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The fabrication of core-shell structured magnetic resorcinol-formaldehyde
composites has garnered considerable attention within the scientific
community in recent years. A key area of focus has been the immobilization
of homogeneous catalysts onto the surfaces of these materials and transforming
them into heterogeneous catalysts. In this study, a novel quaternary ammonium
salt catalyst was synthesized by immobilizing 1,4-diazabicyclo [2.2.2] octane
(DABCO) on resorcinol-formaldehyde-modified Fe3O4 nanocomposite as a
support (Fe3O4@RF/Pr-DABCO). The Fe3O4@RF/Pr-DABCO nanocomposite
was characterized using various physicochemical techniques, including FT-IR,
VSM, SEM, XRD, and TGA. The Fe3O4@RF/Pr-DABCO nanocomposite was
employed as a power nanocatalyst in the Hantzsch reaction for synthesizing
polyhydroquinoline derivatives using aromatic aldehydes, ammonium acetate,
dimedone and ethyl acetoacetate. Various aromatic aldehydes were used as
substrates in the presence of 0.003 g of Fe3O4@RF/Pr-DABCO under solvent-
free condution at 60 °C, achieving high to excellent yields (90-99%) within short
reaction times (5-15 min). Furthermore, this nanocatalyst showed excellent
reusability and maintained its catalytic activity for at least eight consecutive
cycles without a significant decrease in efficiency. These results demonstrate
the potential of the Fe3O4@RF/Pr-DABCO nanocomposite as an efficient and
sustainable catalyst for the synthesis of polyhydroquinoline derivatives via the
Hantzsch reaction.

KEYWORDS

quaternary ammonium salt, magnetic properties, 1,4-diazabicyclo [2.2.2] octane
(DABCO), heterogeneous nanocatalyst, hantzsch reaction, resorcinol-formaldehyde

1 Introduction

Aligned with the principles of green chemistry, the development of recyclable and
reusable catalytic systems has garnered significant interest among researchers over the
past few decades. This focus on sustainable catalyst design aims to address
environmental concerns and promote resource efficiency in chemical processes
(Saberi et al., 2020). In recent years, the design of magnetic nanocatalysts is of great
interest due to their very easy recovery using a simple magnet without the need for
conventional and time-consuming filtration and reactions catalyzed by magnetic
nanocatalysts have been widely studied due to the easy purification of products and
efficient recovery of the catalyst (Shabir et al., 2020; Yazdani et al., 2025). Various
magnetic nanoparticles (NPs) have been investigated for the development of magnetic
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catalytic systems. Among magnetic NPs, Fe3O4 NPs has been
widely considered due to its low toxicity, easy and low-cost
synthesis from cheap and readily available starting materials.
Despite the promising attributes of Fe3O4 NPs, their practical
applications are hindered by their high sensitivity to oxidation
and aggregation, as well as their chemically reactive nature due to
their high surface area (Serenjeh et al., 2015; Shaker and
Elhamifar, 2020; Barzkar and Beni, 2023). These limitations
necessitate the development of strategies to overcome these
challenges and unlock the full potential of Fe3O4 NPs. One
effective approach involves the creation of a suitable organic
or inorganic coating on the surface of the magnetic NPs, which
can enhance their stability and mitigate the aforementioned
issues, thus paving the way for broader applications in various
fields. Various materials have been utilized for coating magnetic
nanoparticles, including silica, metal oxides, and polymers (Gong
et al., 2018; Kilic et al., 2019; Shaker and Elhamifar, 2020; 2021b;
Kilic et al., 2022). Notably, resorcinol-formaldehyde (RF) resin
has emerged as a particularly promising option due to its
exceptional properties. These properties encompass high
stability, cost-effectiveness, facile structural manipulation,
superior mechanical and thermal characteristics, impressive
electrical conductivity, and a large surface area. The unique
combination of these properties makes RF resin an attractive
choice for coating magnetic nanoparticles, with the potential to
enhance their performance and broaden their applications in
diverse fields (Barzkar and Beni, 2020). Some of the recently
developed reports include Fe3O4@RF-Au (Shi et al., 2024),
Fe3O4@RF@void@PMO (Yu et al., 2019), Fe3O4@RF@void@
PMO(IL)/Cu (Shaker and Elhamifar, 2021a), Fe3O4@SiO2@
RF–SO3H (Barzkar and Beni, 2020) and Fe3O4@RF/Cu2O
(Wang et al., 2017).

