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In the Pu’er tea market, the ubiquity of blending different varieties and the
fraudulent representation of vintage years present a persistent challenge.
Traditional sensory evaluation and experience are often inadequate for
discerning the true variety and vintage of tea, highlighting the need for more
sophisticated analytical methods to ensure authenticity and quality. Fourier
transform near infrared diffuse reflectance spectroscopy combined with radial
basis function neural network (RBFNN) was applied for determination of the
varieties and vintages of Pu’er tea. For vintage identification, the accuracy,
precision, recall, and F1-score of the RBFNN model for the prediction set
were 99.2%, 98.2%, 98.0%, and 98.0%, respectively. For identification of
varieties adulteration, the corresponding parameters were 98.9%, 97.2%,
96.7%, and 96.6%, respectively. These results illustrated the feasibility to
identify the adulteration of varieties and misrepresentation of vintages of Pu’er
tea with near infrared spectra and RBFNN model, proving an efficient alternative
for Pu’er tea quality inspection, and offering a robust method for combating the
pervasive issues within the market.
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1 Introduction

The escalating pace of contemporary life and the concomitant rise in consumer
affluence have led to a burgeoning demand for healthful beverages. Pu’er tea, renowned
for its salutary effects including lipid-lowering, weight reduction, and anti-aging properties,
is increasingly becoming the beverage of choice for many consumers (Liu et al., 2020a; Xu
et al., 2019; Wu et al., 2021). There is a price disparity between different varieties of Pu’er tea
(Wei et al., 2020). Take ancient tree tea and tableland tea, for example, ancient tree tea is
produced by tea trees older than 100 years that grow on tea hills at higher altitudes, rich in
tea polyphenols, catechins, amino acids, caffeine and water leachate, with good quality, low
yield, high price, while tableland tea is produced by tea trees grown centrally on plantations
using modern tea planting techniques, with poor flavor, high yield and lower price (Zhang S.
et al., 2022; Chowaniak et al., 2021). In addition, much like wine, Pu’er tea exhibits
significant aging potential, whereby its quality and taste enhance over time through storage
and fermentation, leading to an increase in value (Liu et al., 2020b; Chen et al., 2024). For
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instance, a specific variety of ancient tree tea is priced between RMB
100–300 per cake for new teas aged 1–3 years. Mid-aged teas, which
are 4–10 years old, range from RMB 300–1,000 per cake, while teas
aged for over 10 years typically exceed RMB 1,000 per cake. At
present, the quality of Pu’er tea on the market is uneven, and the
phenomenon of adulteration of varieties and misrepresentation of
vintage occurs from time to time (Tan and Zhou, 2024; Zhang et al.,
2023), which not only jeopardizes the interests of consumers, but
also affects the credibility of the brand of Pu’er tea and the healthy
development of the market. Traditional methods of Pu’er tea quality
identification mainly rely on sensory evaluation and empirical
judgment, which are not only highly subjective and low in
accuracy, but also inefficient and unable to meet the demand for
rapid and accurate identification in the modern market (Guo et al.,
2024). Therefore, it is of great significance to develop a scientific,
objective and accurate analyzing technique to ensure the quality of
Pu’er tea and market order.

Fourier transform near infrared (NIR) diffuse reflectance
spectroscopy technique, as an emerging analytical technique, has
been widely used in many fields due to its advantages of easy
operation, fast analysis speed and non-destruction of samples
(Wu et al., 2024; Hu et al., 2019; Zhu et al., 2019; Firmani et al.,
2019; Wang et al., 2021). By measuring the absorption
characteristics of the sample to near infrared light, this technique
can provide information about the molecular structure and chemical
composition of the sample, thus realizing the qualitative and
quantitative analysis of the sample. In the quality identification of
Pu’er tea, the technique can utilize the absorption characteristics of
the chemical components in Pu’er tea such as tea polyphenols,
caffeine and amino acids on near-infrared light, and combine with
chemometrics methods to establish the identification model of
varieties and vintages (Yang et al., 2021; Wang et al., 2020; Sun
et al., 2020).

