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Introduction: Attention-deficit/hyperactivity disorder (ADHD) and autism are
multi-faceted neurodevelopmental conditions with limited biological markers.
The clinical diagnoses of autism and ADHD are based on behavioural
assessments and may not predict long-term outcomes or response to
interventions and supports. To address this gap, data-driven methods can be
used to discover groups of individuals with shared biological patterns.
Methods: In this study, we investigated measures derived from cortical/subcortical
volume, surface area, cortical thickness, and structural covariance investigated of
565 participants with diagnoses of autism [n= 262, median(IQR) age = 12.2(5.9),
22% female], and ADHD [n= 171, median(IQR) age = 11.1(4.0), 21% female] as
well neurotypical children [n= 132, median(IQR) age = 12.1(6.7), 43% female]. We
integrated cortical thickness, surface area, and cortical/subcortical volume, with
a measure of single-participant structural covariance using a graph neural
network approach.
Results: Our findings suggest two large clusters, which differed in measures of
adaptive functioning (χ2 = 7.8, P= 0.004), inattention (χ2 = 11.169, P < 0.001),
hyperactivity (χ2 = 18.44, P < 0.001), IQ (χ2 = 9.24, P= 0.002), age (χ2 = 70.87,
P < 0.001), and sex (χ2 = 105.6, P < 0.001).
Discussion: These clusters did not align with existing diagnostic labels, suggesting
that brain structure is more likely to be associated with differences in adaptive
functioning, IQ, and ADHD features.
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Introduction

Autism spectrum disorder (hereafter autism) and attention-

deficit/hyperactivity disorder (ADHD) are multifaceted

neurodevelopmental conditions (1). Autism is characterized by

differences in social communication and the presence of intense

interests and repetitive behaviors (prevalence 1%–2%) (1);

ADHD is defined by inattention and/or hyperactivity and

impulsiveness (2) (prevalence 7%) (3). Currently, the diagnoses

of autism and ADHD are based on observed and reported

behavioral assessments (4), and no biological markers exist to

inform the assignment of diagnostic labels. Despite this, the

discrete labels of autism and ADHD are commonly used to

inform service provision. However, these labels may not always

capture the needs of neurodivergent populations (5). Within

autism and ADHD, there is large variability in aetiology,

neurobiology, phenotypic presentation, and profiles of strengths

and disability (6, 7). At the same time, significant overlap exists

between the two conditions. For example, the prevalence of co-

occurring ADHD in autism is estimated to be 28% [95% CI:

(25–32)] (8), while 21% [95% CI: (18–24)] of children with

ADHD are reported to meet clinical thresholds for autism (9).

Autism and ADHD are also reported to share genetic

underpinnings (10) and neurobiological features including

similarities in brain structure (11–13), function (14, 15), and

connectivity (16, 17). Shared phenotypic and neurocognitive

features also exist between autism and ADHD. These include

differences in social communication (18), sensory processing

(19), face processing (20), response inhibition and sustained

attention (21). In this context, several studies have found that the

labels of autism and ADHD may not be associated with unique

and distinct biological and behavioural profiles (1, 12). The

misalignment between these discrete labels and underlying

neurobiology significantly challenges the development and

provision of personalized supports that can appropriately fit the

breadth of needs and strengths of neurodivergent individuals.

To address this gap, an emerging body of literature has focused

on characterizing the heterogeneity in neurobiology and/or

phenotypic presentation within and across neurodevelopmental

conditions including autism and ADHD (10, 11–13). This

approach shifts away from discrete diagnosis categories to a data-

driven approach that can more closely capture profiles aligned

with real-world outcomes (24). An example of this approach is

the Research Domain Criteria (RDoc) framework (25). Data-

driven approaches, and specifically clustering, have also received

attention as they do not require any a priori assumptions of

group labels; instead of examining differences between pre-

defined diagnostic groupings, data-driven approaches look to the

data to describe variability and discover homogeneous groupings

that can map onto profiles of needs and strengths. The common

finding across these studies is the lack of alignment between

existing diagnostic labels and neurobiology, although the

discovered subgroups vary significantly across different studies

depending on the sample characteristics and data modality used

[see review by Astle, Holmes, Kievit, and Cathercole (5)].
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In terms of studies focused on neurobiology, measures of brain