On the other hand, 1,4- Diazabicyclo [2.2.2] octane, also
recognized as DABCO is known as a valuable ligand and catalyst
for organic reactions due to its cost-effectiveness, environmental
friendliness, non-toxicity, and high reactivity. However, recovering

and removing DABCO in chemical reactions is complex. This
problem has been solved by immobilizing DABCO on solid
substrates, which can be easily filtered and reused multiple times
(Baharfar and Azimi, 2014). Recent developments in this area,
including Fe3O4@DT-Au (Kardan et al., 2022), Pd–DABCO@
SiO2 (Jadhav et al., 2019), Ni(II)–DABCO@SiO2 (Hajipour and
Abolfathi, 2017), Pd-DABCO-γ-Fe2O3 (Sobhani and Pakdin-Parizi,
2014), SB-DABCO (Hasaninejad et al., 2011) and Fe3O4@SiO2@
DABCO (Gupta et al., 2023).

Meanwhile, heterocycles are a crucial and valuable group of
chemical compounds, forming the basis of many pharmaceutical
molecules and antibiotics. Currently, Synthesis of nitrogen-
containing heterocycles, such as polyhydroquinoline and its
derivatives, is important due to their medicinal properties.
Polyhydroquinolines possess anti-diabetic, anti-cancer, anti-
tumor, liver-protective, and skin-protective properties and treat
cardiovascular diseases and Alzheimer’s (Shinde and Thakur,
2023). Polyhydroquinoline derivatives can be synthesized using
the Hantzsch reaction, which has garnered significant attention.
This reaction is a four-component reaction and is one of the first and
most well-known multi-component reactions (Sajjadifar and
Azmoudehfard, 2019; Shaker and Beni, 2021; Norouzi and
Beiranvand, 2023). Due to the widespread use of
polyhydroquinoline derivatives, various catalysts have been
introduced for this reaction such as GuHCl (Baghbanian et al.,
2010), ceric ammonium nitrate (CAN) (Ko and Yao, 2006),
Sc(OTf)3 (Donelson et al., 2006), urease (Zhu and Li, 2021),
palladium (0) nanoparticles (Saha and Pal, 2011), nickel
nanoparticles (Sapkal et al., 2009), SBA-15@AMPD-Co
(Ghorbani-Choghamarani et al., 2019), [βCD/Im](OTs)2
(Moheiseni et al., 2021), NiFe2O4MNPs (Ahankar et al., 2016),
Fe3O4adenineNi (Tamoradi et al., 2018), CuSPATB/Fe3O4

(Ghorbani-Choghamarani et al., 2016), Fe3O4@SiO2PEG/NH2

(Kardooni et al., 2017) and Fe3O4 @SiO2@(CH2)3Im}C(NO2)3
(Yarie et al., 2016). Although most of the reports mentioned
have obvious advantages, they also come with problems, such as

SCHEME 1
Preparation of Fe3O4@RF/Pr-DABCO nanocatalyst
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toxic catalysts, volatile and harmful solvents, expensive metal
precursors, high temperatures, the formation of by-products, and
contamination of the final product. In most methods, the catalysts
get damaged during the reaction and cannot be separated and

reused. Therefore, developing efficient, recyclable, and
environmentally friendly catalysts for synthesizing
polyhydroquinolines is crucial (Kazemi and Mohammadi, 2020;
Sharma et al., 2021).

In light of the significance of heterogeneous catalysis and the
unique properties of 1,4-diazabicyclo [2.2.2]octane (DABCO), this
study aims to design and synthesize a novel core-shell structured
Fe3O4@RF/Pr-DABCO catalyst (Scheme 1). DABCO, selected for its
crucial role as an organic group in preparing quaternary ammonium
salt catalysts, can be readily immobilized on the Fe3O4@RF support.
This approach offers the potential to create a highly efficient and
recyclable catalytic system that capitalizes on the benefits of both the
magnetic core and the catalytic activity of DABCO. Also, Fe3O4@
RF/Pr-DABCO is applied as a powerful catalyst for synthesizing
polyhydroquinoline derivatives under mild conditions.

