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Introduction: Traditional methods for constructing synthetic nanobody libraries
are labor-intensive and time-consuming. This study introduces a novel approach
leveraging protein large language models (LLMs) to generate germline-specific
nanobody sequences, enabling efficient library construction through
statistical analysis.

Methods: We developed NanoAbLLaMA, a protein LLM based on LLaMA2, fine-
tuned using low-rank adaptation (LoRA) on 120,000 curated nanobody
sequences. The model generates sequences conditioned on germlines
(IGHV3-301 and IGHV3S5301). Training involved dataset preparation from
SAbDab and experimental data, alignment with IMGT germline references, and
structural validation using ImmuneBuilder and Foldseek.

Results: NanoAbLLaMA achieved near-perfect germline generation accuracy
(100% for IGHV3-301, 95.5% for IGHV3S5301). Structural evaluations
demonstrated superior predicted Local Distance Difference Test (pLDDT)
scores (90.32 ± 10.13) compared to IgLM (87.36 ± 11.17), with comparable
TM-scores. Generated sequences exhibited fewer high-risk post-translational
modification sites than IgLM. Statistical analysis of CDR regions confirmed
diversity, particularly in CDR3, enabling the creation of synthetic libraries with
high humanization (>99.9%) and low risk.

Discussion: This work establishes a paradigm shift in nanobody library
construction by integrating LLMs, significantly reducing time and resource
demands. While NanoAbLLaMA excels in germline-specific generation,
limitations include restricted germline coverage and framework flexibility.
Future efforts should expand germline diversity and incorporate druggability
metrics for clinical relevance. The model’s code, data, and resources are
publicly available to facilitate broader adoption.
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1 Introduction

Nanobodies, derived from the heavy-chain antibodies of camelids, are single-domain
antibody fragments that lack light chains (Hamers-Casterman et al., 1993). They possess
unique characteristics, such as high stability and ease of production, which are of significant
importance for diagnostics, therapeutics, and molecular research (Mullin et al., 2024). The
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antigen-binding site of nanobodies is composed of three
complementarity-determining regions (CDR1, CDR2, and
CDR3), which play a crucial role in antigen recognition and
binding. CDR1 and CDR2 are relatively short and primarily
provide auxiliary functions for antigen binding, while CDR3 is
longer and highly diverse, serving as the key region for antigen
binding. The rapid development of nanobodies highlights the
importance of constructing diverse and high-quality nanobody
libraries (Kunz et al., 2018).

Traditional methods for preparing synthetic nanobody libraries
typically use a defined protein framework as a template, with
artificial rules for designing the CDR3 region sequences.
Although effective, these methods are usually time-consuming
and restrictive, limiting the speed of discovery and development
(Valdés-Tresanco et al., 2022). Nowadays, there are already some
synthetic binding protein databases, such as the SYNBIP database.
The nanobody libraries generated in this database are also potential

synthetic protein binders (Li et al., 2024). With the continuous
breakthroughs in the field of deep learning, especially the emergence
of protein large language models (ProLLM), a new approach has
been provided for the construction of nanobody libraries (Strokach
and Kim, 2022).

Protein large language models, after training on a vast dataset of
protein sequences and structural data, have the capability to
generate new protein sequences with desired characteristics.
These models use deep learning techniques to accurately
understand protein sequences and predict protein folding to
generate required protein sequences (Varadi et al., 2021; Ofer
et al., 2021). By integrating these models into the construction
process of nanobody libraries, researchers can significantly
improve the efficiency, diversity, and specificity of library
generation.

This paper explores the innovative application of protein large
language models in constructing nanobody libraries. We trained the

FIGURE 1
The overall architecture of NanoAbLLaMA. We added low-rank adapters (LoRA) to certain weights. During training, we freeze these weights and
other parameters, focusing only on training LoRA.
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model on a nanobody dataset and evaluated its effectiveness in
generating a diverse range of nanobody sequences. The model is
capable of generating the required nanobody sequences conditioned
on different germlines. By leveraging the predictive power of protein
large language models, we aim to provide a new method for the
preparation of nanobody libraries.