structure (12, 22), function (26), and connectivity (27) have been

most commonly employed. The present work focuses on brain

structure in particular. Brain structure is suggested to have utility

as an intermediate phenotype that links multiple genetic variants

(12, 23, 28), and gray matter volume differences have been

documented in ASD and ADHD (29–32) compared to

neurotypical populations. A key limitation of these studies,

however, is that regional measures of brain structure are used in

isolation and the relation between brain regions is often ignored

in the analyses. This is a critical shortcoming as autism and

ADHD are associated with pervasive differences across brain

networks (33, 34). To address this limitation, the present study

extends the previous literature by integrating regional

associations in the form of structural covariance (35) into the

clustering. Structural covariance quantifies population-level

correlation among measures of gray matter morphology (36).

Structural covariance networks are highly heritable, demonstrate

alterations in samples of children with ASD (37) and ADHD (38,

39), have associations with cognitive ability (40), and replicate

patterns of interregional functional and structural connectivity

and maturational coupling in autism (41). We hypothesize that

(a) data-driven clusters derived from sMRI data will not align

with traditional diagnostic labels, demonstrated by low values of

normalized mutual information, adjusted rand score,

homogeneity, and completeness, (b) the derived clusters will

transcend diagnostic boundaries and contain participants from

different diagnosis groups, (c) there will be widespread cluster

differences in brain structure across cortical and subcortical

regions, and (d) the data-driven clusters will be associated with

phenotypic differences across levels of cognition, behaviour, and

function.
Materials and methods

Participants

The study used data from the Province of Ontario

Neurodevelopmental Network (POND; export date: August 7,

2021). The dataset included participants with primary diagnoses

of autism (n = 262) or ADHD (n = 171), as well as those who

were neurotypical (TD) (n = 132) between the ages of 5–23 years

(mean age: 12.2 ± 3.78; 413 males, 152 females). All participants

and their parents were able to complete the testing protocols in

English and had no contraindications to magnetic resonance

imaging (MRI). Participants in the clinical groups met the DSM

criteria for their respective diagnosis and diagnoses were

supported by gold-standard assessments [autism: Autism

Diagnostic Observation Schedule–2 (ADOS) (42) and Autism

Diagnostic Interview–Revised (ADI-R) (20); ADHD: Parent

Interview for Child Symptoms (PICS) (43)]. Participants in the

TD group did not have a neurodevelopmental, psychiatric and/or

neurological diagnosis or any first-degree relatives with a

neurodevelopmental condition, and were born after 35 weeks
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gestation. Informed consent was provided by participants (when

they had the capacity to consent) or their guardians, and assent

was obtained from all participants as per institutional ethics

board guidelines. Institutional research ethics boards approvals

were received for the study.
Behavioral measures

Participants were characterized using phenotypic measures

quantifying core and co-occurring conditions. These included the

Social Communication Questionnaire (SCQ; lifetime) (44) for

autism-like traits (total score) and the Strengths and Weaknesses

of ADHD-symptoms and Normal Behavior (SWAN) (45) for

ADHD-like features (inattentive and hyperactivity subscales).