Partial least squares discriminant analysis (PLS-DA) is a
commonly employed model when dealing with qualitative
analysis problems of near-infrared spectral data, which is a
variant of the application of partial least squares (PLS) to
classification problems by establishing a linear model to
maximize the differences between different categories and
minimize the differences within the same category (Vieira et al.,
2021; Yuan et al., 2022; De Géa Neves et al., 2022). However, the
chemical composition of Pu’er tea is complex, the interactions and
influences between them are often nonlinear, so it is difficult for
PLS-DA to accurately describe the relationship between the NIR
spectra and tea category and vintage (Sampaio et al., 2020; Zhang Z.
et al., 2022). Radial basis function neural network (RBFNN)
(Aboonajmi et al., 2016; Fidêncio et al., 2008), as a mathematical
model that simulates the transmission of information between
neurons in the human brain to each other, has shown significant
advantages in pattern recognition and classification problems with
its excellent nonlinear mapping ability and fast learning speed.
RBFNN is able to deal with complex nonlinear relationships by
feature mapping the input data through the radial basis function of
its implicit layer, and to optimize the prediction performance of the
model by adjusting the network parameters (Fidêncio et al., 2002;
Wang and Xiang, 2007; Li et al., 2023).

This study aims to determine the adulteration of varieties and
misrepresentation of vintages of Pu’er tea using Fourier transform

NIR diffuse reflectance spectroscopy. To achieve this goal, principal
component analysis (PCA) was applied to the spectral data acquired
to qualitatively analyze the differences among the Pu’er tea samples
with different vintages and different varieties. After sample set
partitioning, PLS-DA and RBFNN were employed to establish
classification models, and the parameters, such as accuracy,
precision, recall, and F1-score, were calculated and compared.

2 Materials and methods

2.1 Pu’er tea sample preparation

2.1.1 Vintage identification
A total of 200 samples of ancient tree tea of the same variety with

vintages of 2010, 2012, 2014, 2016, 2018 and originated from
Wuliang Mountain (E100°03′-101°07′, N23°20′-25°34′) in Pu’er
City, Yunnan Province, were collected, with 40 samples from
each vintage. The samples were harvested from same location
and prepared with same process, moreover, they were maintained
under ambient, cool, sealed, dry environment to ensure stability.
Each sample was taken 10 g, and the samples were ground using a
solid sample grinder and sieved through 60-mesh sieve to achieve
relatively fine and uniform particle size, then 5 g of the sieved
samples were put into transparent glass sample bottles for
subsequent spectral acquisition.

2.1.2 Identification of varieties adulteration
Twenty ancient tree tea samples and twenty tableland tea

samples of the same species with the vintage of 2016 and the
origin of Baiying Mountain (E99°34′-100°55′,N22°16′-23°45′) in
Lincang City, Yunnan Province, were collected, respectively, and
they were maintained under consistent, cool, sealed, dry
environment to ensure stability. The samples were divided into
20 groups, each containing 1 portion of tableland tea and 1 portion
of ancient tree tea, for each group of samples, under the premise of
ensuring a total weight of 10 g, the tableland tea and ancient tree tea
were fully mixed according to the ratios of 0:5, 1:4, 2:3, 3:2, 4:1, and 5:
0, respectively, and a total of 120 hybrid samples were prepared, of
which, 20 portions were pure ancient tree tea and 20 portions were
pure tableland tea. The samples were ground using a solid sample
grinder and sieved through a 60-mesh sieve to achieve relatively fine
and uniform particle size, then 5 g of the sieved samples were put
into a transparent glass sample bottle for following spectral
acquisition.