2 Methods

2.1 Nanobody sequence dataset

In the training of NanoAbLLaMA, we utilized ProLLaMA as the
underlying model framework. ProLLaMA is a large language model
for proteins that has been pre-trained on the LLaMA2 framework,
specializing in protein language. Its superior scalability allows for the

utilization of natural language to formulate user instructions and to
create our dataset (Lv et al., 2024). We extracted nanobody
sequences from SAbDab database and experimental datasets
(Dunbar et al., 2013). The experimental dataset is the base
sequence, since the final goal is to create a synthetic nanobody
library for germlines IGHV3-3*01 and IGHV3S53*01, we selected
sequences for germlines IGHV3-3*01 and IGHV3S53*01 after
correct codon frame translation. After removing sequences with
obviously unreasonable lengths, we were left with 260,000 unique
nanobody sequences. Then, we aligned all sequence frameworks
with the germline V genes of the alpaca antibody in the IMGT
database (Lefranc et al., 1998; Lefranc, 2008) leaving sequences with
more than 85% consistency, totaling 120,000. Finally, we allocated
80% of the data to the training set and 20% to the test set.

2.2 Model architecture and
training framework

Large Language Model Meta AI 2 (LLaMA2) is the second-
generation large language model developed by Meta, based on the
classic Transformer architecture (Touvron et al., 2023). We train on
the LLaMA2 framework using Low-Rank Adaptation (LoRA) (Hu
et al., 2021) to reduce training costs. LoRA is an efficient method for
fine-tuning large pre-trained models, aiming to reduce the
computational resources and storage space required for fine-
tuning. LoRA introduces low-rank matrix decomposition
technology, decomposing the model’s weight matrix into two
low-rank matrices, thereby greatly reducing the number of
parameters that need to be updated. Conceptually, fine-tuning
can be thought of as a process of finding parameter changes

TABLE 1Germline generation accuracy. Our NanoAbLLaMA achieved nearly
100% accuracy for the generation of both germlines.

IGHV3-3*01 IGHV3S53*01

Accuracy 100.0% 95.5%

TABLE 2 Structural scoring table.

pLDDT TM-score RMSD

NanoAbLLaMA 90.32 ± 10.13 0.91 ± 0.04 1.43 ± 0.26

IgLM 87.36 ± 11.17 0.91 ± 0.04 1.24 ± 0.30

FIGURE 2
The training process of NanoAbLLaMA. The base data is translated from our own base data to obtain protein sequences, which are then made into
instruction datasets for training.
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(Ding et al., 2023). Let W ∈ Rd×k be a weight matrix in a pre-trained
model, where d and k represent the dimensions of input and output,
respectively. LoRA decomposes the weight matrix W into two low-
rank matrices A ∈ Rd×r and B ∈ Rr×k, where r ≪ d,k.

W � W0 + A × B, (1)
Here,W0 is the fixed weight matrix during pre-training, and A and B
are the low-rankmatrices that need to be learned during fine-tuning.
By such decomposition, only A and B need to be updated during
fine-tuning without changingW0. A and B can be integrated into the
original model using Equation 1. Finally, LoRA can prevent
catastrophic forgetting of the original knowledge because the
rank of the newly learned knowledge is lower than that of the
original knowledge (Aghajanyan et al., 2020).

We add LoRA to every decoder in LLaMA2, including
wq, wk, wv, wo, wgate, wup and wdown. The original parameters
of LLaMA2 will be frozen, and only LoRA can be trained.
Benefiting from LoRA, we effectively reduced the number of
parameters that needed to be trained in the model, and also

significantly reduced the training cost, so that we only trained
about 6% of the parameters. The model architecture is shown in
Figure 1, and the training process diagram is shown in Figure 2.

2.3 Synthetic library

Aim for a synthetic library with high humanization and
fewer risk sites, we independently generate CDR1, CDR2, and
CDR3. To create a synthetic library, we need to generate a
certain amount of data for statistical analysis and then create a
synthetic library based on the statistical patterns. To ensure that
the synthetic library can be applied in practice, we use
frameworks with high humanization and fewer risk sites to
generate our data. We obtained the required frameworks from
the SAbDab database (Schneider et al., 2021). For example, in
the germline IGHV3-3*01, the sequence we chose is:

