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Amomi fructus (AF) has been used for both medicinal and food purposes for
centuries. However, issues such as source mixing, substandard quality, and
product adulteration often affect its efficacy. This study used E-nose (EN) and
headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) to
determine and analyze the volatile organic compounds (VOCs) in AF and its
counterfeit products. A total of 111 VOCs were detected by HS-GC-IMS, with
101 tentatively identified. Orthogonal Partial Least Squares-Discriminant Analysis
(OPLS-DA) identified 47 VOCs as differential markers for distinguishing authentic
AF from counterfeits (VIP value >1 and P < 0.05). Based on the E-nose sensor
response value and the peak volumes of the 111 VOCs, the unguided Principal
Component Analysis (PCA), guided Principal Component Analysis-Discriminant
Analysis (PCA-DA), and Partial Least Squares-Discriminant Analysis (PLS-DA)
models were established to differentiate AF by authenticity, origin, and
provenance. The authenticity identification model achieved 100.00% accuracy
after PCA analysis, while the origin identification model and the provenance
identification model were 95.65% (HS-GC-IMS: PLS-DA) and 98.18% (HS-GC-
IMS: PCA-DA/PLS-DA), respectively. Further data-level fusion of E-nose and HS-
GC-IMS significantly improved the accuracy of the origin identification model to
97.96% (PLS-DA), outperforming single-source data modeling. In conclusion, the
intelligent data fusion algorithm based on E-nose and HS-GC-IMS data
effectively identifies the authenticity, origin, and provenance of AF, providing a
rapid and accurate method for quality evaluation.
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1 Introduction

AF is one of the “Four major Southern Medicines” in China,
derived from the dried and ripe fruit of Amomum villosum Lour, A.
villosum Lour. var.xanthioides T.L.Wu et Senjen, or.

Amomum longiligulare T.L.Wu. First documented in the Theory
of Medicinal Properties, it has been a commonly used traditional
Chinese medicine in the past dynasties (Gui et al., 2022). AF is native
to Yangchun, Guangdong Province, China, and is distributed in
Guangdong Province, Yunnan, Guangxi, Hainan, and other places
in China. It is produced in regions such as Myanmar and Vietnam.
Among all the producing areas, Yangchun City in Guangdong and
Yunnan Province are the most renowned (Yu et al., 2023). Known
for its high quality, AF is regarded as an authentic southern
medicine (Yin et al., 2024). It contains volatile oils, phenols,
flavonoids, and polysaccharides, and possesses various
pharmacological properties such as antioxidant, anti-infection,
gastrointestinal mobility-promoting, anti-inflammatory,
analgesic, antidiarrheal, and blood viscosity-reducing effects
(Kim et al., 2020; Song et al., 2022). Functional digestive
disorders, gastritis, acute lung injuries, Helicobacter pylori
infection, and other conditions have been successfully treated
with it (Suo et al., 2018; Zhao et al., 2022).

The cultivation of AF is challenging due to its unique floral
structure, high requirements for growth, and low natural survival
rates. As a result, the supply of AF decoction pieces is limited,
leading to high market prices and significant variations in quality
depending on origin. There are frequent issues with mixed sources
and adulteration with similar products (Hou et al., 2023; Hou et al.,
2019), such as, A. longiligulare T.L.Wu and A. villosum Lour. var.
xanthioides T.L.Wu et Senjen as substitutes for high-quality AF (Hu
et al., 2021), or mixing it with the related plant Alpiniae oxyphyllae
fructus (Wang L. et al., 2021). This not only hinders standardization
in clinical use but may also affect its therapeutic efficacy.
Furthermore, due to the market value of AF and its superior
stomach digestion and antidiarrheal properties compared to A.
longiligulare and A. villosum Lour. var. xanthioides (Li et al.,
2018), differences in chemical composition and efficacy have
become a major focus of research.

Traditional identification of AF relies on visual, olfactory, taste,
and tactile methods, which, although quick, require expertise and
are highly subjective, making them unsuitable for routine,
standardized application.