2.2 NIR spectra acquisition

A FT-NIR spectrometer (ABB MB3600, Switzerland) with a
powder sampler—a diffuse reflectance attachment that enables NIR
spectral analysis of powder samples in transparent containers—was
utilized to acquire the spectra in the reflectance mode. Spectra were
acquired at a resolution of 4 cm−1 within the wavenumber range of
10,000 to 4,000 cm−1, with each spectrum being the result of
averaging 64 consecutive scans. During the production and
processing of Pu’er tea samples, they were spread out and sun-
dried, and subsequently stored under consistent, cool, sealed, and
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dry conditions post-collection. Consequently, no drying operation
was conducted prior to spectral acquisition. To ensure analytical
rigor, each sample was subjected to triplicate measurements, and the
mean spectrum was ascertained to represent the sample’s spectral
profile. All spectral measurements were conducted at ambient
conditions, with relative humidity maintained between 50% ± 5%
and temperature controlled at 25°C ± 1°C. To mitigate the influence
of environmental variables, polytetrafluoroethylene (PTFE) served

as the blank, being scanned at intervals after every five samples. In
order to reduce the influence of scattering on the spectra,
compaction operation is carried out by using a compaction die
during loading samples before spectra acquisition.

2.3 Principal component analysis

Principal component analysis (PCA) is a statistical procedure
that reconfigures a constellation of potentially interrelated variables
into a set of linearly uncorrelated variables via an orthogonal
transformation, yielding a new ensemble termed principal
components (Liu et al., 2010). The overarching goal of PCA is to
diminish the dimensionality of the dataset, whilst preserving as
many intrinsic characteristics of the original data as feasible. This is
achieved by initially pinpointing the axis of maximum variance
within the data, which then serves as the foundational vector for the
construction of a novel feature space. Subsequent principal
components are orthogonal to their predecessors and are
sequentially ranked based on the magnitude of their variance.
Consequently, PCA enables the projection of high-dimensional
data into a lower-dimensional realm, capturing as much salient
information as possible.

2.4 Sample set partitioning

At present, several methods have been proposed for sample set
partitioning, including random selection method, Kennard-Stone
method, and sample set partitioning based on joint X-Y distances
(SPXY) method. The random selection method cannot ensure the
uniform distribution of training set samples in the data space. It may
lead to over-sampling in some areas while neglecting others,
resulting in insufficient representativeness of the training set. The
Kennard-Stone method selects samples based on the Euclidean
distance between spectra, that is, it considers the sample

FIGURE 1
The NIR spectra: (A) the spectra after SG of 200 Pu’er tea samples; (B) the average spectra across various vintages of Pu’er tea samples.

FIGURE 2
The plot of the scores for the first three principal components.

TABLE 1 Distribution of sample vintages in the training and prediction sets.

Subsets Number

Sum 2010 2012 2014 2016 2018

Training set 150 30 30 30 30 30

Prediction set 50 10 10 10 10 10
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distribution in the spectral space, the computational procedure has
already been described in Yang et al. (2019). SPXY method selects
samples by taking into account the sample distribution in both the
spectral and concentration spaces, building upon the Kennard-Stone
method. In the realm of quantitative analysis, the SPXY method is
renowned for yielding training set samples that exhibit a more
uniform spatial distribution and enhanced representativeness.
However, it is centered on a qualitative classification issue in this
paper. To guarantee the representativeness of the samples, it is
imperative to meticulously select a specified number of samples
from each category to constitute the training set. Given that samples
belonging to the same category invariably possess consistent labels,
employing the SPXY method for sample selection becomes
inconsequential. As a result, after careful deliberation, the
Kennard-Stone method was deemed the most suitable approach
for dividing the sample set in this investigation.