EVQLVESGGGLVQPGGSLRLSCAASGRTFSYNPMGWFR
QAPGKGRELVAAISRTGGSTYYPDSVEGRFTISRDNAKRM

FIGURE 3
Structural experiments of NanoAbLLaMA. (A)Comparedwith IgLM, NanoAbLLaMA has a higher pLDDT score. (B) The TM-Score score is comparable
to IgLM.
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VYLQMNSLRAEDTAVYYCAAAGVRAEDGRVRTLPSEYTF
WGQGTQVTVSS

And in the germline IGHV3S53*01, the sequence we chose is:
EVQLLESGGGEVQPGGSLRLSCAASGFSFSINAMGWYRQAP
GKRREFVAAIESGRNTVYAESVKGRFTISRDNAKNTVYLQ
MSSLRAEDTAVYYCGLLKGNRVVSPSVAY WGQGTLVTVKP

These two frameworks have a humanization rate as high as
99.9%, with fewer than 10 risk sites, making them very suitable
for use as frameworks for generation. We generated
10,000 nanobody sequences for CDR1 and CDR2 regions
using these two frameworks. Due to the lower diversity in
CDR1 and CDR2 regions, the overall repetition rate is
relatively high, but this also ensures the correctness of the
statistical results. However, due to the higher diversity in the
CDR3 region, we generated a total of 100,000 unique nanobody

sequences. To ensure the correctness of the statistical results,
for the germline IGHV3-3*01, we selected data with
CDR3 lengths from 15 to 19 for statistics, and for the
germline IGHV3S53*01, we selected data with CDR3 lengths
from 12 to 16 for statistics because they have the most data.

3 Results

3.1 NanoAbLLaMA

Our model NanoAbLLaMA was trained on 120,000 nanobody
sequences for full-length nanobody sequence generation.
NanoAbLLaMA can generate sequences conditioned on germline
(IGHV3-3*01 or IGHV3S53*01).

FIGURE 4
Protein visualization. Structures generated by AlphaFold based on sequences, with color representing credibility, blue being more credible. (A)
IGHV3-3*01 (B) IGHV3S53*01.

FIGURE 5
Comparison of the number of high-risk sites. The number of high-risk sites in the first half is quite similar, and the number of high-risk sites in our
model is lower in the second half.

Frontiers in Chemistry frontiersin.org05

Wang et al. 10.3389/fchem.2025.1545136

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2025.1545136


3.2 Controllable germline generation

To verify that the results generated by our model are valid, we
generated 10,000 unique sequences for each of the two germlines
(IGHV3-3*01 and IGHV3S53*01), then identified them in
AbNumber (Dunbar and Deane, 2016), specified the numbering
method and species, and judged the germline generation accuracy.

The results shown in Table 1 indicate that NanoAbLLaMA can
generate corresponding nanobody sequences based on instructions
for the required germline, thus achieving controllable germline
generation.

3.3 Nanobody sequence generation

We compared our model with other state-of-the-art models in
the field of antibody design, such as the Immunoglobulin Language
Model (IgLM) (Shuai et al., 2023), which is a generative language
model that uses bidirectional context to design antibody sequence
spans of different lengths and is trained on a large-scale natural
antibody dataset. IgLM can generate full-length antibody sequences
conditioned on chain type and source species. To ensure the
correctness of the calculation results, we selected the most
abundant data for statistics, that is, sequences with lengths of
110 aa to 130 aa, and selected 10 sequences of each length for
statistical averaging. We used ImmuneBuilder (Abanades et al.,
2023) to predict the structure of the sequences. ImmuneBuilder
is a set of deep learning models specifically for predicting the
structures of antibodies, nanobodies, and T cell receptors, which
is highly accurate and much faster than AlphaFold2. We calculated
the predicted Local Distance Difference Test (pLDDT) (Varadi et al.,
2021) based on the predicted structure, and pLDDT is used to
measure whether the sequence is structurally reasonable. At the

same time, we used Foldseek (van Kempen et al., 2024) to calculate
the average template modeling score (TM-Score) (Zhang and
Skolnick, 2004) and the root mean square deviation (RMSD),
which reflect the degree of structural similarity. TM-score focuses
more on the overall structure, while RMSD is more sensitive to the
size and local changes of protein structures. The results are shown in
Figure 3, our NanoAbLLaMA has a better pLDDT score, indicating
that NanoAbLLaMA, through training on nanobody sequence data,
can produce structurally reasonable nanobody sequences. The
average value and standard deviation of pLDDT for the
nanobody sequences generated by NanoAbLLaMA are 90.32 ±
10.13, while those for IgLM are 87.36 ± 11.17 Figure 4 displays
the 3D structure of the generated sequences, and Table 2 shows the
structural scores.