Advances in modern analytical technology and sensory science
have led to the development of rapid detection methods for the
quality evaluation of AF. These include authenticity identification
based on visual fluorescent probes, this method quickly
distinguishes the authenticity of AF through specific fluorescent
labeling, and is both intuitive and efficient (Guo et al., 2021), the
combination of high-performance liquid chromatography and
chemometrics provides a more refined basis for distinguishing
the authenticity of AF through complex chemical composition
analysis (Doh et al., 2020), DNA barcoding analysis technology is
based on the genetic information of AF, and it achieves
authenticity identification by comparing specific DNA
sequences (Doh et al., 2019) and gas chromatography
fingerprint technology can also provide strong support for
authenticity identification through the analysis of the volatile

oil components in AF (Ding et al., 2004). Other techniques
include ultra-high performance liquid chromatography-tandem
quadrupole time-of-flight mass spectrometry technology enables
the detection of multiple chemical components in AF with high
sensitivity and high resolution, allowing for the tracing of its
geographical origin through differences in these chemical
components (Liu et al., 2017), electrochemical fingerprint
technology, on the other hand, detects active components in
AF. using electrochemical methods, with electrochemical signals
serving as the basis for geographical origin identification (Wang
et al., 2020a), and X-ray technology utilizes differences in the
internal structure of AF to achieve rapid identification of its
geographical origin through X-ray diffraction patterns (Wu
et al., 2023). These methods, while accurate and reliable,
require complex sample preparation, are time-consuming,
expensive, and demand technical expertise, making them
unsuitable for routine application.

Given that AF is rich in volatile components, the analysis of
these compounds has become crucial for quality evaluation (Wang
et al., 2016; Yu et al., 2018). Emerging bionic olfactory and flavor
analysis technologies have also played a role in its evaluation. The
electronic nose (E-nose), a bionic instrument simulating biological
olfaction, can rapidly detect odor molecules by converting them into
electrical signals. Due to its high sensitivity, reliability, and
repeatability, it is widely used in identifying traditional Chinese
medicines (Feng et al., 2021; Li et al., 2024a; Zhang et al., 2023a),
origin identification (Feng et al., 2022; Gan et al., 2024), quality
evaluation (Jing et al., 2022; Li et al., 2024b) and food freshness
detection (Xu et al., 2024).

HS-GC-IMS is a newer technology that uses the drift time of
ions in an electric field for material analysis. It combines gas
chromatography with ion mobility spectrometry for secondary
separation, offering high resolution, sensitivity, and non-
destructive, rapid analysis (Tong et al., 2019). A wide range of
traditional Chinese medicines have been evaluated using this
method (Dai et al., 2024; Zhang et al., 2023b), food classification,
and flavor characterization (Feng et al., 2022; Xiang et al., 2023).
However, there are few reports on the application of E-nose and HS-
GC-IMS to the quality evaluation of AF.

Data fusion technology, initially developed by the U.S. Navy for
military applications (Li et al., 2023; Wang et al., 2021a), has been
applied to food (Jandric et al., 2015) andmedicine (Li et al., 2024a; Li
et al., 2024b). This technology integrates multiple complementary
data sources, leveraging their synergy to provide more detailed and
accurate characterization than single-source data (Borras
et al., 2015).

This study aims to evaluate the quality of AF using an intelligent
data fusion method combining E-nose and HS-GC-IMS. First, the
E-nose response values of AF and its counterfeits were analyzed.
Second, the VOCs of AF and its counterfeits were characterized
using HS-GC-IMS, and potential markers were identified. Next,
PCA-DA and PLS-DA models were constructed to identify
authenticity, origin, and provenance of AF based on single-source
data from E-nose and HS-GC-IMS respectively. Finally, data-level
fusion of E-nose and HS-GC-IMS data was used to improve the
accuracy of origin and provenance identification. In this paper, we
establish a rapid and accurate method for evaluating the quality of
AF as a base for evaluating the quality of other foods and drugs.
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2 Experimental materials and methods

2.1 Samples and reagents

In this study, 55 batches of AF were collected from five key
producing areas. This included 21 batches from Yunnan, China (S1-
S21), 13 batches from Guangdong, China (S22-S34), 11 batches
from Guangxi, China (S35-S45), 5 batches from Hainan, China
(S46-S50), and 5 batches from Myanmar (S51-S55). The Yunnan
and Guangdong samples were identified (AF-1:S1-S34), while the
samples from Guangxi and Myanmar were identified as A. villosum
Lour. var.xanthioides T.L.Wu et Senjen (AF-2:S35-S45, S51-S55).
The Hainan samples were classified as A. longiligulare T.L.Wu (AF-
3: S46-S50) (Hou et al., 2023).

In addition, 10 batches each of Alpiniae oxyphyllae fructus and
Alpiniae katsumadai semen were collected as counterfeits for
comparison. Among them, Alpinia oxyphylla Miq is AO (S56-
S65) and Alpinia katsumadai Hayata is AK (S66-S75) (Figure 1).
All 75 batches were pulverized and sieved through the No.3 sieve
(The average diameter of the sieve: 355 μm ± 13 μm; Number of
mesh: 50) of Chinese Pharmacopoeia for E-nose detection. For HS-
GC-IMS analysis, the samples were coarsely ground. Sample
information is in Supplementary Table 1.