2.5 Partial least squares discriminant analysis

Partial Least Squares Discriminant Analysis (PLS-DA) is a
sophisticated multivariate statistical technique that synergizes the
capabilities of Partial Least Squares regression (PLS) and Linear
Discriminant Analysis (LDA). This method is adept at identifying an
optimal subset of features that maximizes the variance between
distinct sample categories while concurrently minimizing the
variance observed within these categories. The essence of PLS-
DA lies in its creation of new variables, or components, through
a linear combination of the original variables. These components are
crafted to capture the majority of the variance in the dataset and to
discernibly delineate between sample categories. The methodology
judiciously selects the quantity and weighting of these components
by seeking to minimize prediction error and to enhance inter-group
separation. A notable advantage of PLS-DA is its capacity to manage

FIGURE 3
The confusion matrix: (A) for the training set of the PLS-DA model; (B) for the prediction set of the PLS-DA model; (C) for the training set of the
RBFNN model; (D) for the prediction set of the RBFNN model.
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high-dimensional data sets with resilience, even in the presence of
small sample sizes and multicollinearity.

Overfitting refers to the phenomenon where a model performs
exceptionally well on the training data, but poorly on new, unseen
test data. Underfitting, on the other hand, is when a model performs
poorly even on the training data, failing to capture the underlying
patterns in the data effectively. To prevent overfitting and
underfitting, K-fold cross-validation method is employed to
determine the optimal number of principal components. During
the model training process, the dataset is randomly divided into k

equal-sized folds. Each fold serves as a validation set once, while the
remaining k−1 folds are used as the calibration set. This process is
repeated k times, ensuring each fold is used for validation exactly
once, and the average performance across all k folds is calculated.
The number of principal components is varied, and the K-fold cross-
validation process is repeated for each number. The number that
yields the highest average performance across the k folds is selected
as the optimal number of principal components. In addition,
spectral data has been normalized before model training and
validation.

TABLE 2 Results of PLS-DA model and RBFNN model for vintage identification.

Subsets Models Indicators 2010 2012 2014 2016 2018 Total

Training set PLS-DA Accuracy (%) 98.7 98.0 96.0 98.0 97.3 97.6

Precision (%) 100.0 93.5 96.2 91.0 90.6 94.3

Recall (%) 93.3 96.7 83.3 100.0 96.7 94.0

F1-Score (%) 96.5 95.1 89.3 95.3 93.6 94.0

RBFNN Accuracy (%) 100.0 100.0 100.0 100.0 100.0 100.0

Precision (%) 100.0 100.0 100.0 100.0 100.0 100.0

Recall (%) 100.0 100.0 100.0 100.0 100.0 100.0

F1-Score (%) 100.0 100.0 100.0 100.0 100.0 100.0

Prediction set PLS-DA Accuracy (%) 96.0 96.0 94.0 98.0 100.0 97.0

Precision (%) 100.0 90.0 81.8 90.9 100.0 92.5

Recall (%) 80.0 90.0 90.0 100.0 100.0 92.0

F1-Score (%) 88.9 90.0 85.7 95.2 100.0 92.0

RBFNN Accuracy (%) 100.0 100.0 100.0 98.0 98.0 99.2

Precision (%) 100.0 100.0 100.0 100.0 90.9 98.2

Recall (%) 100.0 100.0 100.0 90.0 100.0 98.0

F1-Score (%) 100.0 100.0 100.0 94.7 95.2 98.0

FIGURE 4
The NIR spectra: (A) the spectra after SG of 120 Pu’er tea samples; (B) the average spectra across various mixing ratios of Pu’er tea samples.
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2.6 Radial basis function neural
network (RBFNN)

RBFNN is a feed-forward artificial neural network characterized
by the use of radial basis functions as activation functions within the
hidden layer. These functions, typically Gaussian or other radially
symmetric functions, enable the hidden layer to map input data into
a high-dimensional space. The output layer then synthesizes the
network’s final output through a linear combination of these high-
dimensional features. This architecture is particularly adept at
capturing localized features within data, endowing RBFNN with
broad applicability in domains such as function approximation,
classification, time series prediction, and system control. Generally
speaking, the complexity of a neural network model and the number
of its parameters are positively correlated with the required sample
size. A relatively simple model may be adequately trained with just a
few dozen samples. In contrast, a deep convolutional neural network
designed for image recognition tasks often necessitates a much
larger dataset, typically consisting of thousands of samples. The
sample size amassed in this study is adequate to successfully
accomplish the training of the RBFNN model.

