7, 8). Similarly, atypical

functioning of the salience network (SN), particularly in regions

like the anterior insula and anterior cingulate cortex (ACC), has

been associated with challenges in processing socially relevant

stimuli (9). Other studies have pointed to hyper- or

hypoconnectivity in the amygdala, a region critical for emotion

regulation, as being involved in ASD-related emotion processing

difficulties (10).

Despite this body of evidence, ASD does not have a single,

agreed-upon biomarker or identifiable neural structure that

characterizes the condition (11). It is also unclear how features of

autism are commonly represented during neurodevelopment.

This lack of a definitive biomarker has prompted further

investigation into more specific neural processes, such as self-

referential processes associated with the DMN, which is activated

during rs-fMRI (12, 13). Poor self-referential processing in ASD

is linked to poor theory of mind, a critical social cognitive

process (2). DMN activation in brain regions associated with

self-referential processing may provide insight into mechanisms

associated with features of autism during development in

adolescents who do not have an ASD diagnosis but show

subclinical ASD symptoms. We aim to build upon existing

research looking at select neural correlates of the DMN related to

self-referencing and theory of mind in ASD (14) by examining

youth during early adolescence, a critical period of self-identity

development and social development, when social cognition and

self-reflection may be most indicated.

Brain structures of interest in the present study include the

MPC, PCC, superior temporal sulcus (STS), inferior frontal gyrus

(IFG), angular gyrus (AG), and the temporoparietal junction

(TPJ). These brain regions of the DMN have neurofunctional

overlap with the regions of what some have termed the theory of

mind network [ToMN; (15, 16)], a functional network involved

in social cognition (17, 18). These brain structures can be

categorized based on functional purpose in the context of

thinking about and interacting with the social world and are

collectively considered regions of the “social brain” (15, 19). The

MPC is linked with mentalizing or theory of mind (i.e.,

mentalizing or reflecting on the emotional/mental states of self

and others), person perception, self-perception, and self-

referential thinking (2, 20, 21). The temporal regions contribute

to conceptual and semantic knowledge related to mentalizing

(22). The PCC has been theorized as a sub-component for self-

referential and other social cognitive processes (20, 23). The STS

and TPJ are linked with predicting biological movement,

assignment of agency to self and others (i.e., theory of mind and

self-other distinction), perspective taking, and empathy (15, 24).
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The shared functions of these brain regions as they relate to

features of autism, specifically during adolescent development,

are not yet fully understood. Maturation of brain regions is not

uniform during adolescence, with frontal brain regions maturing

later (25, 26) and less neurodevelopmental change seen in ASD

(27) influencing social development and broad autism phenotype

during adolescence (28).

In this study, we examined rs-fMRI activation in regions that are

known to be involved in social cognition, especially those social

cognitive processes related to phenotypic features of autism. Brain

activation during rs-fMRI is known to be heterogeneous (29) and

changes throughout development (30). Accordingly, we tested

whether intrinsic activity in brain regions of interest are associated

with possible phenotypic features of autism (PPFA) in a large,

diverse youth sample across the United States.
2 Method

2.1 Participants

We analyzed cross-sectional data from the two-year follow-up

(2YFU) visit from the Adolescent Brain Cognitive Development

(ABCD) study (5.1 data release). The data included in the study

is available on the NIMH Data Archive via data access request.

The study used resting-state functional magnetic resonance

imaging (rs-fMRI) data and parent report data of 7,108

adolescents between the ages of 10–13 (M = 11.95, SD = 0.65).

Table 1 describes demographic characteristics of the sample. Our

analysis’ inclusion and exclusion criteria were consistent with the

criteria for participation in the ABCD study (31). Accordingly,

children with a confirmed diagnosis of moderate or severe ASD

were excluded from ABCD study enrollment at baseline.

