
Discovery of novel
PRMT1 inhibitors: a combined
approach using AI classification
model and traditional virtual
screening

Jungan Zhang1†, Yixin Ren1,2†, Yun Teng1, Han Wu1, Jingsu Xue2,
Lulu Chen2, Xiaoyue Song1, Yan Li1, Ying Zhou1, Zongran Pang1,3*
and Hao Wang1,2,3*
1School of Pharmacy, Minzu University of China, Beijing, China, 2Institute of National Security, Minzu
University of China, Beijing, China, 3Key Laboratory of Ethnomedicine (Minzu University of China),
Ministry of Education, Beijing, China

Protein arginine methyltransferases (PRMTs) play crucial roles in gene regulation,
signal transduction, mRNA splicing, DNA repair, cell differentiation, and
embryonic development. Due to its significant impact, PRMTs is a target for
the prevention and treatment of various diseases. Among the PRMT family,
PRMT1 is the most abundant and ubiquitously expressed in the human body.
Although extensive research has been conducted on PRMT1, the reported
inhibitors have not successfully passed clinical trials. In this study, deep
learning was employed to analyze the characteristics of existing PRMTs
inhibitors and to construct a classification model for PRMT1 inhibitors.
Through a classification model and molecular docking, a series of potential
PRMT1 inhibitors were identified. The representative compound (compound
156) demonstrates stable binding to the PRMT1 protein by molecular
hybridization, molecular dynamics simulations, and binding free energy
analyses. The study discovered novel scaffolds for potential PRMT1 inhibitors.
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1 Introduction

Protein arginine methylation, which is catalyzed by protein arginine methyltransferases
(PRMTs), is the main mechanism regulating the function of eukaryotic cells. This
methylation affects epigenetic gene regulation, signal transduction, mRNA splicing,
DNA repair, cell differentiation and embryonic development (Yang and Bedford, 2013;
Guccione and Richard, 2019).

S-adenosyl-L-methionine (SAM) acts as a methyl group donor, transferring the methyl
group to the guanidine nitrogen atom of protein arginine, resulting in the formation of
methylated arginine and S-adenosyl-L-homocysteine (SAH) (Figure 1) (Tang et al., 2000b;
Passos et al., 2006; Cho et al., 2012; Zhang et al., 2015). PRMTs are classified into three types
based on catalytic arginine products. All PRMTs can catalyze the methyl transfer of SAM to
arginine, forming monomethylated arginine (MMA). The type I PRMTs catalyze the
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formation of asymmetric dimethylarginine (ADMA) from MMA,
and the type II PRMT catalyzes the formation of symmetric
dimethylarginine (SDMA). Type III PRMT only catalyzes the
methylation of arginine, and there is no further catalysis. Until
now, nine subtypes of PRMTs have been characterized, among
which PRMT1, PRMT2, PRMT3, PRMT4, PRMT6, and
PRMT8 belong to type I PRMTs; PRMT5 and PRMT9 belong to
type II PRMTs; and PRMT7 is the only type III PRMT (Bedford and
Clarke, 2009).

The arginine methylation process in Homo sapiens (human)
cells is primarily mediated by PRMT1, followed by PRMT4 and
PRMT5 (Tang et al., 2000a; Bedford and Clarke, 2009). The
dysregulation of PRMT1 is associated with the occurrence and
development of various diseases, including pulmonary fibrosis
(Zakrzewicz et al., 2015), cardiovascular disease (Damiati, 2019),
diabetes, nephropathy (Qian et al., 2018), and cancer (Cha and Jho,
2012; Stouth et al., 2017). The overexpression of PRMT1 contributes
significantly to the growth, survival, metastasis, and invasion of
tumor cells (Baldwin et al., 2012; Yang and Bedford, 2013; Wei et al.,
2014). PRMT1 is widely distributed and expressed in human tissues
and is highly expressed in cancer cells (Scorilas et al., 2000; Akter
et al., 2017). Therefore, PRMT1 is considered a potential target for
cancer treatment.