To prevent overfitting and underfitting, K-fold cross-validation
method is employed to select the optimal spread of the radial basis
function, and the selection process is similar to the selection of the
optimal number of principal components in the PLS-DA model. In
addition, the regularization method, the data normalization method,
and the early stopping mechanism are also employed.

2.7 Evaluation

In multiclass classification problems, metrics such as accuracy,
precision, recall, and the F1 score are frequently employed to assess
model performance. The accuracy, which denotes the proportion of
samples correctly classified by the model relative to the total number
of samples, is determined by the following formula:

Accuracy � 1
N

∑
N

i�1

TPi + TNi

TPi + TNi + FPi + FNi

where TPi represents the true positives of category i, which are
instances correctly identified as belonging to the positive class, TNi

signifies the true negatives of category i, indicating instances
accurately predicted to be in the negative class, FPi denotes the
false positives of category i, referring to cases that were erroneously
classified as part of the positive class, FNi stands for the false
negatives of category i, which are instances that were incorrectly
predicted to be in the negative class, N represents the total number
of categories.

The precision, which quantifies the proportion of actual
positives among the samples that were predicted to be positive, is
calculated using the following formula:

Precision � 1
N

∑
N

i�1

TPi

TPi + FPi

The recall, which measures the proportion of actual positive
samples that are correctly identified as positive by the model, is
computed with the formula:

Recall � 1
N

∑
N

i�1

TPi

TPi + FNi

The F1-Score, which serves as a harmonic mean of precision and
recall, is employed to reconcile these two metrics into a single
measure. It is derived from the following formula:

F1 − Score � 2 ×
Precision × Recall

Precision + Recall

3 Results and discussion

3.1 Vintage identification

3.1.1 NIR spectra features
After the raw spectra of 200 Pu’er tea samples from Wuliang

Mountain were obtained, the Savitzky-Golay smoothing (SG)
method were employed for spectral preprocessing to eliminate
the random noise and to improve the signal to noise ratio of the
spectra, and the processed spectra were depicted in Figure 1A.
Notably, several pronounced absorption peaks are discernible
within the wavenumber range of 10,000 to 4,000 cm−1. The peak
appeared at 6,817 cm−1 is caused by the vibrations of OH groups in
tea polyphenols, theabrownin, and flavonoids, and the vibrations of
NH groups in amino acids, alkaloids and phenolic compounds. The
peak at 5,790 cm−1 corresponds to the vibrations of CH3 groups in
methylated phenols and benzene compounds. The peak at

FIGURE 5
The plot of the scores for the first three principal components.

TABLE 3 Distribution of samples with different mixing ratio in the training
and prediction sets.

Subsets Number

Sum 0% 20% 40% 60% 80% 100%

Training set 90 15 15 15 15 15 15

Prediction
set

30 5 5 5 5 5 5
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5,170 cm−1 is attributed to the vibrations of OH groups in tea
polyphenols, theabrownin, and flavonoids, and the vibrations of C =
O groups in theabrownin and phenolic acid components. The peak
appeared at 4,650 cm−1 is caused by the vibrations of HC = CH
groups in volatile compounds. The peak at 4,300 cm−1 is associated
with the vibrations of CH2 groups in linalool oxides and terpenes.

The average spectra of Pu’er tea samples across vintages of 2010,
2012, 2014, 2016 and 2018 were presented in Figure 1B. It is evident
that the spectral profiles of teas from different vintages extensively
overlap, rendering it impossible to ascertain the vintage of the tea
solely based on spectra.

3.1.2 Principal component analysis
Principal component analysis (PCA) was performed on the

near-infrared spectra of 200 samples of Pu’er ancient tree tea to
ascertain the feasibility of distinguishing between different tea
vintages, because it is possibility that the analytical approach

allowed to reduce the complexity of the spectral data, thereby
highlighting the key features that may distinguish between vintages.