Adaptive functioning was quantified using the Adaptive Behavior

Assessment System-II (ABAS-II) (46) for adaptive function

(general ability composite). Co-occurring emotional and

behavioural symptoms were quantified using the Child Behavior

Checklist (CBCL) (47). Neurophysiological assessments of

participants included the Developmental Neuropsychological

Assessment (NEPSY; affect recognition and memory for faces)

(48) as well as the stop-signal task (response inhibition, sustained

attention, and reaction time) (21). Full-scale IQ was measured

using the Wechsler Abbreviated Scale of Intelligence (WASI)

(49), the Wechsler Intelligence Scale for Children (WISC) (50),

or the Stanford-Binet Test (51) as appropriate for age and ability

level.
Imaging data

We used structural MRI (sMRI) to extract measures of surface

area, cortical thickness, and cortical/subcortical regions volume. A

portion of images were collected on a 3-Tesla Siemens Trio TIM at

the Hospital for Sick Children (n = 280), which was upgraded to a

Siemens PrismaFIT scanner (n = 395). The rest of the data were

collected using 3-Tesla Siemens Trio TIM at Queen’s University

(n = 113) which was later updated to Siemens PrismaFit scanner

(n = 5). The parameters for Imaging acquisition are provided in

Supplementary Table S1. The CIVET pipeline (version 2.1.0)

(52) was used to extract area, cortical thickness, and cortical

volume for 76 regions of interest (ROI) according to automated

anatomical labeling atlas (AAL) (53, 54) using the T1-weighted

images. The pipeline includes non-uniformity image correction

followed by stereotaxic registration to the Montreal Neurologic

Institute (MNI ICBM) (55) template (non-linear 6th generation

target) (56). Furthermore, gray matter, white matter, and

cerebrospinal fluid were obtained by the process of masking,

extraction, and classification. Gray matter and white

matter surfaces were then created using tissue classification

images (57–60). A surface diffusion kernel (44), followed by

registration of regions to the AAL (53, 54) was applied. To

calculate cortical thickness, the distance between two smoothed

surfaces (61) was used. Surface area was generated by tissue

classification images (41). Subcortical structure volumes (95
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regions) were calculated based on segmentation using multiple

automatically generated templates (MAGeT) (62). A list of

regions included in the analysis is provided in Supplementary

Table S2. The CIVET and MAGeT quality control (QC)

pipelines were used. The CIVET QC pipeline excludes scans with

artifacts, inaccurate segmentations, and registration errors (52).

Motion artifacts are detected based on the number of surface to

surface intersections per hemisphere (limit of 150 touch points

per surface pair per side). MAGeT’s QC pipeline removes data

with missing values (63). The data were corrected for scanner

effects using the ComBat Harmonization model (53), for sex (64)

using linear regression, and for age using the best fitting linear,

quadratic, or cubic polynomial models determined through cross

validation.
Analysis

Pipeline
Structural MRI data were processed using an analytical pipeline

to discover clusters based on regional volume, cortical thickness,

surface area, as well as associations between pairs of regions. To

this end, we first computed statistical associations among regions

for each participant (“participant-level association graph”). Next,

the participant association graphs were used to compute

similarity among pairs of participants resulting in a participant

similarity matrix. This similarity matrix was then integrated with

regional structural features to generate a final similarity matrix

which was used for clustering. Preprocessing and clustering were

carried out in Python 3.8.0. An overview of the pipeline is

described below and summarized in Figure 1. A detailed

description of the pipeline is provided in the Supplementary

Materials.

Compute single participant structural association graphs
(participant association graphs)
Structural covariance for a pair of regions is typically computed

using the entire participant pool. We extended this concept, to

compute a measure of statistical association between two regions

for a single participant. To this end, we computed the linear

regression line for a pair of regions using the entire participant

pool (as done in structural covariance computation). For each

participant, we then computed a measure of deviation from this

line using the Cook’s distance (65). The distance was

transformed into a similarity value using a Guassian kernel. This

process was repeated for all region pairs, resulting in a single

graph for each participant with regions as nodes and the

computed similarity as edge weights. Each brain measure was

treated independently, leading to four association graphs per

participant (surface area, cortical thickness, cortical volume, and

subcortical volume).