The reagents used included chromatographically pure n-alkanes
(2-butanone, 2-pentanone, 2-hexanone, 2-heptanone, 2-octanone,
and 2-nonanone), purchased from Shanghai Aladdin Biochemical
Technology Co., Ltd, Shanghai, China. Other analytically pure
reagents were sourced from Tianjin Hengxing Chemical reagent
manufacturing Co., LTD, Tianjin, China.

2.2 E-nose analysis

Using the electronic nose PEN3 (AirSENSE, Germany), 10metal
oxide sensors were used to collect E-nose data (W1C, W5S, W3C,

W6S, W5C, W1S, W1W, W2S, W2W, W3S) (Supplementary
Table 2). Compound levels can be determined by response values
obtained by each sensor for different types of chemicals.

For the analysis, Parallel precision weighing S1-S75 sample
powder 3.0 g 3 parts, placed in a 50 mL headspace bottle,
standing for 30 min, to be tested. The injection needle was
inserted into the sealed sample cup containing the sample by
direct headspace suction method for detection. The PEN3 device
was then connected to a computer, with data collection software
running. The sample inlet flow rate was set to 400 mL min-1, the
preparation time was 5 s, the sampling time was 100 s, the sensor
balance time was 100 s, and the data when each injection time was
80 s were taken as the balance point data. The total measurement
time of each sample is about 3 min and the average value of three
parallel tests is obtained.

2.3 HS-GC-IMS analysis

A Flavour Spec® flavor analyzer (GAS, Germany), equipped with
analytical software such as Laboratory Analytical Viewer (LAV),
Reporter, Gallery Plot, Dynamic PCA plug-ins, and the GC IMS
Library Search software, was used for HS-GC-IMS analysis. Each
sample (0.1 g) was precisely weighed and placed in a 20 mL
headspace bottle.

The headspace injection conditions were set to an incubation
temperature of 80°C, an incubation time of 15 min, an incubation
speed of 500 rpm, and an injection needle temperature of 85°C; and
injection volume, 0.1 mL. Each sample was injected 3 times
in parallel.

For gas chromatography, an MXT-WAX strong polar
chromatographic column (15 m × 0.53 mm, 1.0 μm, Restek,
United States of America) was employed. The column
temperature was set to 80°C, and the carrier gas was high-purity
nitrogen (≥99.999%). The carrier gas flow rate was programmed as

FIGURE 1
Amomi fructus (AF) from different origins and its counterfeits.

Frontiers in Chemistry frontiersin.org03

Zhang et al. 10.3389/fchem.2025.1544743

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2025.1544743


follows: 2 mL. min-1 for 2 min, 2–10 mL. min-1 for 8 min,
10–100 mL. min-1 for 10 min, 100 mL. min-1 for 10 min.

2.4 Data analysis

For HS-GC-IMS, n-alkanes served as external references to
calculate the retention index (RI). The built-in NIST and IMS
databases were used to characterize the VOCs.

Using Reporter, Gallery Plot, and other plug-ins, topographic
maps and VOC fingerprints were generated and for sample analysis.
Peak volume data for each sample were analyzed using orthogonal
partial least squares discriminant analysis (OPLS-DA) with SIMCA
14.1 software to identify the differential markers.

OPLS-DA is a regression modeling method for multiple
dependent and independent variables, removing noise unrelated
to classification. It highlights classification-relevant principal
components and improves simplicity, analytical ability, and
effectiveness of the model, providing better insight into group
differences and predictions for sample grouping (Xiao et al., 2022).

2.5 Data-level fusion

Data-level fusion (Li et al., 2024c) directly combines the two
types of detection information for each sample (EN and HS-GC-
IMS). Only one fusion method is used.

2.6 Model construction method

The authenticity, origin, and provenance identificationmodels for
samples were established using Matlab R2022 software (MathWorks,
United States of America). The peak volume data (or two-source
fusion information) of the volatile components from HS-GC-IMS
were used as the independent variable matrix X. In the determination
of the benchmark information Y, the authenticity identificationmodel
used the values 1, 2, and 3 to represent AF, AO, and AK, respectively.
For origin identification, the values 1, 2, 3, 4, and 5 represented YN,
GD, GX, HN, and MD, respectively. In the provenance identification
model, 1, 2, and 3 represented AF-1, AF-2, and AF-3, respectively.