Currently, PRMT1 inhibitors primarily exert their effects
through competitive binding with SAM or substrate competition.
In addition to the competitive inhibition targeting the functional
sites of PRMT1 protein itself, Spring et al. have endeavored to
rationally design and synthesize PROTACs for PRMT1. However,
the PROTAC developed in that study failed to induce the
degradation of PRMT1 (Martin et al., 2024). GSK3368715, the
most advanced PRMT1 inhibitor in clinical research,
demonstrates potent inhibition of PRMT1 with an IC50 of
3.1 nM while showing lower activity against other PRMTs.
Unfortunately, despite its potent efficacy, the clinical trial for
GSK3368715 was halted due to the “overall benefit–risk profile
did not support continuation of the study”, likely because 29% of
the patients experienced a thromboembolic event (Fedoriw
et al., 2022).

The development and clinical trial of GSK3368715 highlight the
immense potential of PRMT1 as a therapeutic target (Junwei et al.,

2024). By employing a hybrid approach that integrates artificial
intelligence (AI) with computer-aided drug design (CADD), virtual
screening can effectively identify and eliminate potential false
positives, thereby enhancing the likelihood of identifying
compounds with favorable benefit-risk profiles.

In this study, we trained an AI-based classification model based
on PRMTs associated bioactivities from ChEMBL, and designed a
screening process to address generalization challenges in AIDD.
Initially, compounds were screened for similarity constraints to
ensure their resemblance to those used in model construction,
and their similarity was validated using principal component
analysis (PCA). Subsequently, the classification model and
molecular docking were applied to evaluate the constrained
molecular database, using known PRMT1 inhibitors as a
benchmark for comparison. The compounds most suitable for
scaffold modification were further validated through molecular
hybridization, molecular dynamics (MD) simulations, and
binding free energy calculations (Figure 2).

2 Materials and methods

2.1 Preprocessing of training and
screening datasets

The training dataset was collected from ChEMBL (Davies et al.,
2015; Zdrazil et al., 2024). PRMTs associated bioactivities from H.
sapiens were included in the training dataset to construct the AI
screening model. Specifically, the dataset comprised bioactivity data
for PRMT1, PRMT3, PRMT4, PRMT5, PRMT6, PRMT7, and
PRMT8. The selected data types included IC50, Ki, % inhibition,
and % activity. Bioactivities without values were excluded, and
compounds were annotated based on an activity threshold of
10,000 nM. For ambiguous data, such as those with greater or
lesser values, a specific decision-making process (see Supplementary
S1.1) was employed with manual assistance.

The SMILE of each compound in the training dataset were
proofread from PubChem to obtain standard SMILE data. Salts and
other extraneous components were removed to retain only the core
compounds as input data. Peptides, macrocyclic molecules, and high

FIGURE 1
Protein arginine methylation pathways mediated by PRMT types I, II, III and their product specificity.
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molecular weight compounds were removed. To address the
imbalance between positive and negative samples in certain
datasets, we employed stratified sampling and divided the data
into training, validation, and test sets in an 8:1:1 ratio.

The screening datasets were selected from the drug-like libraries
collected by our research group, primarily composed of the
ChemDiv library, covering 200,000 compounds. Compounds
were proofread from PubChem to obtain standard SMILES data.
After removing extraneous components, the conformation of each
ligand was generated. Autodock Tools 1.5.7 and OpenBabel were
used to convert molecular formats (O’Boyle et al., 2011).

The PDB file of PRMT1 was obtained from the Protein Data
Bank (PDB ID: 6NT2) (Jumper et al., 2021; Varadi et al., 2021). After
removing extraneous components of proteins except SAH, the
WHAT IF web server was used to prepare the structure of
PRMT1 (Vriend, 1990).

In this study, the PCA relationships of the compounds were
calculated using the following parameters: molecular weight
(MW), calculated logarithm of the partition coefficient
(ALOGP), polar surface area (PSA), hydrogen bond donors
(HBD), hydrogen bond acceptors (HBA), rotatable bonds (RB),
and aromatic rings (AR). These parameters were calculated using
RDKit (Landrum, 2024). The molecular fingerprints of the
compounds were constructed using the Morgan fingerprint,
which generates a 2048-bit vector representation of a molecule,
capturing its structural features based on atom neighborhoods up
to two bonds away. The similarity between compounds was
calculated using Tanimoto similarity.