2 Experimental section

2.1 Materials

All chemicals are used, such as formaldehyde solution (37 wt%),
resorcinol, triethylamine, (3-aminopropyl)-trimethoxysilane,
dimedone, ethyl acetoacetate, toluene dried, and ammonium
acetate, were purchased from Merck, hydrochloric acid (37%)
and Benzaldehyde and its derivatives were purchased from
Sigma-Aldrich. The morphology of the particles was evaluated by
TESCAN-Vega 3 scanning electron microscope (SEM) (Czech
republic). Energy-dispersive X-ray spectroscopy (EDX) was
obtained by using TESCAN-Vega 3 apparatus (Czechrepublic).
Fourier transform infrared (FT-IR) spectroscopy was recorded on
a PerkinElmer Spectrum2 spectrometer (United States). Thermal
gravimetric analysis (TGA) and Differential Scanning (DSC)
Calorimetry were performed using a SDT 650 (United States).
Thermal gravimetric analysis (TGA) and differential thermal
analysis (DTA) were performed using a STA6000 (United States).
X-ray diffraction (XRD) was obtained using a Rigaku Ultima IV
diffractometer (Japan). The magnetic properties of the particles were
investigated using a vibrating sample magnetometer (VSM) of
MDKB. (Iran). Melting points were determined using a KSB1N,
Kruss apparatus in open capillary tubes (Germany). TLC-Grade-
silica Gel-G/UV 254 thin layer chromatography (TLC) was used. A
mixture of ethyl acetate and normal hexane was used for the mobile
phase in the TLC tank. Ultrasonic model Elmasonic P60H was used
to disperse the particles and to perform the organic
reactions (Germany).

2.2 Synthesis of Fe3O4 nanoparticles

In a 100 mL round-bottom flask, 25 mL HCl (2 M), FeCl3.6H2O
(5.2 g), and FeCl2.4H2O (2 g) were combined with a magnetic stirrer
under argon atmosphere for 30 min at room temperature to form
nanoparticles of Fe3O4 magnetite. Next, NH4OH (25%, 30 mL), was
slowly injected into the solution over 30 min at 25°C. The obtained
black precipitate was separated by a magnet and washed with water
before drying in an oven (Kargar et al., 2024).

FIGURE 1
FT-IR spectrum of (a) DABCO, (b) Pr-Cl, (c) RF, (d) Fe3O4, (e)
Fe3O4@RF, (f) Fe3O4@RF/Pr-Cl, (g) Fe3O4@RF/Pr-DABCO.
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2.3 Synthesizing of Fe3O4@RF

In a 250 mL round-bottom flask, 1 g Fe3O4 particles were
dispersed in water (20 mL) and ethanol (100 mL) using
ultrasonic. Then (2 mL) of 25% ammonium hydroxide,
formaldehyde (0.6 mL), and resorcinol (0.4 g) were added to the
solution. The mixture was stirred for 10 h at 30°C under a magnetic
stirrer and argon atmosphere, then was collected using a magnet and
washed with water and ethanol three times, before finally drying at
60°C for 15 h (Mirbagheri et al., 2021).

2.4 Synthesis of Fe3O4@RF/PrCl

For this aim, in a 100 mL round-bottom flask, Fe3O4@RF
nanoparticles (50 mg) were added to 50 mL of dry toluene and
dispersed under ultrasonic waves. After that, 2 mL of (3-
chloropropyl) trimethoxysilane was injected into the reaction. After
refluxing under a magnetic stirrer and argon atmosphere for 24 h at
110°C, an external magnet filtered the product. The resultant product
was washed with toluene and dried at 70°C for 15 h (Zare et al., 2020).

2.5 Synthesis of Fe3O4@RF/Pr-DABCO

In a 50 mL round-bottom flask, Fe3O4@RF/PrCl (1 g), DABCO
(0.5 g), and triethylamine (0.4 mL) were dispersed under ultrasonic
in 30 mL of dry toluene for 30 min. After 24 h of refluxing under a
magnetic stirrer and argon atmosphere, the mixture was separated
using a magnet, washed five times with dry toluene, and dried at
50°C for 5 h (Afsar et al., 2018).