The classification 6.0 toolkit, built into the software, was used to
evaluate model performance via leave-one-out cross validation. PCA-
DA and PLS-DA models (Hou et al., 2023) were established, and the
prediction accuracy of eachmodel was calculated. These twomethods,
guided analytical statistical methods (Chen et al., 2024), aided in the
discovery of relevant sample-information within the data set. PCA
was performed using SIMCA 14.1, a commonly used unsupervised
stoichiometry tool that simplifies multidimensional variables into a
linear combination of a few original variables.

3 Experimental results discussion

3.1 E-nose results

Ten bionic olfactory response values were obtained from the
measured samples. All sensor response values were greater than 0.

Most samples demonstrated higher response values on W1W and
W2W, followed by W5S (Figure 2).

TheWilk’s Lambda value of the variation information carried by
the 10 electronic nose sensors is shown in Supplementary Figure 1A.
The Wilk’s Lambda histogram reflects the variation information
value carried by each sensor. The smaller the value, the more the
variation information the variable carries. From Supplementary
Figure 1B, sensors No. 1, No. 3, No. 5, and No. Nine carried
more variable information, contributing significantly to the
model. Sensor No. Four carried the least variable information
and had the smallest contribution to the classification of AF and
its counterfeits.

In combination with Supplementary Figure 1B, it is evident that
sensor No. Nine was a positively correlated variable, while sensors
No. 1, No. 3, and No. Five were negatively correlated variables.
Sensor No. Four was near the latent variable load diagram’s circle
point, indicating minimal contribution to sample classification. The
compound information represented by No.1, No.3, No.5 and
No.9 sensors is shown in Supplementary Table 2.

Based on the previously published quality evaluation method of
AF using gas phase, E-tongue, and E-nose (Hou et al., 2023), PCA-
DA and PLS-DA identification models were established to
determine the authenticity, origin, and provenance of AF
decoction pieces. The authenticity identification model achieved a
100.00% accuracy rate, while the origin identification model
performed poorly, with a maximum accuracy rate of 87.00%
(Table 1). The PCA, PLS-DA, and PCA-DA model scores are
shown in Supplementary Figure 2. These results show the need
for further improvements. Therefore, the focus shifts toward
developing a fusion modeling method for origin and provenance
identification to enhance data utilization and model performance.

3.2 HS-GC-IMS results

3.2.1 Preliminary comparison of HS-GC-IMS
spectra and qualitative analysis of VOCs

The volatile components in Amomi fructus and its counterfeits
were analyzed by LAV software. To compare the VOC variations
among the samples, we utilized both two-dimensional and three-
dimensional spectra for a comprehensive analysis. The three-
dimensional spatial distribution (Figure 3A) revealed significant
differences in the types and signal intensities of volatile
compounds between AF and its counterfeit products. In order to
delve deeper into the distinctions, a bird’s eye view with two
dimensions was employed for examination. In this unique
perspective, the vertical axis symbolizes the retention time in gas
chromatography, while the horizontal axis signifies the normalized
ion migration time (normalized). The background is blue, with the
red vertical line at abscissa 1.0 indicating the reactive ion peak (RIP).
The RIP refers to the peak that forms on the mass spectrum,
representing a specific reactive ion or compound ion, after the
sample has undergone separation by gas chromatography and
detection by ion migration spectrometry. Each dot on both sides
of the RIP represents a compound. The redder the dot color, the
larger the area, the more the content of the component; the bluer the
dot color, the smaller the area, the less the content of the component
(Li et al., 2024b).
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Samples S23–2, S64-2, and S72-2 were randomly selected to
compare the HS-GC-IMS top views of AF and its counterfeit
decoction pieces (Alpiniae oxyphyllae fructus and Alpiniae
katsumadai semen). The ion peaks were most evident at
retention times between 100 and 1,600 s and drift times of
1.0–2.5 s (Figure 3B). AVOC difference comparison was
performed by using the spectrum of S23-2 as the reference and
subtracting the spectra of other samples (Figure 3B).White indicates
that the VOCs of the two are consistent, red indicates higher VOC
content compared to the reference (area b), and blue indicates lower
content (area a). These significant differences in VOC content and
type further confirm the distinct odors of AF and its counterfeits.
Some red regions may serve as potential markers to distinguish
between them, while the blue regions are indicative of the reference
sample’s characteristic.