Compute a participant similarity graph
Participant association graphs from step 1 were used to compute

the similarity between pairs of participants. This was done using

the Gaussian-transformed Lambda distance (66, 67). The
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FIGURE 1

Overview of methodology pipeline.
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participant similarities were represented as a graph with

participants as nodes and similarities as edge weights.

Merge similarity matrices
Step 2 generated four participant similarity matrices, one for each

brain measure (cortical thickness, surface area, cortical and

subcortical volume). These were merged using Similarity

Network Fusion (SNF) (68), resulting in a single integrated

participant similarity graph.

Integrate structural association similarity with regional
brain measures
The similarity graph in step 2 was built using statistical associations

between regions. Next, we integrated this matrix with information
Frontiers in Child and Adolescent Psychiatry 04
about regional measures of cortical thickness, surface area, and

cortical and subcortical volume. This was accomplished using a

Graph Neural Network (GNN) as described in the

Supplementary Materials. K-means clustering (69) was used to

cluster the compact representation of each participant derived in

step 4. To reduce sensitivity of the clustering solution to choice

of parameters, this step was repeated with varying the number of

clusters and SNF parameters (scaling factor µ, number of

neighbours K), and consensus between resultant clusters across

15,000 iterations was used to derive final clusters (27) (detailed

description of methods in Supplementary Methods). The Davies

Bouldin score (70), Silhouette Coefficient (71), and Calinski-

Harabasz score (72) were used to find the optimal number of

clusters.
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TABLE 1 Participant demographics.

Autism
(n = 262)

ADHD
(n = 171)

TD
(n = 132)

Group effect (corrected
P-value)

Age 12.2 (5.99) 11.1 (4.00) 12.1 (6.75) 0.026 (TD > ASD > ADHD)

Sex (m: f) 204: 58 135: 36 74: 58 <0.0001

SCQ 20.0 (10.00) 5.0 (7.00) 2.0 (2.25) <0.0001 (ASD > ADHD > TD)

SCQ≥ 15 (%) 76.2% 12.2% 0% <0.0001 (ASD > ADHD > TD)

Able to talk in short phrases or sentences (SCQ 1; %) 98.3% 100% 99.2% 0.074

Able to have a to and from conversation (SCQ 2; %) 74.81% 93.57% 92.42% <0.0001 (ASD < ADHD, TD)

SWAN—inattention 5.0 (5.00) 6.0 (5.00) 0.0 (0.00) <0.0001 (TD < ASD,ADHD)

% SWAN-inattention >6 (%) 42.8% 61.81% 0% <0.0001 (ADHD >ASD > TD)

SWAN—hyperactivity 3.0 (5.00) 3.0 (6.00) 0.0 (0.00) <0.0001 (TD < ASD,ADHD)

% SWAN-hyperactivity >6 (%) 27.51% 35.15% 0% <0.0001 (ADHD > ASD > 0)

ABAS-II 65.0 (20.00) 80.0 (23.00) 105.0 (19.00) <0.0001 (TD > ADHD >ASD)

CBCL internalizing 65 (12.75) 62 (15.5) 48 (14) <0.0001 (ASD > ADHD > TD)

CBCL internalizing >65 (%) 54.8% 44.92% 8.51% <0.0001 (ASD > ADHD > TD)

CBCL externalizing 58.5 (15.50) 61.0 (15.75) 43.0 (16.00) <0.0001 (ADHD >ASD > TD)

CBCL externalizing >65 (%) 27.43% 40.96% 1.80% <0.0001 (ADHD >ASD > TD)

Full-scale IQ 95.0 (27.25) 101.0 (19.50) 109.0 (17.25) <0.0001 (TD > ADHD >ASD)

Household income (low: medium: high) 41: 72: 23 20: 31: 16 19: 49: 43 0.638

Household Education (no degree: high school: associate: undergraduate: graduate) 5: 7: 52: 79: 33 2: 3: 26: 39: 25 1: 6:3 7: 63: 50 <0.0001