PCA results are described in Figure 2, the scores of the first
principal component (PC1), the second principal component (PC2)
and the third principal component (PC3) are 88.88%, 8.36% and
1.72%, respectively. In the unfortunate news, the plot of the scores
for the first three principal components (PCs) indicates a failure in
discerning the vintages of the assorted samples through principal
component analysis. This is evidenced by the indiscriminate
clustering of samples from various vintages, which precludes
their segregation from one another.

3.1.3 Training and prediction sets
By employing the Kennard-Stone method, 30 samples per

vintage were designated for model training, with the remaining
samples allocated for model testing. Consequently, the near-infrared
spectra of 200 Pu’er tea samples were partitioned into two distinct

FIGURE 6
The confusion matrix: (A) for the training set of the PLS-DA model; (B) for the prediction set of the PLS-DA model; (C) for the training set of the
RBFNN model; (D) for the prediction set of the RBFNN model.
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subsets, following a 3:1 ratio. This partitioning resulted in a training
set comprising 150 samples and a prediction set consisting of
50 samples, as listed in Table 1.

3.1.4 Results of models
The confusion matrix is a pivotal evaluative tool employed in the

assessment of classification model performance. It delineates the
correlation between the predicted and actual outcomes of a model
in a tabulated format. Through the utilization of thismatrix, a spectrum
of performance metrics can be derived, including Accuracy, Precision,
Recall, and the F1-Score. These metrics collectively facilitate a
comprehensive appraisal of the model’s efficacy. The training and
subsequent testing of the models were conducted utilizing the specified
dataset. The confusion matrices for the training and prediction sets of
the PLS-DA model are depicted in Figures 3A, B, respectively, while
those for the training and prediction sets of the RBFNN model are
presented in Figures 3C, D, respectively. In the confusion matrix, the
horizontal axis corresponds to the actual vintages of the samples,
whereas the vertical axis denotes the vintages predicted by the model.

The accuracy, precision, recall and F1-Score of PLS-DA model
and RBFNN model are listed in Table 2. The PLS-DA model was
constructed with the incorporation of 8 latent variables. The total
accuracy, precision, recall, and F1-score for the training set were
recorded at 97.6%, 94.3%, 94.0%, and 94.0%, respectively. In contrast,
for the prediction set, these metrics were slightly lower, with total
accuracy, precision, recall, and F1-score standing at 97%, 92.5%, 92%,
and 92%, respectively. It is readily apparent that there is no notably
superiority in the performance metrics. The predominant reason for
this outcome is the model’s inability to accurately discern the
2014 vintage samples, the corresponding recall, and F1-score for
the training set are 83.3% and 89.3%, respectively.

For the RBFNN model, the configuration parameters were
meticulously selected: the number of hidden nodes was set to 150,
the radial basis function was chosen to be the Gaussian function, and
the spread of the radial basis function was determined to be 60. The
training set achieved a perfect total accuracy, precision, recall, and F1-
score of 100.0%. For the prediction set, the performance metrics were
also highly impressive, with a total accuracy of 99.2%, precision and
recall both at 98.2%, and an F1 score of 98.0%. Notably, the model only
misclassified a single sample from the 2016 vintage as being from 2018,
which was a minor deviation. Compared with the PLS-DA model, the
performance metrics for the training set have seen significant
enhancements, with total accuracy, precision, recall, and F1-score
improving by 2.5%, 6.0%, 6.4%, and 6.4%, respectively. Similarly,
the prediction set performance metrics had also demonstrated
substantial improvements, with total accuracy, precision, recall, and
F1-score increasing by 2.2%, 6.2%, 6.5%, and 6.5%, respectively.