To qualitatively differentiate VOC types in AF and its
counterfeits, the NIST and IMS databases were used for
identification. In general, drift and retention times are allowed a
deviation of ±5% from standard materials (Wang et al., 2020b). The
qualitative results of the samples were shown in Supplementary
Table 3 and Figure 3. A total of 111 VOCs were detected, with 55 in
AF and 56 VOCs in the counterfeits, resulting in 101 tentatively
identified VOCs. When selecting these 111 volatile components, our
primary criteria were as follows: Firstly, these components exhibited
strong volatility in the samples, making them easily detectable

through methods such as gas chromatography. Secondly, they
possessed stable chemical properties, enabling them to maintain
good stability during the analysis process. Thirdly, these
components were closely related to our research objectives and
could provide us with crucial information about the sample
characteristics. Lastly, we also took into account the detection
range and accuracy of the instrumentation to ensure that the
selected components could be accurately and reliably detected
under our experimental conditions. These VOCs included
32 esters (28.83%), 13 ketones (11.71%), 12 alcohols (10.81%),
and alkenes, phenols, pyrazines, aldehydes, ethers, acids, and
other compounds (48.65%). Eleven were detected as monomers
and dimers (e.g., 2-phenylethyl butyrate, ethyl 2-hydroxybenzoate,
allyl phenoxyacetate, (E)-geraniol, 1-octanol, (E)-caryophyllene,
longifolene, 4-methylguaiacol, 2-ethyl-3,5-dimethylpyrazine, 2-
ethyl-5-methylpyrazine, and 2,2,4,6,6-pentamethylheptane). The
presence of both monomers and dimers, as in the case of
longifolene, is likely due to the high concentration and proton
affinity of related compounds (Li et al., 2019).

3.2.2 Overall comparative analysis of VOC
fingerprints

Using the peak signal from the topographic map, the volatile
fingerprints detected by HS-GC-IMS were analyzed and compared
across samples (Figure 4). Each row represents the signal peaks from

FIGURE 2
Electronic nose output information radar map.
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TABLE 1 Classification and accuracy of each model.

Technology Category Model Cross-validation
accuracy (percent)

Misassignation Not assigned

E-nose authenticity PCA-DA 100.00 0 0

PLS-DA 100.00 0 S21,S26,S75

origin PCA-DA 78.18 S1,S2,S21,S24,S25,S26,S30,S47,S48,S51,S54,S55 0

PLS-DA 87.18 S2,S3,S5,S9,S51 S2,S16,S18,S19,S25,S35,S37,S41,S46,S47,S48,S50,S52,S53,S54,S55

provenance PCA-DA 90.91 S21,S51,S53,S54,S55 0

PLS-DA 95.74 S46,S51 S21,S35,S47,S48,S52,S53,S54,S55

HS-GC-IMS authenticity PCA-DA 100.00 0 0

PLS-DA 100.00 0 S68

origin PCA-DA 90.91 S42,S47,S49,S50,S51 0

PLS-DA 95.65 S42,S49 S11,S15,S40,S41,S47,S48,S50,S51,S55

provenance PCA-DA 98.18 S49 0

PLS-DA 98.18 S49 0

E-nose + HS-GC-IMS
(Dataset fusion)

origin PCA-DA 90.91 S35,S49,S50,S51,S54 0

PLS-DA 97.96 S48,S49 S11,S35,S40,S41,S50,S51

provenance PCA-DA 94.55 S49,S51,S54 0

PLS-DA 96.23 S49 S11,S48,S50,S51
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a single sample, while each column represents the same VOCs across
different samples (Feng et al., 2022).

The analysis showed clear differences in VOCs between AF and
its counterfeits. In region B, esters, alcohols, aldehydes, and
pyrazines had higher peak response values in AF compared to
Alpiniae oxyphyllae fructus and Alpiniae katsumadai semen. In
region D, ketones, esters, alcohols, and alkenes had higher peak
response values in Alpiniae oxyphyllae fructus, and compounds such
as α-pinene and geosmin were identified as characteristic VOCs for

Alpiniae oxyphyllae fructus. Similarly, in region E, esters, alcohols,
alkenes, and phenols ahad higher peak response values in Alpiniae
katsumadai semen, with compounds such as bornyl acetate and (E)-
geraniol-M serving as characteristic VOCs for Alpiniae
katsumadai semen.

However, five volatile components (2-acetoxy-3,5-dichloro-
benzonitrile, allyl (3-methylbutoxy) acetate, 2-methylbutanoic
acid, 1-(acetyloxy)-2-propanone, and Unknown4) were present in
both AF and its counterfeit products were identified in region A.

FIGURE 3
Three-dimensional spectra of volatile compounds in AF and its counterfeits, gas-phase ion migration spectra, and different diagrams of samples.
The X, Y and Z-axes represent migration time, retention time, and peak intensity, respectively. (A) three-dimensional spectra of AF and its counterfeits. (B)
two-dimensional gas phase ion migration spectrum of AF. (C, D) comparative difference spectra of Alpiniae oxyphyllae fructus and Alpiniae katsumadai
semen with AF as reference, respectively.
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These shared components may contribute to the difficulty in
distinguishing between AF and its counterfeits products.