2.6 Synthesis of polyhydroquinoline
derivatives using Fe3O4@RF/Pr-DABCO

For this, aldehyde (1 mmol), ammonium acetate (1.4 mmol),
dimedone (1 mmol), ethyl acetoacetate (1 mmol), and Fe3O4@RF/
Pr-DABCO nanocatalyst (0.003 g) were added into a 5 mL round-
bottom flask. The reactionmixture was located in an oil bath at 60°C,
the temperature of which was previously adjusted by a heater-stirrer
advice, and stirred under solvent-free condition and air atmosphere.
The progress of the reaction was monitored by TLC (eluent;
n-hexane: ethyl acetate, 4:6). After completion of the reaction,

FIGURE 2
EDX spectrum of the (a) Fe3O4, (b) Fe3O4@RF, (c) Fe3O4@RF/Pr-Cl, and (d) Fe3O4@RF/Pr-DABCO.
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hot EtOH (10 mL) was added in the reaction vessel and catalyst was
removed by an external magnet. Finally, the solvent was evaporated,
and pure products resulted after recrystallization in EtOH
(Nikoorazm and Erfani, 2019).

3 Results and discussion

3.1 Characterization of Fe3O4@RF/
Pr-DABCO

The FT-IR spectra of Fe3O4, RF, Fe3O4@RF, Pr-Cl, Fe3O4@RF/
Pr-Cl, DABCO, and Fe3O4@RF/Pr-DABCO are shown in Figure 1.
For Fe3O4, Fe3O4@RF, Fe3O4@RF/Pr-Cl and Fe3O4@RF/Pr-
DABCO, the observed peak at 574 cm−1 is related to the
stretching vibrations of the Fe-O bonds (Figures 1d–g). The FT-
IR spectrum of Fe3O4@ RF (Figure 1e) exhibits peaks at 3,010,
2,854–2,974 cm−1attributable to the vibrations of C-H aromatic and
CH2 moieties of RF resin in Fe3O4@RF, respectively. Also, the
absorption bands at 1,615 and 1,453 cm−1 correspond to the
aromatic rings in the RF. These results are in perfect agreement
with the RF spectrum (Figure 1c), thus confirming the successful
formation of RF resin on the Fe3O4 surface. (Pol et al., 2014; Barzkar
and Beni, 2020). The FT-IR spectrum of Fe3O4@RF/Pr-Cl
(Figure 1f) shows the C-H stretching vibration at 2,950 and
2,826 cm−1, the C–Cl absorption band at 800 cm−1, and Si-O
stretching at 1,000–1,100 cm−1, which perfectly match with the
observed peaks in the pure Pr-Cl spectrum (Figure 1b). These
results prove the successful formation of the Fe3O4@RF/Pr-Cl
composite (Hamidinasab et al., 2020; Honari et al., 2022). FT-IR
pure DABCO (Figure 1a) exhibits a peak at 1,250 cm−1 (C–N
stretching), 1,475 cm−1 (CH2 bending), and 2,850–2,964 cm−1

(C-H stretching vibrations) (Tafti et al., 2024). Thus, for the
Fe3O4@RF/Pr-DABCO, the presence of a peak at 1,250 cm−1

(C–N stretching) proved immobilization of DABCO groups on
the of Fe3O4@RF/Pr-Cl composite (Figure 1g) (Hasaninejad
et al., 2011; Nasseri and Sadeghzadeh, 2014).

The EDX spectrum of Fe3O4 nanoparticles demonstrated the
presence of Fe and O elements, proving the successful production of
these nanoparticles (Figure 2a). To confirm the successful
modification of the Fe3O4 surface with RF resin, the Fe3O4@RF
material was also characterized by EDX analysis. The appearance
of C-signal in the latter analysis confirms successful-production of RF
resin on Fe3O4 surface (Figure 2b). Furthermore, to prove the
successful chemical immobilization of (3-chloropropyl)
trimethoxysilane on Fe3O4@RF nanocomposite, the Fe3O4@RF/
PrCl nanocomposite was also characterized by EDX analysis. The
advent of Si and Cl elements proving successful-immobilization of (3-
chloropropyl) trimethoxysilane species on Fe3O4@RF nanocomposite
(Figure 2c). Finally, to confirm the successful immobilization of
DABCO on Fe3O4@RF/PrCl nanocomposite, the final material was
characterized by EDX and the appearance of N-signal confirmed
immobilization of DABCO species (Figure 2d). The EDX mapping
analysis was also done to display the dispensation of elements in the
Fe3O4@RF/Pr-DABCO framework. This analysis demonstrated that
all elements are uniformly distributed in the Fe3O4@RF/Pr-DABCO
framework (Figure 3).