2.2 Deep learning architecture building

The single-objective and multi-objective classification models in
this study were developed using the AttentiveFP from the
DeepChem framework (Ramsundar et al., 2019). The model is
composed of three parts: the conversion of molecules from
SMILES format to graph format using MolGraphConvFeaturizer
(Kearnes et al., 2016); the AttentiveFP model proposed by Xiong

et al. (2019); and a calculation scheme for AI model performance
metrics in the DeepChem framework.

The MolGraphConvFeaturizer is a feature extraction tool
designed for molecular graph convolution networks that
transforms molecules into graphical representations for use in
deep learning models. In this study, node (atom) features were
constructed by concatenating various attributes to obtain a total
feature length of 30. These attributes include atom type (a one-hot
encoded vector for types such as “C”, “N”, “O”, “F”, “P”, “S”, “Cl”,
“Br”, “I”, and others), formal charge (integer electronic charge),
hybridization (one-hot encoded for “sp”, “sp2”, “sp3”), hydrogen
bonding (indicating donor or acceptor status), aromaticity
(indicating aromatic ring participation), degree (a one-hot
encoded vector for degrees 0–5), and number of hydrogens (a
one-hot encoded vector for 0–4 hydrogens attached). Edge
(bond) features are similarly constructed, with a total feature
length of 11, and include bond type (one-hot encoded for
“single”, “double”, “triple”, or “aromatic”), same ring status
(indicating if atoms are in the same ring), conjugation (indicating
if the bond is conjugated), and stereochemistry (one-hot encoded for
stereochemical configuration).

The AttentiveFP model is primarily composed of the K layer for
extracting atomic features and the T layer for molecular features,
with a fully connected layer for output. In the K layer, GATEConv
convolves atomic and edge information, and the T layer pools this
information to obtain the overall molecular features. In our model,
the T layer is fixed at 2. Hyperparameter optimization was
performed using Optuna with 100 trial sets to target the number
of K layers, graph feature size, dropout rate, learning rate, and the
number of model iterations (Akiba et al., 2019).

The performance of the classification models was evaluated
using the metrics AUC-ROC and AUC-PR. The activity data for
PRMTs exhibit substantial missing content, as each compound is
typically tested against only one or two target proteins. However, in
DeepChem calculations, unannotated data are usually treated as
negative. This approach conflicts with the target similarity of
PRMTs. Therefore, we employed a mask to filter out invalid
data, ensuring that only valid data were used in the computations.

FIGURE 2
The research process of integrating deep learning, molecular docking, and molecular dynamics simulation for novel PRMT1 inhibitors.

Frontiers in Chemistry frontiersin.org03

Zhang et al. 10.3389/fchem.2025.1548812

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2025.1548812


2.3 Conformation generation by docking

Molecular docking studies were conducted using AutoDock
Vina 1.2 (Trott and Olson, 2010; Eberhardt et al., 2021). The
methylated arginine site was chosen as the active site and was
defined as a 20 × 20 × 20 Å cube box. The docking pocket
centers were set as follows: with the SAH centered at x = 8.23,
y = 36.627, and z = 43.529; without SAH centered at x = 12.473, y =
30.924, and z = 43.529. The exhaustiveness was set to 64. For other
parameters, the default settings were used.