3.2.3 Screening of differential markers of volatile
components in AF and its counterfeits

To further identify the differential markers of volatile
components in AF and its counterfeits, the peak volume of
111 volatile components was used as the independent variable,
while the authenticity information served as the dependent
variable. An OPLS-DA analysis was performed using SIMCA
14.1 software (Xiao et al., 2022). The first two principal

components were plotted into a two-dimensional score map, as
shown in Figure 5A. The model’s performance, characterized by R2Y
and Q2, was 0.959 and 0.952, respectively, demonstrating excellent
classification accuracy. A permutation test of the OPLS-DA model
(n = 200 times) confirmed that the Q2 and R2 values on the left side
were lower than the original points on the right side (Feng et al.,
2024). The Q2 and R2 randomly arranged at the left end are smaller
than the original values at the right end, and the regression curve of
Q2 is compared with the negative axis of the Y-axis, and the R2 values
are all greater than 0 (Figure 5B), indicating that the model fits well
and there is no over-fitting phenomenon. Thus, the 111 detected

FIGURE 4
HS-GC-IMS fingerprint of volatile odor components of AF, Alpiniae oxyphyllae fructus, and Alpiniae katsumadai semen decoction pieces. From the
region (A-E) indicates different kinds of volatile components.
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VOCs can serve as reference markers for distinguishing AF from
Alpiniae oxyphyllae fructus and Alpiniae katsumadai semen.

The variable importance projection (VIP) from the OPLS-DAmodel
is shown in Figure 5C. The higher the VIP value, the greater the group
difference,making it crucial for discriminant classification (Scavarda et al.,
2021). With a VIP value >1 and p < 0.05, 47 volatile components
(Supplementary Table 4) were screened. Among these, 43 VOCs were
qualitatively identified, comprising 12 esters, 6 alcohols, 6 alkenes,
5 ketones, 5 pyrazines and various phenols, aldehydes, ethers,
dioxanes, acids, thiophenes, and thio files. These VOCs can thus be
used as differential markers to distinguish AF from its counterfeits.

3.3 Study on the quality identification
method of AF based on HS-GC-IMS
information

3.3.1 Authenticity identification
HS-GC-IMS peak volume data from 55 batches of AF,

10 batches of AO, and 10 batches of AK were analyzed using

PCA, PCA-DA, and PLS-DA. The PCA two-dimensional
plot (Figure 6A) indicated clear clustering into distinct categories.

In the PCA-DA identification model (Figure 6B), selecting
20 principal components yielded the lowest classification rate
error, explaining more than 96.00% of the sample variation
(Supplementary Figure 4B). Cross-validation accuracy reached
100%, with no unclassified or misclassified samples. Similarly, in
the PLS-DA identification model (Figure 6C), selecting 19 latent
variables has the highest classification accuracy explaining 94.00% of
the variation (Supplementary Figure 4D). Cross-validation accuracy
was also 100% though sample S68 was unclassified, likely due to salt-
processing differences. These results indicate that both models can
effectively identify AF and its counterfeit slices.

3.3.2 Origin identification
HS-GC-IMS peak volume data from 21 batches of AF from

Yunnan, 13 fromGuangdong, 11 fromGuangxi, 5 fromHainan, and
5 fromMyanmar were analyzed using PCA, PCA-DA, and PLS-DA.
The PCA results (Figure 6D) indicated that the samples could not be
clearly clustered by origin, implying that the volatile components are

FIGURE 5
Multivariate statistical analysis of differential peaks of volatile components of AF, Alpiniae oxyphyllae fructus, and Alpiniae katsumadai semen
decoction pieces. (A) OPLS-DA score chart. (B) OPLS-DA model permutation test diagram. (C) VIP value of the OPLS-DA model.
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relatively similar across origins. Therefore, unsupervised PCA
analysis alone could not effectively distinguish them.

In the PCA-DA identification model (Figure 6E), selecting
15 principal components resulted in the lowest classification error
rate, explaining more than 89.00% of the sample variation
(Supplementary Figure 5B). Cross-validation accuracy was 90.91%,
with misclassifications from Guangxi, Hainan, and Myanmar, but no
unclassified samples. The PLS-DAmodel (Figure 6F), explained 80.00%
of the variation with 10 latent variables (Supplementary Figure 5D),
achieving 95.65% cross-variation accuracy. However, there were
misclassified and unclassified samples, indicating that the models’
performance in identifying AF origins requires further improvement.