The morphology of the particles at different steps of
nanocomposite preparation was investigated by using SEM
(Figure 4). The SEM analysis revealed a consistent spherical
morphology with uniform particle size distribution at different
stages of the process. Additionally, it was observed that the size
of the nanoparticles (NPs) increased incrementally at each step
compared to the previous stage.

FIGURE 3
Element mapping of the Fe3O4@RF/Pr-DABCO nanocatalyst.
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The powder X-ray diffraction (PXRD) analysis of Fe3O4,
Fe3O4@RF, Fe3O4@RF/Pr-Cl, and Fe3O4@RF/Pr-DABCO
nanomaterials showed six sharp peaks at 2θ = 30.3, 35.6, 43.4,
53.7, 57.4, and 63.1°, corresponding to Miller indices of 220, 311,
400, 422, 511, and 440, respectively. The results of this analysis prove
that the Fe3O4 crystalline structure is preserved during the
synthesizing processes of Fe3O4@RF/Pr-DABCO nanocamposite
(Figure 5) (Hashkavayi and Raoof, 2017).

The magnetic properties of Fe3O4, Fe3O4@RF, Fe3O4@RF,
Fe3O4@RF/Pr-Cl, and Fe3O4@RF/Pr-DABCO nanomaterials were
investigated by VSM \analysis at room temperature (Figure 6). The
results of this analysis demonstrated that all samples have a
superparamagnetic behavior. The magnetic saturation of Fe3O4,
Fe3O4@RF, Fe3O4@RF/Pr-Cl, and Fe3O4@RF/Pr-DABCO
nanomaterials were 61.98, 53.87, 42.23, and 41.96 emu/g,
respectively. The decrease in saturation magnetization, after each
step, confirms successful chemical immobilization of Resorcinol-
Formaldehyde precursors and DABCO moieties on the surface of
the Fe3O4 NPs. However, the magnetic property of Fe3O4@RF/Pr-

DABCO is still sufficient, and it can be easily recovered using an
external magnet.

To further investigate the compositional structure and thermal
stability, thermogravimetric analysis (TGA), derivative
thermogravimetry (DTG), differential thermal analysis (DTA), and
Differential Scanning Calorimetry (DSC) were performed at different
stages of nanocatalyst synthesis (Figures 7A–D). The TGA diagram of
Fe3O4 (Figure 7Aa) shows two mass loss stages. The first stage, with a
mass loss of 1.66%, at temperatures between 25°C and 200°C, is related
to water evaporation, and the second stage, with amass loss of 1.96%, at
temperatures between 200°C and 600°C, is connected to the
decomposition of hydroxyl groups on the Fe3O4 surface., the final
mass loss is 3.62% (Zhang et al., 2021). The mass loss graph of
Fe3O4@RF (Figure 7Ab) shows two stages of mass loss. In the first
stage, at temperatures below 200°C, due to the evaporation of water or
residual physically adsorbed solvent, the observed mass loss is 2.55%,
While the secondmass loss15.13% between 200°C and 469°C is related to
the decomposition of the RF shell, the final mass loss is 17.68% (Zheng
et al., 2016). The mass loss graph of Fe3O4@RF/Pr-Cl (Figures 7Ac) has

FIGURE 4
SEM image of the (a) Fe3O4, (b) Fe3O4@RF, (c) Fe3O4@RF/Pr-Cl, and (d) Fe3O4@RF/Pr-DABCO.
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two stages of mass loss. The first mass loss of about 2.49% is related
to the residual other solvents or water on the surface of magnetic
nanoparticles, which appears below 200°C. The main weight loss,
with a mass loss of 18.59%, from 200°C to 600°C, is due to the
decomposition of the chloropropyl group and RF shell; the final
mass loss is 21.08% (Dehghani et al., 2025). TGA of Fe3O4@RF/Pr-
DABCO shows two distinct stages of mass loss (Figures 7Ad). The

first stage, with an onset of degradation at 50°C–200°C, with mass
loss of 1.85%is caused by the evaporation of H2O or residual
solvent on the catalyst’s surface. The second stage, between 200°C
and 700°C, with mass loss of 20.78%, is related to continuous
decomposition of the organic components (DABCO, propyl group
and RF shell). The final mass loss is 22.63% (Rajabi-Salek et al.,
2018; Jadidi Nejad et al., 2020; Jia et al., 2022).