Although the ABCD study does not have data on clinically

diagnosed ASD, it is possible that youth with mild ASD and
frontiersin.org
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ASD feature endorsement are included. Additionally, our sample

was limited to participants with brain imaging data collected at

their 2YFU visit, thus does not include all participants actively

enrolled in the ABCD study. The 2YFU time point was used

because it was the only time point that had data for our variables

of interest in the 5.1 data release.
2.2 Measures

2.2.1 Brain regions
We used the temporal variability of 22 cortical parcellations

from the Destrieux brain atlas (32) during rs-fMRI. Temporal

variability describes fluctuations in the BOLD (blood-oxygen-

level-dependent) signal over a specified time course (i.e., the

length of the rs-fMRI scan) from which neural activity in the

region is inferred (33–35). The cortical parcellations used for

analysis were grouped to form brain regions of interest: MPC,

PCC, STS, IFG, AG, and TPJ. The Destrieux atlas’ anatomical

parcellation names (index numbers) used for each region are

as follows:

MPC: The left and right anterior part of the cingulate gyrus and

sulcus (6, 80).

The left and right middle-anterior part of the cingulate gyrus

and sulcus (7, 81).

PPC: The left and right posterior part of the cingulate gyrus and

sulcus (8, 82).

The left and right posterior-dorsal part of the cingulate

gyrus (9, 83).

The left and right posterior-ventral part of the cingulate

gyrus (10, 84).

STS: The left and right STS (73, 147).

IFG: The left and right opercular part of the inferior frontal

gyrus (12, 86).

The left and right orbital part of the inferior frontal gyrus (13, 87).

The left and right triangular part of the inferior frontal

gyrus (14, 88).

AG: The left and right AG (25, 99).

TPJ: The left and right supramarginal gyrus (26, 100).

2.2.2 Phenotypic features of autism
The studyuses three parent-reported questionswith 5-point scales

ranging from “Not at all” to “Nearly every day” related to PPFA taken

from Module #18 (autism spectrum disorders) of the computerized

Kiddie Schedule for Affective Disorders and Schizophrenia for DSM-5

(KSADS-COMP) (36). The questions include:

(1) “In the past two weeks, how often has your child had trouble

maintaining eye contact and looking at you or other people

when they are talking with your child?”

(2) “In the past two weeks, how often have you worked real hard

to keep routines and activities the same so your child would

not get upset?”

(3) “In the past two weeks, how often did your child do unusual

body movements like hand flapping, head weaving, body

rocking, or body spinning?”
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2.3 Data analysis

We tested our hypothesis using confirmatory factor analysis

(CFA) and structural equation modeling with the lavaan package

in R (37). CFA for fMRI data has been an established approach

with several advantages compared to data reduction techniques

such as principal components analysis and partial least squares

(38). We estimated all models using diagonally weighted least

squares because of its appropriate use for ordinal data that do

not meet the assumptions of non-normality (39), which is true

of the features of autism data used in our study. We evaluated

model fit using chi-square (χ2), Comparative Fit Index (CFI;

values > .90 suggest acceptable fit and values > .95 suggest good

fit), Tucker-Lewis Index (TLI; values > .90 suggest acceptable fit

and values > .95 suggest good fit), standardized root mean

residual (SRMR; values < .08 suggest good fit), root mean square

error approximation (RMSEA; values < .08 suggest good fit).

Initially, we conducted CFAs in order to establish the viability

of our latent measurements of PPFA as reported by parents and

brain regions of interest, specifically the MPC, PCC, STS, IFG,

AG, and the TPJ. We used the 22 parcellations from the

Destrieux atlas as observed indicators for the six-factor CFA for

the brain regions of the MPC, PCC, STS, IFG, AG, and TPJ. For

our primary analysis, we regressed the latent factor of features of

autism onto the six latent factors of the brain regions of interest

and sex assigned at birth.
3 Results

3.1 Confirmatory factor analysis of PPFA

Figure 1 shows the results of the CFA for PPFA suggesting

adequate model fit (CFI = 1.00, TLI = 1.00, SRMR = 0.00,

RMSEA = 0.00, χ2 < 0.001) with loadings ranging from .28 to.50

(see Figure 1). Thus, the three parent-report questions from the

K-SADS questionnaire appropriately form a latent construct

characterized as PPFA.
3.2 Confirmatory factor analysis for brain
regions of interest

Figure 2 shows the CFA for the brain regions of interest

converging with an adequate model fit (CFI = .97, TLI = .96,

SRMR = .08, RMSEA = .03, χ2 < .001), thus indicating the six brain

regions of interest for our analysis: MPC, PCC, STS, IFG, AG, and

TPJ. Correlations between the targeted brain regions ranged from

moderate to large and were all positive in direction (see Table 2).
3.3 Regression analysis of selected brain
regions and sex assigned at birth predicting
PPFA

Figure 3 shows the results of the structural regression model,

which converged with adequate fit (CFI = .94, TLI = .93,
frontiersin.org

https://doi.org/10.3389/frcha.2024.1481957
https://www.frontiersin.org/journals/child-and-adolescent-psychiatry
https://www.frontiersin.org/


FIGURE 1

Model for one factor CFA for PPFA with factor loadings.