3.3.3 Provenance identification
HS-GC-IMS peak volume data from 34 batches of AF-1,

16 batches of AF-2, and 5 batches of AF-3 were analyzed using
PCA, PCA-DA, and PLS-DA. The PCA results (Figure 6G)
revealed that only AF could be clearly distinguished, as the
other two samples shared similar flavor profiles. Like the origin

analysis, unsupervised PCA alone could not effectively
differentiate them.

In the PCA-DA identification model (Figure 6H), 20 principal
components explained over 94.00% of the sample variation
(Supplementary Figure 6B), achieving 98.18% cross-validation
accuracy. Misclassification occurred with sample S49 of A.
longiligulare, but no samples were unclassified. In the PLS-DA model
(Figure 6I), 8 latent variables explained 74.00% of the variation
(Supplementary Figure 6D), with the misclassification and
unclassification results as the PCA-DA model. These results indicate
that bothmodels can effectively identify different provenance slices of AF.

3.4 Study on the quality identification
method of AF based on HS-GC-IMS and
E-Nose data fusion

The accuracy of the qualitative identification model for
distinguishing genuine and fake Amomum based on single-

FIGURE 6
PCA, PCA-DA, and PLS-DA score plots for authenticity, origin, and provenance identification. (A–C) PCA, PCA-DA, and PLS-DA score plots for
authenticity. (D–F) PCA, PCA-DA, and PLS-DA score plots for origin. (G–I) PCA, PCA-DA, and PLS-DA score plots for provenance.

Frontiers in Chemistry frontiersin.org10

Zhang et al. 10.3389/fchem.2025.1544743

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2025.1544743


source sensory information reached 100.00%, but the accuracy of the
origin and provenance identification models was relatively low. To
improve data utilization and model prediction accuracy, this section
applies data-level fusion of the two types of detection information
collected above. The fused data is used as the X value, and the
classification information of the origin and provenance of Amomum
samples is used as the Y value. PCA-DA and PLS-DA were
employed to establish the origin and provenance identification
models of AF, and the models were evaluated using leave-one-
out cross-validation.

3.4.1 Origin identification
In the PCA-DA identification model (Figure 7A), when

20 principal components were selected, the model classification
error rate was the lowest, and the first 20 principal components
explainedmore than 93.00% of the sample variation (Supplementary
Figure 7B). The model’s cross-validation accuracy was 90.91%, with
1, 3, and 1 misclassified samples from Guangxi, Hainan, and
Myanmar, respectively, and no unclassified samples. The results
were consistent with the single-source classification results. In the
PLS-DA model (Figure 7B), using 09 latent variables, the model
classification accuracy was highest, explaining 76.00% of the

variation (Supplementary Figure 7D). The cross-validation
accuracy was 97.96%, with only 1 misclassified sample from
Guangxi and 6 unclassified samples from Yunnan, Guangxi,
Hainan, and Myanmar. Compared to the single-source
classification results, the number of misclassified and unclassified
samples significantly decreased. Overall, the origin identification
model of AF based on data fusion improved the accuracy of the
PCA-DA and PLS-DA models by 12.13% and 10.18%, respectively,
compared to the single-source (E-nose) (Figure 7B). The fused PLS-
DA model performed better, improving accuracy by 2.31%
compared to the optimal single-source (HS-GC-IMS) model
(Table 1)., indicating that data fusion provided certain
advantages in obtaining multi-level sample information, thereby
improving the prediction accuracy.

3.4.2 Provenance identification
In the PCA-DA identification model (Figure 7C), selecting

15 principal components resulted in the lowest classification
error rate, with the first 15 principal components explaining
more than 88.00% of the sample variation (Supplementary
Figure 8B). The cross-validation accuracy was 94.55%, with 1 and
2 misclassified samples from AF-2 and AF-3, respectively. There

FIGURE 7
PCA-DA and PLS-DA score plots for origin and provenance identification based on data fusion. (A, B) PCA-DA and PLS-DA score plots for origin. (C, D)
PCA-DA and PLS-DA score plots for provenance.
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were no unclassified samples. In the PLS-DA model (Figure 7D),
using 19 latent variables, the classification accuracy was higher,
explaining 89.00% of the variation (Supplementary Figure 8D). The
cross-validation accuracy was 96.23%, with 2 misclassified samples
from AF-2, and 1 unclassified sample each from AF-2 and AF-3.
Overall, the accuracy of the PCA-DA and PLS-DA models for
provenance identification improved by 3.64% and 0.49%,
respectively, compared to the lower-accuracy single-source
(E-nose) model (Table 1). Data fusion had advantages in
obtaining multi-level information, improving the model’s
prediction accuracy to a certain extent.