TGA and DTG (Figure 7B) data were supported by DTA and DSC
curves. Based on DTA and DSC (Figures 7C, D), the separation process
of organic materials attached to the surface of Fe3O4@RF/Pr-DABCO
nanocatalyst is exothermic, and the different intensity of the peaks
indicates the synthesis of different stages of the nanocatalyst.

Comparison of the mass loss curve and thermal stability (TGA)
graph analysis of each step of the synthesis of the Fe3O4@RF/Pr-
DABCO magnetic nanocatalyst confirmed that all four steps of the
nanocatalyst synthesis were successfully completed and the alkyl group
and DABCO was loaded onto the surface of the Fe3O4@RF particles.
Also, the TGA thermograms of the product obtained at each stage of
synthesis are parallel to the elemental composition obtained by EDX.

3.2 Catalytic activity of the Fe3O4@RF/
Pr-DABCO

Following the successful characterization of Fe3O4@RF/Pr-
DABCO, the effectiveness of the catalyst was assessed in the green
production of polyhydroquinoline. The condensation between
1.4 mmol of NH4OAc, 1 mmol of benzaldehyde, 1 mmol of ethyl
acetoacetate, and 1 mmol of dimedone was chosen as a model reaction.
The findings indicate that the catalyst, solvent, and temperature
significantly affect the reaction’s progression. Consequently, the
amount of catalyst, choice of solvent, and temperature were
evaluated to enhance the reaction conditions.

Initially, to evaluate the effectiveness of the Fe3O4@RF/Pr-
DABCO catalyst, it was observed that the reaction did not occur
in the absence of the catalyst, indicating its essential role in the
process (Table 1, entry 1). To further examine the catalyst’s impact,
we tested various amounts of the catalyst (1, 3, 5, 7, and 9 mg). As
detailed in Table 1 entries 2–6, the reaction yield improved with
increased catalyst quantity from 0.001 g to 0.003 g (Table 1, entry 3).
The optimal yield was achieved with 0.003 g of the catalyst (Table 1,
entry 3). Notably, a catalyst amount of 0.005 g produced the same
yield as 0.003 g (Table 1, entry 4). Additionally, increasing the
catalyst amount from 0.007 to 0.009 g resulted in a minor reduction
in product yield. Studies have shown that excessive amounts of
catalyst alter the reaction mechanism and increase side reactions,
leading to the formation of unwanted by-products. This change
reduces the selectivity towards the desired product and consequently
reduces its yield (Chen et al., 2021; Platero et al., 2022).

The model reaction was subsequently evaluated at various
temperatures, specifically 25°C, 40°C, 60°C, 70°C, and 90°C
(Table 1, entry 3 vs. entries 7–10). An increase in temperature
from 25°C to 60°C resulted in enhanced reaction efficiency, with the
optimal yield observed at 60°C (Table 1, entry 3). Additionally,
satisfactory efficiency was noted at 70°C (Table 1, entry 9). However,
as the temperature rose to 90°C, there was a decline in product yield
(Table 1, entry 10). Studies have shown that by-products are formed
at 90°C, and therefore the yield of the main product is reduced.

FIGURE 5
XRD pattern of the (a) Fe3O4, (b) Fe3O4@RF, (c) Fe3O4@RF/Pr-Cl,
and (d) Fe3O4@RF/Pr-DABCO.
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This study examined the impact of various solvents, such as
dimethyl sulfoxide, toluene, water, acetonitrile, and ethanol, as well
as solvent-free conditions (Table 1, entry 3 vs. entries 11–15). The
findings indicated that the highest yield achieved was 97% under
solvent-free conditions. Because DABCO is an organic compound
and the solvents are all organic, the interaction between DABCO
and the solvents increases, and the accumulation of substrate around
the catalytic active site decreases, and the catalytic activity of
DABCO decreases compared to solvent-free conditions. In the
presence of ethanol and water solvents, although these solvents
also interact with DABCO and reduce its catalytic activity, these
solvents can have hydrogen interactions with the substrates, causing
substrate activation and facilitating the reaction conditions.
However, in general, solvent-free conditions are the best option
for this process and do not reduce catalytic activity (Lu et al., 2012;
Varghese and Mushrif, 2019).