2.4 Molecular dynamics simulations and free
binding energy calculation

Molecular dynamics (MD) simulations were performed using
the AMBER99SB-ILDN force field (Lindorff-Larsen et al., 2010)
implemented in the GROMACS 2019.6 program (Berendsen et al.,
1995; Van Der Spoel et al., 2005; Abraham et al., 2015), and TIP3P
as the water solvation model (Price and Brooks, 2004; Lu et al.,
2014). The parameterization of molecules was performed with the
general AMBER force field (GAFF) by Sobtop (Lu, 2024; Sousa da
Silva and Vranken, 2012). A cube box (with a 0.8 nm buffer
distance between the box wall and the nearest solute atoms)
was created, and periodic boundary conditions were enabled. A
water model was added to the container at a density of 1,000 g/L.
The water was replaced by sodium and chlorine ions, aiming to
electronically neutralize the system. The system was first
minimized through the steepest descent minimization approach
(Grubmüller et al., 1991). After that, the restricted molecular
dynamics simulation was used to release any restraints. In this
restricted molecular dynamics simulation, the temperature of the
system was slowly increased to 298.15 K by 500 ps. Lastly, the free
dynamic simulations were performed using the Verlet algorithm
(Grubmüller et al., 1991). The integration step was set at 0.002 ps.
The simulations were performed in an isothermal isobaric regime
at 298.15 K and under 1 bar of pressure, with temperature and
pressure controlled with the V-rescale and Parrinello-Rahman
methods (Berendsen thermostat in annealing) (Parrinello and
Rahman, 1980), respectively, and PBC (periodic boundary
condition) was enabled. The root mean square deviation
(RMSD) was calculated for protein–protein and
protein–molecule interactions. MD trajectories were viewed
using VMD software (Humphrey et al., 1996).

The binding free energy of the protein-ligand complex was
performed by the gmx_MMPBSA package using the molecular
mechanics/Poisson-Boltzmann (generalized-Born) surface area
method (Massova and Kollman, 2000; Valdés-Tresanco et al., 2021).

2.5 ADMET predictions

The absorption, distribution, metabolism, excretion, and
toxicity properties were determined using ADMETlab3, a
software suite comprising models derived from 88 different
datasets containing 375,187 molecules. The R2 of each model was
greater than 0.95, indicating that the prediction result was
statistically significant (Dong et al., 2018).

3 Results and discussion

3.1 Deep-learning model training and
evaluation

Based on the parameters of molecular weight (MW), calculated
logarithm of partition coefficient (ALOGP), polar surface area
(PSA), hydrogen bond donors (HBD), hydrogen bond acceptors
(HBA), rotatable bonds (RB), and aromatic rings (AR), we
constructed a PCA plot to analyze the training dataset (Figure 3).
In the PCA analysis, most compounds are concentrated in a central
and high-density region, indicated by the yellow and green sections.
The distribution of data points forms an approximately circular
shape, suggesting that the variance is relatively uniform across the
two principal components. Some outliers at the edges of the plot
diverge from the main cluster and could unduly influence the
model’s training, leading to overfitting or skewed interpretations
of the dataset. Outliers can introduce noise and instability in the
model, detracting from its ability to generalize across the primary
population of compounds. To enhance the robustness of the analysis
and improve the quality of the training dataset, we removed these
outliers. After this pruning process, the final training set consisted of
1,383 compounds.

We selected the Attentive FP framework as our deep learning
model because of its strengths with specific compound types.
However, due to the limited number of convolutional layers, this
framework is not well suited for handling substructures like
polypeptides and macrocyclic compounds. To enhance predictive
performance, these structures were excluded from the training
dataset. The same exclusion criteria were applied during the final
compound screening process.

In the training dataset, activity data for additional PRMT
subtypes (PRMT3, PRMT4, PRMT5, PRMT6, PRMT7, and
PRMT8) were incorporated to enhance the predictive
performance of the single-task model using a multi-task
approach. Due to the uneven distribution of positive data and
the presence of missing data in the training dataset, the
improved area under the precision-recall curve (AUC-PR) metric
was selected for model hyperparameter optimization to effectively
evaluate the predictive capability of PRMT1. The results of the
model hyperparameter optimization are presented in Table 1.