FIGURE 2

Model for six factor CFA for brain regions of interest with destrieux atlas cortical parcellations as the observed indicators. See Table 2 for correlations
among latent factors. The parcellations numbers correspond with the Destrieux atlas’ index number as follows: the left and right anterior part of the
cingulate gyrus and sulcus (6, 80), the left and right middle-anterior part of the cingulate gyrus and sulcus (7, 81), the left and right posterior part of the
cingulate gyrus and sulcus (8, 82), the left and right posterior-dorsal part of the cingulate gyrus (9, 83), the left and right posterior-ventral part of the
cingulate gyrus (10, 84), the left and right STS (73, 147), the left and right opercular part of the inferior frontal gyrus (12, 86), the left and right orbital part
of the inferior frontal gyrus (13, 87), the left and right triangular part of the inferior frontal gyrus (14, 88), the left and right AG (25, 99), the left and right
supramarginal gyrus (26, 100).

Hickson et al. 10.3389/frcha.2024.1481957
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TABLE 2 Correlation between and psychometric information for all
predictor variables.

1 2 3 4 5 6
1. Medial prefrontal cortex (MPC) (.66)

2. Posterior cingulate cortex (PCC) .77 (.74)

3. Superior temporal sulcus (STS) .55 .68 (.77)

4. Inferior frontal gyrus (IFG) .73 .57 .43 (.78)

5. Angular gyrus (AG) .58 .71 .60 .50 (.69)

6. Temporal parietal junction (TPJ) .64 .69 .53 .55 .69 (.75)

7. Sex assigned at birth .10 .14 .12 .05 .13 .15

Cronbach’s alpha on diagonal for continuous variables. Point-biserial correlations were

calculated for sex assigned at birth (0 being male and 1 being female) and brain regions.

Therefore, positive values indicate a greater correlation between the neurofunctional
activity and being assigned female at birth.

Hickson et al. 10.3389/frcha.2024.1481957
SRMR = .03, RMSEA = .07, χ2 < .001). The structural regression of

a latent factor of PPFA regressed onto brain regions interest and

sex assigned at birth showed activation in the MPC (β = .17,

p < .05) and the STS (β = .08, p < .05) to be positively associated

with PPFA. Additionally, being assigned male at birth was

positively associated with PPFA (β = .13, p < .01). Conversely,

activation in the IFG (β =−.08, p < .05) showed to be negatively

associated with PPFA. There was not a significant association
FIGURE 3

Full structural regression model (measurement and structural) for a latent fa
brain regions of interest. Regression loadings from the six brain regions
relationship at the .05 level. Loading values for the latent factor of featur
preliminary CFAs (see Figures 1, 2).
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between the PCC (β =−.11, p = .13), AG (β = .02, p = .71), and

TPJ (β =−.05, p = .19) with parent-reported PPFA in our youth

cohort (see Figures 3, 4). Point-biserial correlations between sex

assigned at birth and neurofunctional activity of the six brain

regions showed that female participants have greater activation in

all identified regions, and the difference was small in magnitude,

ranging from .05 to .15 (see Table 2). The above reported PPFA–

activation relationships in MPC, STS, and IFG regions were

significant after controlling for neurofunctional differences

between males and females.
4 Discussion

Our findings suggest that resting-state neurofunctional activity

is indicative of PPFA in early adolescence. We found that greater

resting-state activation in the MPC and the STS is associated

with increased PPFA as reported by parents. These findings are

concordant with literature that relates the MPC and the STS to

self-referential thinking (20, 40), a cognitive process consistent

with resting-state activity. Activation in areas related to self-

referential thinking have been linked to a heightened focus on
ctor of PPFA predicted by sex assigned at birth and six latent factors of
and sex assigned at birth are listed. An asterisk indicates a significant
es of autism and the six brain regions are identical to those from the
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FIGURE 4

Brain visualization of areas with activation that are significantly associated with PPFA. The image on the left is a lateral view of the right hemisphere, and
the image on the right is a medial view of the right hemisphere. The colors represent the standardized regression loadings from the structural
regression model which are significant at the .05 level. Areas with a positive effect size (i.e., greater resting-state activation associated with PPFA)
are green. Areas with a negative effect size (i.e., less resting-state activation associated with PPFA) are red.