Ethnicity: White (%) 50.3% 63.5% 74.1% 0.063

Ethnicity: South Asian (%) 1.1% 2.1% 6.8% 0.235

Ethnicity: Middle Eastern (%) 1.8% 1.0% 1.9% 0.740

Ethnicity: Latino (%) 3.5% 5.7% 6.2% 0.929

Ethnicity: Indigenous (%) 7.0% 4.7% 0.6% 0.005

Ethnicity: South East Asian (%) 0.7% 0% 3.1% 0.049

Ethnicity: East Asian (%) 4.2% 2.6% 8.0% 0.239

Ethnicity: Black (%) 3.8% 2.6% 5.6% 0.322

Reported values are median [interquartile range (IQR)]. ABAS, adaptive behavior assessment system-II; CBCL, child behaviour checklist; SCQ, social communication

questionnaire; SWAN, strengths and weaknesses of ADHD-symptoms and normal behavior.
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Post-hoc statistical analyses
We compared the result of our clustering with the clinical

diagnostic labels using normalized mutual information (73),

adjusted rand score (74), homogeneity, and completeness (75).

All measures provide a score between zero (low) and one (high).

Phenotypic and brain characteristics were compared across

clusters using the t-test or Kruskal–Wallis test for normally and

non-normally distributed continuous data, respectively. For

categorical data, the chi-squared test was used. Statistical analyses

were performed in R 3.3.3.
Results

Participants

From a total of 661 participants, 79 failed quality control (QC)

for CIVET and of the remaining participants 17 participants failed

QC for MAGeT (breakdown by diagnosis and age group is

provided in Supplementary Tables S3, S4). The demographic

characteristics for the remaining 565 participants are shown in

Table 1. As seen, the autism and ADHD groups had a

significantly higher proportion of males than females (χ2 = 25.40,

P <0.0001), and a significant age difference between ADHD,

autism, and TD groups was observed χ2 = 7.28, P =0.026).

Table 1 also provides the clinical characterization of the
Frontiers in Child and Adolescent Psychiatry 05
participants. A subset of the participants also had neurocognitive

assessments (NEPSY and stop-signal task) available. This

information is reported in Supplementary Table S5. Medication

usage in the sample is reported in Supplementary Table S6.
Clusters

The Davies Bouldin score (70), Silhouette Coefficient (71), and

Calinski-Harabasz score (72) all identified the 2-cluster solution as

optimal; However, to enhance the generalizability of the results, we

present the clustering solution for 2 to 6 clusters (Figure 2).

As seen, participants were grouped into two clusters (cluster 1:

n = 252, cluster 2: n = 313), although both groups had mixed

representation from the diagnostic groups (TD: autism: ADHD;

cluster 1: 57%, 47%, 32%; cluster 2: 43%, 53%, 68%), cluster 1

contained the majority of the TD participants (57%) whereas

cluster 2 contained the majority of participants with a diagnosis

of ADHD (68%). We, therefore will refer to these clusters as TD-

and ADHD-enriched clusters, respectively. As we increased the

number of clusters, cluster structure remained stable with the

tails of the two clusters separating into new clusters (Figure 2).

To examine the alignment between diagnostic labels and our

cluster assignments (Supplementary Figure S1), we computed

the normalized mutual information and adjusted rand scores.

The scores were less than 0.02 and 0.01 consistently as the
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FIGURE 2

Graph representation of clusters as the number of clusters increases from 2 (A) to 6 (E). Each subplot illustrates a graph representation with participants as
nodes. Edges are not displayed to enhance readability. Node colors distinct clusters, and superimposed bar plots show the distribution of diagnostic
groups within each cluster (autism, ADHD, TD).
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number of clusters varied from 2 to 6, indicating low agreement

between the clusters and existing diagnostic labels. Furthermore,

the homogeneity and completeness scores were both less than

0.02, demonstrating that obtained clusters did not represent a

single diagnostic group regardless of the number of clusters used.