The results presented herein demonstrated that the combination
of near-infrared diffuse reflectance spectroscopy with a radial basis
function neural network yielded a high degree of accuracy in the
identification of Pu’er tea vintages. This approach harnessed the
analytical power of spectroscopy to discern the subtle chemical
signatures indicative of the tea’s age, thereby enabling a precise
determination of its vintage.

3.2 Identification of varieties adulteration

3.2.1 NIR spectra features
The near-infrared diffuse reflectance spectral profiles after SG

method of 120 Pu’er tea samples, harvested from the Baiying
Mountain, were illustrated in Figure 4A. It was evident that the

TABLE 4 Results of PLS-DA model and RBFNN model for identification of species adulteration.

Subsets Models Indicators 0% 20% 40% 60% 80% 100% Total

Training set PLS-DA Accuracy (%) 100.0 100.0 96.7 91.1 94.4 100.0 97.0

Precision (%) 100.0 100.0 98.5 88.9 75.0 100.0 93.7

Recall (%) 100.0 100.0 93.3 53.3 100.0 100.0 91.1

F1-Score (%) 100.0 100.0 95.8 66.6 85.7 100.0 91.4

RBFNN Accuracy (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Precision (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Recall (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0

F1-Score (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Prediction set PLS-DA Accuracy (%) 100.0 100.0 86.7 86.7 100.0 100.0 95.6

Precision (%) 100.0 100.0 60.0 60.0 100.0 100.0 86.7

Recall (%) 100.0 100.0 60.0 60.0 100.0 100.0 86.7

F1-Score (%) 100.0 100.0 60.0 60.0 100.0 100.0 86.7

RBFNN Accuracy (%) 100.0 100.0 100.0 100.0 96.7 96.7 98.9

Precision (%) 100.0 100.0 100.0 100.0 83.3 100.0 97.2

Recall (%) 100.0 100.0 100.0 100.0 100.0 80.0 96.7

F1-Score (%) 100.0 100.0 100.0 100.0 90.9 88.9 96.6
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overall spectral absorption intensity of these samples was relatively
attenuated in comparison to those from Wuliang Mountain, yet the
locations of the principal absorption peaks remained congruent. The
average spectral profiles for varying mixing ratios were delineated in
Figure 4B, where the percentages 0%, 20%, 40%, 60%, 80%, and
100% correspond to the blending of ancient tree teas with tableland
teas in the ratios of 0:5, 1:4, 2:3, 3:2, 4:1, and 5:0, respectively. The
spectral characteristics of the samples with diverse blending ratios
exhibited extensive overlap, rendering it infeasible to ascertain the
authenticity of the tea—whether it had been adulterated or
not—based solely on spectral analysis.

3.2.2 Principal component analysis
The spectral data from 120 samples of Pu’er ancient tree tea

were subjected to principal component analysis to assess the
potential for distinguishing between different blending ratios. A
scatter plot was generated, utilizing the first three principal
components extracted from the PCA of the data matrix, and
this plot is presented in Figure 5. The explained variances for
the first principal component (PC1), the second principal
component (PC2), and the third principal component (PC3)
were 88.2%, 8.9%, and 2.3%, respectively. The discrimination
between samples of varying blending ratios was more
pronounced than that between samples of distinct vintages.
However, the samples with blending ratios of 40%, 60%, 80%,
and 100% were intermingled in a disorderly fashion, suggesting
that principal component analysis (PCA) could not reliably
distinguish between ancient tree teas and tableland teas.

3.2.3 Calibration and validation set
Fifteen samples from each blending ratio were selected for the

model training with the Kennard-Stone method, with the remaining
samples allocated for model validation. Consequently, the spectral
data of 120 Pu’er tea samples were partitioned into two distinct
subsets maintaining a ratio of 3:1. The distribution of the samples
with different mixing ratio was presented in Table 3.

3.2.4 Results of models
The confusion matrices for the training and prediction sets of

the PLS-DA model were illustrated in Figures 6A, B, respectively.
Similarly, the confusion matrices for the training and prediction sets
of the RBFNN model were detailed in Figures 6C, D, respectively. A
cursory examination of the confusion matrices revealed that the
RBFNN model demonstrated superior performance compared to
the PLS-DA model.