To ascertain the pivotal role of DABCO groups in the catalytic
cycle, the efficacy of DABCO-free Fe3O4, Fe3O4@RF, and Fe3O4@
RF/PrCl nanomaterials was investigated under identical reaction
conditions and time as the Fe3O4@RF/Pr-DABCO catalyst (Table 1,
entry 3 vs. entries 16–18). Notably, the latter catalysts exhibited

FIGURE 6
VSM (a) Fe3O4, (b) Fe3O4@RF, (c) Fe3O4@RF/Pr-Cl, and (d)
Fe3O4@RF/Pr-DABCO.

FIGURE 7
(A) TGA (B) DTG, (C) DTA, and (D) DSC of the (A) Fe3O4, (B) Fe3O4@RF, (C) Fe3O4@RF/Pr-Cl, and (D) Fe3O4@RF/Pr-DABCO.
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negligible product yields, unequivocally establishing the
indispensable presence of DABCO species as crucial catalytic
centers for the reaction.

A diverse range of polyhydroquinolines was synthesized under
optimal conditions, utilizing 0.003 g of a solvent-free catalyst at 60°C
with Fe3O4@RF/Pr-DABCO as a heterogeneous catalyst. As detailed
in Table 2, various benzaldehydes featuring both electron-donating
and electron-withdrawing groups were employed in the synthesis of
polyhydroquinolines, resulting in products characterized by high
yields, brief reaction times, and precise melting point measurements
(Table 2, entries 1–7).

The recovery and reusability of the catalyst were tested for eco-
friendly industrial and commercial applications. A test model
evaluated the condensation of 0.003 mg of the catalyst with ethyl
acetoacetate (1 mmol), dimedone (1 mmol) benzaldehyde (1 mmol),
and NH4OAc (1.4 mmol). The catalyst was isolated from the
solution following each run through an external magnet, washed

with ethanol, dried, and then used again in another reaction to
regenerate it. According to Figure 8, the recycling process can be
conducted under identical conditions to the initial run at least eight
times without experiencing any substantial loss.

In another experiment, the recoverability and reusability of the
Fe3O4@RF/Pr-DABCO catalyst were investigated at a fixed time
under optimal conditions. In this test, the reaction time for each run
was 30 min. Following each run, the catalyst was separated using a
magnetic field and subsequently reused in the next run, under the
same conditions as the first run. As illustrated in Figure 9, this
catalyst can be recovered and reused at least 8 times without a
substantial decrease in its performance.

Scheme 2 presents a proposed mechanism for synthesizing
polyhydroquinolines using the Fe3O4@RF/Pr-DABCO as a
catalyst. Initially, the carbanion group (A) is generated through
the deprotonation of the α-proton of dimedone by the basic nitrogen
group of the catalyst, DABCO. Subsequently, intermediate (B) is

TABLE 1 The reaction conditions optimized for the synthesis of polyhydroquinolines by Fe3O4@RF/Pr-DABCO

Entry Catalyst Catalyst amount (g) Solvent T (°C) T (min) Yield (%)b,c

1 Fe3O4@RF/Pr-DABCO None — 60 150 ---

2 Fe3O4@RF/Pr-DABCO 0.001 g solvent-free 60 15 69

3 a Fe3O4@RF/Pr-DABCO 0.003 g solvent-free 60 15 97

4 Fe3O4@RF/Pr-DABCO 0.005 g solvent-free 60 15 97

5 Fe3O4@RF/Pr-DABCO 0.007 g solvent-free 60 15 93

6 Fe3O4@RF/Pr-DABCO 0.009 g solvent-free 60 15 90

7 Fe3O4@RF/Pr-DABCO 0.003 g solvent-free 25 15 27

8 Fe3O4@RF/Pr-DABCO 0.003 g solvent-free 40 15 77

9 Fe3O4@RF/Pr-DABCO 0.003 g solvent-free 70 15 96

10 Fe3O4@RF/Pr-DABCO 0.003 g solvent-free 90 15 89

11 Fe3O4@RF/Pr-DABCO 0.003 g DMSO 60 15 66

12 Fe3O4@RF/Pr-DABCO 0.003 g Toluene 60 15 40

13 Fe3O4@RF/Pr-DABCO 0.003 g H2O 60 15 70

14 Fe3O4@RF/Pr-DABCO 0.003 g CH3CN 60 15 66

15 Fe3O4@RF/Pr-DABCO 0.003 g EtOH 60 15 80

16 Fe3O4 0.003 solvent-free 60 15 64

17 Fe3O4@RF 0.003 solvent-free 60 15 Trace

18 Fe3O4@RF/PrCl 0.003 solvent-free 60 15 Trace

aBold values indicate the optimum condition.
bIsolated yields.
cMolecular weight of aromatic aldehyde ≡ molecular weight of product x g of aromatic aldehyde ≡ y g.