The enhancement of the multi-task model over the single-task
model was examined by the area under the receiver operating
characteristic curve (AUC-ROC) and AUC-PR metrics
(Figure 4). It was observed that the multi-task model improved
the predictive ability of PRMT1. For PRMT1 prediction, the AUC-
PR increased from 0.836 in the single-task model to 0.850 in the
multi-task model, an improvement of 0.014. Similarly, the AUC-
ROC increased from 0.814 in the single-task model to 0.836 in the
multi-task model, an improvement of 0.022. For all tasks, the multi-
task model achieved an AUC-PR of 0.970 and an AUC-ROC of
0.923. Furthermore, the PCA analysis conducted on the newly
introduced molecules in the multi-task model, as compared to
the existing molecules in the single-task model (Figure 4),
revealed that the multi-task model significantly bolstered the
robustness of the single-task model. This enhancement mitigated
the risk of overfitting to the data of individual tasks and reduced
sensitivity to noise and outliers. The results of the AUC-PR
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FIGURE 3
Principal component analysis (PCA) of the training dataset: The scatter plot shows the distribution of compounds based on their properties. Each
point represents a compound, with color intensity indicating density. Red point: discrete compounds.

TABLE 1 The results of the model hyperparameter optimization.

Parameter num_layers Graph _size Dropout lr Epoch

Single-Objective 2 235 0.2578 0.001768 92

Multi-Objective 3 475 0.0705 0.000685 50

FIGURE 4
(A, B) Comparative analysis of PRC and ROC curves for single-task vs. multi-task classification models in PRMT1 prediction. (C) PCA comparison of
existing molecules in single objective models and newly added compounds in multi-objective models.
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demonstrate that the activity data of PRMTs can be generalized and
that transfer learning effects can enhance the predictive ability of
PRMT1. By accurately recognizing other tasks, the predictive
capacity of the PRMT1 model was improved.

3.2 Virtual screening of PRMT1 inhibitors

AI models contain limited generalization abilities because their
recognition capabilities depend on the original training dataset. To
mitigate the risk of the AImodel generating generalization errors, we
conducted a screening of compounds using Morgan fingerprint
Tanimoto similarity, selecting those with a similarity above 0.4
(Figure 5). PCA was utilized to examine the screening results,
revealing that the filtered molecules are well-positioned near the
training data. This suggests that the molecules identified through the
similarity search have a higher likelihood of being effectively
recognized by the AI model, thereby reducing the potential for
generalization errors.

In the virtual screening process, a combined approach of docking
and AI screening models was employed to evaluate the compounds
from the molecular database generated by the similarity search.
During the molecular docking process, we considered the multiple
inhibitionmechanisms of PRMT1 inhibitors, including substitution at
the SAH natural substrate binding site and inhibition at the arginine
binding site containing SAH. Accordingly, we performed two docking
modes on the PRMT1 protein, each targeting one of the inhibitor
binding mechanisms (Figure 6). In parallel, we employed our
constructed multi-target classification model for PRMTs during the
AI screening process. In this step, we input the compounds in SMILES
format into the AImodel, targeting the positive PRMT1 scoring as the
primary measure for AI-based assessment. We compared the docking
scores with the AI model scores. As shown in Figure 6, the evaluated
molecules are well-distributed within the scoring space. Molecules
with docking scores less than −10 kcal/mol and AI positive model
probabilities greater than 0.9 were selected.

To investigate the binding conformation of the screened
molecule within the PRMT1 protein, we aligned the docking
conformation onto the reported type 1 PRMT inhibitors (PDB
ID: 6NT2) (Figure 7). It is evident that the screened molecule
does not act as an SAH substitute; instead, it primarily binds
through the arginine pocket.

Currently, the most effective PRMT1 inhibitors reported in the
literature contain a methylene-N-methylethylenediamine moiety
attached to a five- or six-membered aromatic or heteroaromatic
group (Hendrickson-Rebizant et al., 2024). This structural motif has
demonstrated the best activity among those studied so far (Yang
et al., 2017; Fedoriw et al., 2019; Wang et al., 2022). Through visual
inspection, we identified compound 156 for further investigation.
The selection of this compound was primarily due to its docking
conformation, where it was found to be the only compound that
meets the criteria for molecular hybridization involving the
N-methylethylenediamine component.

Molecular hybridization was performed by connecting
compound 156 with N-methylethylenediamine, which is the core
structural component in PRMT1 inhibitors, to obtain compound
156-ethylenediamine (Figure 7). To assess the binding conformation
of compound 156-ethylenediamine, we employed the same docking
methodology as previously described for the initial screening. The
binding rationalities of compound 156, compound 156-
ethylenediamine, and compound GSK3368715 were further
validated through MD simulations. We conducted three separate
100 ns simulations, each involving a compound in a ternary complex
with SAH and PRMT1.