Brain correlates of clusters
The two clusters were compared on measures of cortical and

subcortical volume, cortical thickness, and surface area. Cohen’s

effect size is shown for regions where significant differences were

found after correction for multiple comparisons in Figure 3. As

seen, the largest effect sizes were found in cortical volume (TD-

enriched > ADHD-enriched) across the cortex. Volumes of

subcortical regions were not significantly different between the

two clusters, except in the cerebellar vermis III and VIIB

(ADHD-enriched > TD-enriched).

To further characterize cluster differences, we compared the

two clusters in structural association edge weights using Kruskal–

Wallis tests. After FDR correction for multiple comparisons, edge

weight values were significantly different between the two

clusters for cortical volume, cortical thickness, and subcortical

volume for several regions, but not for surface area (Figure 4).

For cortical volume, negative differences (TD-enriched < ADHD-

enriched) were observed for several regions pairs, with the left

middle temporal gyrus featuring most prominently (associations

with the the right median cingulate and paracingulate gyri, left
Frontiers in Child and Adolescent Psychiatry 06
angular gyrus, and left inferior occipital gyrus, left insula).

Association between the right cingulate gyri and various regions

were also found to be significant (right median cingulate and

right olfactory cortex, right insula, left gyrus rectus; right anterior

cingulate and right middle temporal gyrus). Negative differences

(TD-enriched < ADHD-enriched) were also found in subcortical

regions, including in the associations between the left nucleus

accumbens/ventral striatum and right cerebellum VI, and the

right postcommissural caudate and vermal IV, suggesting closer

alignment of the ADHD-enriched cluster with the sample trend.

For cortical thickness, widespread positive differences (TD-

enriched > ADHD-enriched) were found, mainly in the right

hemisphere. Most prominently, these included associations

between the right fusiform gyrus and the right temporal gyri and

the left superior frontal gyrus as well as associations among

frontal and temporal gyri.

Demographic/phenotypic characterization of
clusters

The demographic and phenotypic differences between the two

clusters are shown in Figure 5. Compared to the TD-enriched

cluster, the ADHD-enriched cluster had significantly higher

proportion of ADHD participants (ADHD-enriched: 53.9%

ADHD, TD-enriched: 46.1% ADHD; χ2= 16.08, P < 0.0001) and

lower proportion of TD (ADHD-enriched: 15.8% ADHD, TD-

enriched: 84.2% ADHD; χ2= 9.77, P = 0.0017). The participants in
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FIGURE 3

Cohen’s effect size for cluster differences (TD-enriched—ADHD-enriched) in (A) surface area, (B) cortical thickness, and (C) cortical volume.
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the ADHD-enriched cluster were significantly younger than those

in the TD-enriched group (median difference = 3.3; χ2= 70.84,

P < 0.0001). As expected, this cluster also contained a significantly

higher proportion of males (ADHD-enriched: 68.5%, TD-enriched:

31.5%; χ2= 105.60, P < 0.0001) and had significantly higher

median scores on ADHD-like features [SWAN inattention:

ADHD-enriched: 4.0(6.00), TD-enriched: 3.0(6.00); χ2= 11.20,

P < 0.0001; SWAN hyperactivity -ADHD-enriched: 2.0(6.00),

TD-enriched: 1.0(4.00); χ2= 18.40, P < 0.0001], lower median
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scores on adaptive functioning [ABAS-General Ability Composite:

ADHD-enriched: 75.0(26.00), TD-enriched: 82.0(36.00), χ2= 7.80,

P = 0.0052], lower inhibitory control [Stop Task stop reaction time:

ADHD-enriched: 244.8(141.82), TD-enriched:292.17(130.31),

χ2= 7.80, P = 0.0009], and lower IQ [ADHD-enriched: 100.0

(22.00), TD-enriched: 106.0(21.00), χ2= 14.06, P = 0.0024]. NEPSY

memory for faces and affect recognition, SCQ, CBCL

internationalizing, and CBCL externalizing scores were not

significantly different between clusters.
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FIGURE 4