Theoretical yield(y) � molecular weight of product × x g of aromatic aldehyde
molecular weight of aromatic aldehyde

Isolated yield � Actual yield
Theoretical yield × 100 (Dhengale et al., 2021).
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TABLE 2 Synthesis of polyhydroquinolines utilizing Fe3O4@RF/Pr-DABCO under ideal conditionsa

Entry R1 Product T (min) Yield (%)b M.P. °C (Ref.)

1 15 97 203–207 Elhamifar et al. (2017)

2 15 90 245–246 Kumar et al. (2008)

3 10 94 206–208 Elhamifar and Ardeshirfard (2017)

4 10 94 238–240 Khazaei et al. (2014)

5 10 99 256–257 Surasani et al. (2012)

(Continued on following page)
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formed via a Knoevenagel condensation reaction between carbanion
(A) and an aldehyde. The formation of intermediate (C) occurs after
the elimination of a water molecule from the reaction involving
ammonia (derived from ammonium acetate) and ethyl acetoacetate.
The Michael addition of intermediate (B) with (C) results in the
formation of intermediate (D). Ultimately, the nanocatalyst
facilitates the preparation of the final product by promoting the
cyclization of (D) and the removal of a water molecule (Al Anazi
et al., 2023).

We investigated the catalytic performance of magnetic Fe3O4@RF/
Pr-DABCO in producing polyhydroquinoline derivatives and
compared it to previously reported nanocatalysts (Table 3). The
results show that our designed catalyst is cost-effective, easy to use,
and highly efficient, yielding high amounts of polyhydroquinoline
derivatives under typical reaction conditions. Therefore, this catalyst
is comparable to or even better than previous catalysts in Hantzsch’s
synthesis of polyhydroquinolines in terms of reaction conditions, yield,
and ease of magnetic recovery.

4 Conclusion

In summary, a novel magnetic RF modified with DABCO
(Fe3O4@RF/Pr-DABCO) was successfully synthesized. The EDX
and FT-IR analyses confirmed successful chemical immobilization
of resorcinol-formaldehyde precursors and DABCO moieties on the
surface of the Fe3O4 NPs. Also, TGA analysis proved the good
immobilization of resorcinol-formaldehyde resin and DABCO
moieties onto Fe3O4 NPs and showed the high thermal stability of
the Fe3O4@RF/Pr-DABCO nanocomposite. The SEM image showed
that the Fe3O4@RF/Pr-DABCO nanostructures are spherical and
regular. Also, The XRD demonstrated the structure of Fe3O4 is
not changed under the conditions of the synthesis of Fe3O4@RF/
Pr-DABCO nanocomposite. Finally, its catalytic application was

TABLE 2 (Continued) Synthesis of polyhydroquinolines utilizing Fe3O4@RF/Pr-DABCO under ideal conditionsa

Entry R1 Product T (min) Yield (%)b M.P. °C (Ref.)

6 10 97 260–262 Cherkupally and Mekala (2008)

7 5 99 254–256 Wang et al. (2005)

aReaction parameters: at 60°C, ammonium acetate (1.4 mmol), dimedone (1 mmol), ethyl acetoacetate (1 mmol), aldehyde (1 mmol), and catalyst (0.003 g) without solvent.
bIsolated yields.

FIGURE 8
Reusability of the Fe3O4@RF/Pr-DABCO
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FIGURE 9
Recoverability and reusability of the Fe3O4@RF/Pr-DABCO at a fixed time.

SCHEME 2
A suitable catalytic mechanism for the production of polyhydroquinolines using Fe3O4@RF/Pr-DABCO
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studied as a catalyst for synthesizing polyhydroquinoline derivatives.
This nanocatalyst, showed excellent catalytic activity with a minimum
amount (0.003 g) at an optimum temperature of 60°C in only 15 min
and effectively led to the formation of products with high yields (97%–
99%). Additionally, the Fe3O4@RF/Pr-DABCO nanocatalyst can be
easily recovered using an external magnet and could be reused up to
eight times without any significant loss of its catalytic activity.
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