The performance metrics of the PLS-DA and RBFNN models,
including accuracy, precision, recall, and F1-Score, were tabulated in
Table 4. The PLS-DA model was developed using 7 principal
components. The training set’s overall accuracy, precision, recall,
and F1-score were 97.0%, 93.7%, 91.1%, and 91.4%, respectively. In
comparison, the prediction set had a slight decline in metrics, with
an overall accuracy reported at 95.6%, and precision, recall, and F1-
score documented at 86.7%. The model exhibited a notable
deficiency in the recognition of samples with blending
percentages of 40% and 60%. Specifically, for the 40% percentage,
the recall and F1-score of the training set were 93.3% and 95.8%,
respectively, while the prediction set accuracy was 86.7%,
accompanied by a precision, recall, and F1-score of 60.0%.

The number of hidden nodes of the RBFNN model was 90, the
radial basis function employed was the Gaussian function, and the
spread of the radial basis function was 60. A flawless 100.0% F1-
score, recall, accuracy, and precision were all attained by the training
set. The accuracy, precision, recall and F1-score of the prediction set
reached 98.9%, 97.2%, 96.7%, and 96.6%, respectively, and only one
pure tableland tea sample was misclassified as a 4:1 blend of
tableland tea and ancient tree tea.

In comparison to the PLS-DA model, the total accuracy,
precision, recall, and F1-score of training set increased by 3.1%,
6.7%, 9.8% and 9.4%, respectively, the corresponding parameters of
the prediction set improved by 3.5%, 12.1%, 11.5%, and 11.4%,
respectively, indicating that the integration of diffuse reflectance
near-infrared spectroscopy with radial basis function neural
networks provides a robust approach for the accurate
determination of adulteration across various Pu’er tea species,
especially for the adulteration of ancient tree tea and tableland tea.

3.3 Future directions

In this paper, the diffuse reflectance NIR spectroscopy combined
with RBFNN models was employed to discriminate the adulteration
of varieties and misrepresentation of vintages of Pu’er tea. Moving
forward, we intend to continue utilizing advanced NIR
spectroscopic techniques and chemometric algorithms to
investigate other tea varieties. Samples of new tea varieties will be
collected, and their spectral data will be acquired and analyzed.
Subsequently, the model will be retrained and optimized, a process
that may entail the selection of appropriate spectral preprocessing
methods, feature selection techniques, sample set partitioning
strategies, outlier elimination methods and classification
algorithms specifically tailored to the unique characteristics of the
new tea varieties. We are dedicated to further exploring and
validating the applicability of our approach to a broader
spectrum of tea varieties. We believe that our research
contributes to the development of more comprehensive and
versatile methods for tea adulteration detection.

4 Conclusion

The qualitative models were established by combining the
diffuse reflectance NIR spectra with the reference vintages and
varieties, respectively. For vintage identification, the RBFNN
model demonstrated superior predictive performance on the
prediction set, with accuracy, precision, recall, and F1-score
attaining 99.2%, 98.2%, 98.0%, and 98.0%, respectively, these
metrics notably outperformed those of the PLS-DA model by
2.2%, 6.2%, 6.5%, and 6.5%, respectively. For identification of
varieties adulteration, the performance metrics of RBFNN model
on the prediction set were noteworthy, with accuracy, precision,
recall, and F1-score reaching 98.9%, 97.2%, 96.7%, and 96.6%,
respectively, these figures were significantly superior to those of
the PLS-DAmodel, exhibiting improvements of 3.5%, 12.1%, 11.5%,
and 11.4% in each corresponding parameter. These results
demonstrate that the diffuse reflectance NIR spectroscopy
coupled with RBFNN model can be successfully applied for
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accurate determination of the adulteration of varieties and
misrepresentation of vintages of Pu’er Tea.
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