
94% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
ORIGINAL RESEARCH article
Front. Chem.
Sec. Polymer Chemistry
Volume 13 - 2025 | doi: 10.3389/fchem.2025.1545984
The final, formatted version of the article will be published soon.
You have multiple emails registered with Frontiers:
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Polymeric shock tubes are now widely used in explosives systems for drilling and mining operations. Most shock tubes on the market consist of three layers of polymer, the first layer being Surlyn 8940 copolymer, the second layer Nucrel 31001 and the outer layer Borostar ME 6053 medium density polyethylene. Surlyn and Nucrel are usually sourced from DuPont, polyethylene from Charlotte Boralis. the main goal in this research is reducing the price of final shock tube and reuse the waste tube of plant (rejected shock tube) with improving the properties of product. For reaching to this goal, using polyethylene blend with available raw materials in the country and mixing them with rework from the shock tube production plant. For this purpose, different proportions of low-and high-Density polyethylene are blend using a twin-screw extruder and finally mixed with some of the factory's polymer rework. In the first phase, the low-density polyethylene LDPE 020, the high-density polyethylene HDPE HI 0500 and the filler calcium carbonate were blend in a twin-screw extruder and compounded with different percentages of 20/75/5, 30/65/5, 40/55/5 and 47/47/6 percent respectively. In the second phase, the resulting blend was mixed physically with 5, 10 and 15 percent three-layer tube rework (which was crushed with a crusher or pelletizer). The results showed that the 47/47/6 percent mixture had the best composition in terms of the production process, the properties of blend in terms of tensile strength (17/3 MPa), elongation percentage (458%) was suitable. In order to reduce the rework and cost of the product, the best processing results, product properties and costs are obtained when the above composition is mixed with crushed shock tube rework in a ratio of 90/10 (blend/rework). Tensile strength at break was 20/01 MPa and elongation at break was 478%. After evaluating the raw materials and accepting the results, the polymer blends were used on an industrial scale to produce shock tubes.
Keywords: Blasting systems, shock tube, Polymer compound, Mechanical Properties, Low density
Received: 16 Dec 2024; Accepted: 17 Feb 2025.
Copyright: © 2025 Khalili Gashtroudkhani. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Ali Khalili Gashtroudkhani, University of Qom, Qom, Iran
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.