3.5 Discussion

3.5.1 Distinct from previous research
In the earlier research (Hou et al., 2023), the authentication of

AF was limited by a relatively small sample size, encompassing only
64 samples. Additionally, in terms of geographical origin
identification, the study only included samples from four
locations: Yunnan, Guangdong, Hainan in China, and Myanmar.
However, in this study, we have made significant progress. We have
introduced the advanced HS-GC-IMS identification technology,
which has greatly enhanced the accuracy and efficiency of
authenticating the genuineness of AF.

In terms of authenticity identification, the increase in sample
size to 75 has enhanced the reliability and universality of the
research results. In terms of geographical origin identification,
this study has expanded upon the original four origins by adding
samples from Guangxi, China, making the sources of origin more
diverse and comprehensive. This expansion not only aids in our
deeper understanding of the growth characteristics and quality
differences of AF in different geographical environments but also
provides richer data support for traceability and quality
control of AF.

Furthermore, this study has, for the first time, effectively
discriminated between the different provenances of AF (Ai et al.,
2023). As a traditional Chinese medicinal material, the diversity
of its provenances has a significant impact on the quality and
pharmacological effects of the herb. Through meticulous
identification work, we are able to more accurately
distinguish between AF of different botanical origins,
providing a more scientific basis for its rational use and
quality control.

Meanwhile, scholars have utilized HS-GC-IMS technology to
identify 30 volatile compounds in AF. Upon comparing these
compounds with the 101 volatile compounds identified in this
study, it was found that there were approximately 10 common
components shared between the two. However, the primary focus
of these scholars was on developing a novel multi-stage continuous
combined drying technique, which involves hot air drying with
humidity and temperature control followed by radio frequency
drying. They conducted in-depth research on various quality
aspects such as the optimal moisture transition points, drying
efficiency, shell cracking rates, color, microstructure, volatile
compounds, total flavonoid content, and antioxidant activity
under three two-stage continuous combined drying methods. In
contrast, this study utilized the compound information obtained

through HS-GC-IMS analysis to effectively identify the
authenticity, origin, and provenance of AF, achieving
satisfactory identification results.

3.5.2 Examine deficiencies and constraints
of methods

Insufficient sample collection. During the quality evaluation
and related research of AF, due to resource constraints,
geographical distribution, and cooperation difficulties, the
collected number of AF samples failed to meet expectations,
thereby affecting the comprehensiveness and accuracy of the
research. In the later stages, by increasing resource investment,
broadening sample sources, optimizing sample collection
methods, strengthening data sharing and cooperation, and
adjusting research methods and objectives, we can gradually
overcome the issue of insufficient sample collection and
promote in-depth development of the quality evaluation and
related research of AF.

The equipment requires regular maintenance. Although this
method may demonstrate good stability and reliability in the short
term, in the long run, it may encounter performance degradation
due to factors such as equipment aging and environmental changes.
Therefore, regular maintenance, calibration, and updating of model
parameters are necessary to ensure the long-term stability of
this method.

The algorithmic challenges of intelligent data fusion.
Flexibility in algorithm design: Intelligent data fusion
algorithms need to fully consider the complexity and diversity
of volatile components in AF, as well as the variability between
different batches of samples. Therefore, the design of these
algorithms must possess a high degree of flexibility and
adaptability to cope with various complex situations.
Optimization of algorithm performance: After designing the
algorithm, extensive experimental verification and performance
optimization are required. This includes improving the
recognition accuracy of the algorithm, reducing false positives
and false negatives, and other key indicators, to ensure the
accuracy and reliability of the evaluation results.

In summary, the method combining electronic noses, HS-GC-
IMS, and intelligent data fusion holds broad application prospects in
the field of AF quality evaluation. However, it also faces many
challenges and limitations. In the future, we need to continue
exploring and innovating to overcome these challenges and
promote the continuous development and improvement of AF
quality evaluation technology.

4 Conclusion

By combining E-nose, HS-GC-IMS technology, and intelligent
data fusion methods, we can basically rapidly distinguish the
authenticity, origin, and provenance of AF, ideal results have
been achieved in terms of authenticity identification, and the
model discrimination effect after data fusion is superior to that
of modeling based on a single data source. This study not only helps
to reveal the differences in flavor components between AF and its
adulterants but also provides innovative ideas for quality assessment
of other foods and medicines.
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