Hickson et al. 10.3389/frcha.2024.1481957
internal cues [i.e., thoughts and perceptions; (41)]. Difficulties in

distinguishing between one’s own thoughts and perspectives and

those of others is a hallmark of autism that contributes to social

challenges (42, 43). Furthermore, we found that less resting-state

activation in the IFG is associated with increased PPFA. The IFG

has been implicated in emotion recognition and regulation (44).

Interestingly, there is evidence of IFG hypoactivation in early

adolescence (around age 12) in youth with ASD, but no

differences in IFG activation in adults with ASD compared to

group-matched control adults (45). In this context, our finding of

hypoactivation in the IFG being associated with greater PPFA in

early adolescence is consistent with the literature (46–48) and

builds upon previous findings as we find IFG hypoactivation

during resting state in youth at ages 10–13 years.

Additionally, we find that anterior brain regions (MPC, STS,

IFG) have a greater association with PPFA compared to posterior

regions (PCC, AG, TPJ). This is in line with the posterior to

anterior brain maturation pattern occurring during early

adolescence through adulthood (28) and is consistent with

altered fronto-posterior brain connectivity being associated with

autistic features/traits (49). Thus, as frontal brain regions

continue to mature, there is potential for a reduction in

phenotypic features of autism observed in youth during early

adolescence. We also found that being assigned male at birth

was also associated with greater PPFA. This is consistent with

sex differences in puberty onset (50) and brain maturation (51),

with males showing later onset and maturation compared to

females. Notably, this finding could also reflect differences

between the presentation of features of autism, with females

having displaying greater behavior camouflaging (52), thus less

likely to be noticed and reported on the parent-report measure.

Altogether, our results provide novel evidence that neural

activation in DMN brain structures, which align with regions of

the ToMN, during resting state are associated with PPFA in

early adolescence.
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Our study focuses on a cohort of preadolescents without a

clinical diagnosis of ASD at baseline who express a range

of parent-reported PPFA at the second-year follow-up.

Therefore, our results infer how neurofunctional activity in

regions of the DMN relates to PPFA among a diverse cohort

of preadolescents, where PPFA was based on three questions,

which cannot capture the full complexity and heterogeneity of

ASD. Additionally, although the symptoms-measure scale was

intended to capture features of ASD, the specific features (i.e.,

eye contact, maintaining a routine, and unusual body movement)

can occur in conjunction with other neurodevelopmental disorders

or psychopathologies, such as attention-deficit/hyperactivity

disorder, anxiety, or depression. Therefore, these transdiagnostic

features should not be understood as exclusive to ASD, but rather

as indicators of neurodevelopment that is consistent with ASD

features. Future research should aim to identify and disambiguate

contributory factors that manifest as both distinct resting-state

neurofunctional activity and transdiagnostic features of atypical

psychosocial development. Furthermore, our study’s focus on

three questions related to PPFA limits the scope of how

neurofunctional differences in the DMN impact functioning. Our

findings should be extended with research investigating how

differences in DMN activity relate to domains of functioning in

adolescence, such as social engagement, academic performance,

and emotion regulation.

Beyond limitations related to the measurement of features of

autism, the interpretation of our study results is limited due to

being cross-sectional. It is not understood if greater resting-state

activation in the MPC and STS and less activation in the IFG

can predict features of autism throughout adolescence and young

adulthood. Longitudinal studies are warranted to characterize the

trajectories of these examined brain regions, specifically of brain

regions known to mature relatively later in development.

Considering that alteration in the DMN has also been associated

with social anxiety and other mental health disorders (53, 54),
frontiersin.org
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future research is needed to explore if intrinsic social brain

activation pattern associated with PPFA during early adolescence

in youth without a diagnosis of ASD is a risk factor for

developing socioemotional mental health issues, such as social

anxiety, during late adolescence and young adulthood. Overall, a

better understanding of the neurofunctional substrates of features

of autism will provide a better understanding of its heterogeneity,

developmental timing, and targeted treatment needs.
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