Cluster differences in edge weights for participant brain networks
(2 clusters; TD-enriched—ADHD-enriched). A positive difference in
this plot indicates that the statistical association between two given
regions were more closely aligned with the overall sample structural
covariance for the TD-enriched cluster compared to the ADHD-
enriched cluster.
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To gain further insight into the misalignment between

diagnoses and our clusters, we investigated differences among

participants who had the same diagnostic label (autism, ADHD,

and TD) but fell into different clusters (Figure 6). Compared to

those in the ADHD-enriched cluster, TD participants in the TD-

enriched cluster were significantly older [ADHD-enriched: 14.1

(8.63), TD-enriched: 10.4(4.34), χ2 = 15.75, P < 0.0001], had

significantly lower SCQ scores [ADHD-enriched: 2.5(3.00), TD-

enriched: 1.0(2.00); χ2 = 6.91, P = 0.0086], and higher ABAS

scores [ADHD-enriched: 99.0(19.00), TD-enriched: 109.0(16.50);

χ2 = 15.05, P = 0.0001]. Participants with ADHD in the ADHD-

enriched cluster were also younger than those in the TD-

enriched cluster [ADHD-enriched: 10.4(3.59), TD-enriched: 12.2

(4.98); χ2 = 7.69, P = 0.006], and had lower IQ scores [ADHD-
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enriched: 99.0(19.00), Mixed: 106.0(20.25); χ2 = 7.61, P = 0.006].

Autistic participants in ADHD-enriched cluster were also

significantly younger [ADHD-enriched: 10.7(5.07), TD-enriched:

14.6(5.19), χ2 = 45.46, P < 0.0001], and had a significantly higher

SWAN-hyperactivity score [ADHD-enriched: 4.0(5.50), TD-

enriched: 2.0(5.00); χ2 = 11.03, P = 0.0009].
Discussion

Using a data-driven and diagnosis-agnostic approach, this

paper characterized the variability in brain structure across

neurodiverse children and youth. We introduced a novel

analytics pipeline that integrated interregional couplings in

addition to other measures of brain structure into the clustering

algorithm. This is particularly critical as autism and ADHD are

associated with differences in brain networks, and not specific

regional lesions (13, 76–79).

Consistent with the previous literature (11, 13) examining

measures of brain function and structure, our results revealed a

mismatch between biological homogeneity and the labels of

autism, ADHD, and typical development; instead, we found

clusters that contained participants from different diagnostic

groups. This finding lends further support to the idea that

these discrete categories do not represent neurobiologically

homogeneous groups. This motivates the need for an approach

that characterizes neurodevelopmental diversity in a way that can

identify dimensions of real-world needs (24).

Our results suggest the presence of two clusters which were

neurobiologically different in brain structure. The first cluster

was characterized by larger cortical volumes across the brain.

This cluster was enriched for TD participants and, on average,

was associated with decreased autism and ADHD traits, older

age, and increased adaptive functioning and IQ. The second

cluster was enriched for participants with a diagnosis of ADHD

and associated with increased inattention and hyperactivity, and

lower IQ and adaptive functioning. These results suggest that our

clustering results are driven by features across multiple domains

of cognition, behaviour, and function. In particular, our ADHD-

enriched cluster was associated with decreased response

inhibition [i.e., longer stop signal reaction time (SSRT)],

increased ADHD symptoms (inattention and hyperactivity), and

decreased adaptive functioning. Decreased response inhibition is

a well-established neurocognitive feature of ADHD (80), but the

findings in autism have been mixed (81). There is emerging

evidence to suggest that response inhibition differences in autism

may be explained by co-occurring ADHD symptoms (21), a

finding that is consistent with our results. The clusters were not

different in autism-like features at the cognitive (NEPSY affect

recognition, memory for faces) or behavioural (SCQ) levels,

suggesting specificity of the clustering to ADHD-like traits. These

findings should be interpreted with caution, however, given that

SSRT decreases with age and the fact that our ADHD-enriched

cluster had lower average age (21). This is also supported by our

finding of significant differences between participants who shared

the same diagnosis label, but were assigned to different clusters.
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FIGURE 5