At the same time, the production of nanobody synthetic libraries
also pays attention to post-translational modifications (PTM)
(Ramazi and Zahiri, 2021) of proteins, which are common risks
in biopharmaceutical development. Mainly including: Oxidation,
Glycosylation, Hydrolysis, etc. Therefore, corresponding detection
was also carried out. The results are shown in Figure 5, the number
of high-risk sites in the sequences generated by our NanoAbLLaMA
is less than that of IgLM.

After generating sequences with NanoAbLLaMA, we still need
to make a synthetic library, so we need to statistically determine the
frequency of each amino acid site and make a synthetic library based
on germline, framework, and amino acid frequency. Figure 6 is a
SeqLogo created based on a portion of the data we generated.

We utilized Discovery Studio to analyze the disulfide bond
information of the generated sequences. The analysis revealed
that all sequences contain a conserved disulfide bond connecting
FR1 (C23) and FR3 (C104), which plays a crucial role in maintaining
the structural stability of the protein. This conserved disulfide bond
is a common feature in many proteins, contributing to their overall

FIGURE 6
Amino acid frequency of each CDR region for the two germlines. (A) Amino acid frequency for germline IGHV3-3*01, only data with a length of 17 for
CDR3 is shown, it can be seen that the sequences in CDR1 and CDR2 regions are relatively stable, while the changes in CDR3 region are larger. (B) Amino
acid frequency for germline IGHV3S53*01, only data with a length of 14 for CDR3 is shown, it can be seen that the sequence length is shorter.
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stability and functionality. However, no additional disulfide bonds
were identified in the sequences.

4 Discussion

In this study, we propose an innovative approach to construct
nanobody synthesis libraries using the nanobody large language
model NanoAbLLaMA. This method not only improves the
efficiency of library construction, but also provides new ideas for
the design of nanobodies. The following is an in-depth discussion of
our findings.

First of all, traditional nanobody library construction methods
often rely on multi-step operations in the laboratory, involving
many complex steps such as single-stranded antibody collection,
vector preparation, and insertion of single-stranded antibody
sequences. These methods are time-consuming and costly,
limiting the widespread use of nanobodies. Our NanoAbLLaMA
model leverages the powerful generation capabilities of large
language models to rapidly generate high-quality nanobody
sequences and generate libraries based on statistical analysis,
significantly reducing the time and resource consumption of
library construction.

Secondly, the existing antibody language models, such as
AbLang (Olsen et al., 2022) and IgLM(Shuai et al., 2023), cannot
meet our requirements for generating nanobody sequences
based on germline, and most of these models use species and
chain type as conditions to generate sequences. The
NanoAbLLaMA model is trained using a low-rank adaptive
technique, which allows it to be fine-tuned for specific
germlines. The effectiveness of this strategy was validated in
our experiments, where the model was able to generate the
expected nanoantibody sequences and excelled in diversity and
specificity. These results indicate that the combination of the
flexibility of large language models and the advantages of
targeted training can effectively improve the design efficiency
and quality of nanobodies.

However, there are some limitations to this study. First, although
NanoAbLLaMA has achieved good results in generating germline-
specific nanoantibody sequences, it is unable to cover more
germlines and cannot specify the framework to generate CDR
sequences. Future research may consider expanding the training
dataset to cover a wider range of germlines, or modifying the
training mode of the model to improve the model’s capabilities.

In addition, factors such as druggability still need to be paid
attention to in practical application. These factors are critical for the
clinical application of nanobodies and therefore need to be explored
in depth in follow-up studies.

5 Conclusion

Existing methods for making nanobody synthetic libraries are
mature but laborious. In this work, we introduced a new way to
make nanobody synthetic libraries by generating nanobody
sequences with protein large language models and making
nanobody synthetic libraries based on statistical results. We also
developed NanoAbLLaMA, a ProLLM that can generate nanobody

sequences based on germline. Experiments show that
NanoAbLLaMA has excellent performance.
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