In the simulation of the positive control compound
GSK3368715 (derived from the previously reported crystal
structure, PDB ID: 6NT2) and the simulation of compound 156-
ethylenediamine, the SAH failed to adopt a binding mode analogous
to that observed in the crystal conformation. Only the simulation of
compound 156 exhibited a relatively stable binding conformation
for SAH, which remained near the initial binding site (Figure 8). To
ascertain the simulation instability induced by GSK3368715 and

FIGURE 5
PCA plot of compounds from the filtered compound library and similarity dataset. (A) The PCA plot compares the screening dataset (red) with the
training dataset (blue). (B) The PCA plot compares the similarity dataset (red) with the training dataset (blue).
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compound 156-ethylenediamine, we conducted six replicate
experiments for each compound: three iterations were performed
on the PRMT1 monomer, while the remaining three were executed
on the PRMT1 dimer based on the crystal structure.

For the stable binding compound, as shown in Figure 8,
compound 156 and protein underwent conformational changes at
the beginning of the simulation. However, after 30 ns, as the protein
conformation stabilized, the ligand maintained relative stability
throughout the remaining simulation. The binding free energy
was calculated using the GBSA method from 80 ns to 100 ns,
which showed that the average binding free energy of compound
156 to the SAH and PRMT1 complex was −22.74 ± 0.43 kcal/mol.

For the remaining compounds with unstable binding, the
binding free energy was calculated through the GBSA method
over the interval of 1 ns–100 ns, revealing that the average
binding free energy of compound 156 to the SAH and
PRMT1 complex was lower than that of the
GSK3368715 control, with values of −22.74 ± 0.43 kcal/mol for
compound 156 compared to −36.05 ± 0.47 kcal/mol for
GSK3368715. Compound 156-ethylenediamine exhibited
comparable efficacy to GSK3368715, with values of −37.07 ±
0.44 kcal/mol, thereby indicating that compound 156-
ethylenediamine can effectively bind to the inhibitor site of the
PRMT1 protein.

FIGURE 6
(A) PRMT1 inhibitor docking illustration at the natural substrate binding location of SAH. (B) PRMT1 inhibitor docking illustration at the SAH-
containing arginine binding site. (C) The docking and AI model scoring space. (D) The top six compounds that satisfy the requirements of AI model scores
greater than 0.9 and docking scores less than −10 kcal/mol.
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3.3 Binding interaction analysis
against PRMT1

Drawing upon the results from molecular docking studies, we
meticulously investigated and validated the binding interactions of
the three compounds with the active site amino acid residues of
PRMT1. Through a pairwise positional comparison of the
compounds (Figure 9), compound 156-ethylenediamine emerges
with a novel conformation, exhibiting slight variances from its two
precursor molecules.

In comparison to GSK3368715, compound 156-
ethylenediamine preserves the original interacting residues
Ile62 and Tyr57. The N-ethylenediamine segment remains
situated within its pocket. However, the compound underwent a
certain angular displacement, resulting in the forfeiture of hydrogen
bonds potentially formed with Met164 while simultaneously
facilitating the development of new hydrogen bonds with Tyr57.

Relative to compound 156, compound 156-ethylenediamine has
experienced rotation, yet the critical residues interaction Ser56,
Ile62, Tyr170, Glu171, and His311 have been retained. Moreover,
the benzene ring utilized for molecular hybridization loses its π-
conjugated positioning with Tyr166 due to positional dislocation.

The interactions among the residues of the three compounds are
detailed in Table 2. Compound 156-ethylenediamine adeptly
inherits the interactions of its two source molecules, and as the

source molecule, compound 156 reveals a promising potential for
binding to the PRMT1 scaffold.

3.4 ADMET predictions

We employed the ADMETlab 3.0 computational model to
forecast the absorption, distribution, metabolism, excretion, and
toxicity (ADMET) characteristics of the compound, which are
imperative for evaluating its drug-like potential.