Comparison of phenotypic measures between the two clusters.
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In particular, participants from the TD group who were assigned to

the ADHD-cluster had higher scores on autism and inattention

measures and lower scores for adaptive functioning, compared to

those in the TD-enriched cluster; Participants with ADHD and

ASD in the ADHD-enriched clusters had significantly higher IQ

and hyperactivity, respectively, compared those in the TD-

enriched cluster. These results further highlight the importance

of a dimensional approach to characterization of

neurodevelopmental conditions.

Our analytical pipeline considered measures of morphology for

brain regions in isolation, as done in previous literature, but also

integrated information about statistical associations among pairs
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of regions. This was done by using participant-level measures of

deviance from regional correlations. This approach was

motivated by the wide-spread consensus that autism and ADHD

are associated with pervasive differences across brain networks

(33, 34) instead of differences in isolated regions of the brain.

Our results showed significant differences between the data-

driven clusters in these association measures in regions that have

been previously associated with neurodevelopmental conditions

including the fronto-temporal and cingulate regions (82). For

cortical volume, our pattern of findings was consistent with one

of the few previous studies examining the structural covariance

of gray matter volume in ADHD (83). Increased structural
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FIGURE 6

Comparison of participants with the same diagnosis across two clusters.
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associations were observed in the ADHD- compared to

TD-enriched group in regions including the middle temporal and

cingulate gyri, regions that comprise the default mode network

(84) which is frequently implicated in ADHD (85). Differences

in connections involving subcortical regions were also reported

between the ADHD- and TD-enriched groups; structural

alterations in subcortical regions are frequently reported in the

ADHD literature, potentially underlying problems in domains

such as emotional regulation (86). For cortical thickness,

increases in structural connectivity in the TD- compared to

ADHD-enriched group were observed in fronto-temporal

connections, which has been shown to be related to inhibitory

control in individuals with ADHD (87).

Our results should be interpreted in the context of significant

cluster differences in age and sex ratios. In particular, the

TD-enriched cluster was significantly older than those in the

ADHD-enriched cluster, and contained fewer males. Given that

the data were corrected for age prior to analyses, the age
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differences between clusters may be related to differences in

neurodevelopmental trajectories [e.g., differences may decrease

with age (2, 32, 37)], and specifically age-related differences in

presentation of ADHD-like symptoms. Longitudinal studies are

needed to future investigate this issue. Sex differences in clusters

are not surprising as these have been previously reported in the

prevalence and expression of ASD and ADHD (88–93). These

differences may also be related to increased representation of

male participants in the autism and ADHD groups.

Overall, our results contribute to the emerging body of

literature motivating a shift away from broad diagnostic labels for

autism and ADHD towards increased precision at phenotypic,

cognitive, and biological levels. Data-driven approaches, when

appropriately validated and replicated, can contribute to this

precision by identifying trans-diagnostic biological and cognitive

features that are targets for intervention and/or markers of

treatment response. Our findings, for example, when replicated,

can potentially identify children who, regardless of diagnosis,
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may benefit from interventions focused on ADHD symptoms such

as difficulties with response inhibition.
Limitations

The results of our study must be interpreted in the context of

three limitations. First, our analyses focused on structural MRI

data; future multi-modal analysis (e.g., including fMRI) may

provide additional insights into the variability across

neurodevelopmental conditions. Second, replication of the

procedure on larger independent samples is also needed. Third,

although the complexity of our analytic pipeline allowed for the

integration of regional associations, future studies are needed to

further clarify the interpretation of the findings in terms of

specific neurobiological features involved.
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