In terms of synthetic accessibility, GSK3368715 was assessed as
“hard,” whereas compound 156 and compound 156-
ethylenediamine were deemed “easy.” The molecules presented
herein have been rated as relatively easy to synthesize according
to AI scoring.

The compound 156 and compound 156-ethylenediamine
improve the subpar Caco-2 permeability and metabolic clearance
rates associated with GSK3368715 by retaining the structural
framework of compound 156. However, it also inherits the
latter’s elevated plasma protein binding affinity.

In predictions of acute oral toxicity in rats, compound 156 and
compound 156-ethylenediamine exhibited heightened toxicity.
Additionally, all three compounds tested positive for human liver
toxicity and genotoxicity, although such toxicities can frequently be
alleviated through optimization of the chemical structure.

FIGURE 7
(A) Positional relationship between the screenedmolecule (line), SAH, GSK3368715 (stick), and protein crystal structure (ribbon). (B) 2D Structures of
compound 156, compound 156-ethylenediamine (compound 156 N), and GSK3368715. (C) The positional relationship between compound 156 and
compound 156 N with GSK3368715 and SAH.
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The ADMET predictions affirmed that the physicochemical
properties of the two compounds and GSK3368715 align with
the drug-like realm delineated by the ADMETlab
3.0 platform (Figure 10).

4 Conclusion

PRMT1, a key protein responsible for arginine methylation, has
received extensive research attention. Currently, PRMT-targeted
drugs have not successfully completed clinical trials. This
suggests that PRMT1 has a sufficient data foundation for AI
design and that subtype data can enhance AI model screening
capabilities. In contemporary drug development, the combination
of virtual screening and AI has become an effective research strategy.

In this study, we employed a hybrid approach that combines AI
screening with traditional drug screening processes. To address the

challenge of AI models recognizing out-of-distribution data that
may lead to hallucination errors, we introduced fingerprint
similarity to constrain the similarity between the screened and
training compounds. This approach reduces the misjudgment of
unrecognized molecules entering the AI scoring phase. Our final
PRMT1 screening model achieved an AUC-PR of 0.850,
demonstrating its ability to identify positive compounds.

Through AI model screening and molecular docking, we
identified compound 156 that can cross-link with the key
backbone molecule of the best PRMT1 inhibitor reported in the
literature. Molecular hybridization was performed on the six-
membered ring at the corresponding position of compound 156,
and compound 156-ethylenediamine containing
N-methylethylenediamine was obtained. Molecular docking
proved that compound 156-ethylenediamine inherited the key
structures of both compounds and could interact with the
corresponding amino acid residues. And exhibited good stability

FIGURE 8
Binding positional changes and RMSD analysis of compound 156: (A) Position before simulation; (B) Position after simulation; (C) RMSD of
compound 156; (D) RMSD of the protein.
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FIGURE 9
(A)Comparative structural analysis of compound 156 and compound 156-Ethylenediaminewith GSK3368715. (B) Binding interactions of compound
156, compound 156-Ethylenediamine, and GSK3368715 with PRMT1 active site residues.

TABLE 2 Statistics of residues interacting with PRMT1 protein by three compounds.

Compounds Hydrogen bonds and Van der Waals forces Conjugation and hydrophobic interaction

GSK3368715 Tyr57, Met164 Ile62, Tyr170, Arg345

156-ethylenediamine Ser56, Tyr57, Tyr170, Glu171, His311 Ile62

156 Ser56, Glu171, His311, Arg345 Ile62, Tyr166, Tyr170

FIGURE 10
The drug physicochemical property radar map, generated by ADMETlab 3.0. (A) Compound 156. (B) Compound 156-ethylenediamine. (C)
GSK3368715.
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during molecular dynamics simulations, proving the ability of
compounds 156 to bind to the outer pocket of
PRMT1 N-methylethylenediamine. The ADMET prediction
indicated that the identified compounds possess favorable drug-
like properties.

As a lead compound, compound 156 was shown to have the
ability to bind to the PRMT1 pocket, and this ability could be
transferred to the original optimal skeleton, indicating that it has the
potential for further structural modification and selectivity
enhancement.
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