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Zeolites are extremely massive mineral crystals with complex frameworks,
composed of internal porous structures with channels and cages. Open-
framework aluminophosphates (AlPOs) are a significant class of inorganic
crystalline compounds known for their diverse properties. Our study focuses
on the topological aspects of zeolite frameworks using graph theoretical
techniques, providing insights into computational chemistry. In this article, we
compute various degree-based topological indices, information entropy, and
spectral entropies of zeolite AWW using the bond partitioning approach to assess
the complexity of the framework. Additionally, we present the HOMO–LUMO
gap measures to evaluate the global chemical descriptors using the eigenvalues
of the adjacency matrix of zeolite structures. Furthermore, we developed
exponential and polynomial regression models using the obtained information
entropy and spectral values to predict various potential energies of the
framework. Based on the outcomes of the study, we infer that the
information entropies and spectral value have a significant relationship with
the potential energies.
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1 Introduction

Zeolites are minerals with crystalline structures that have regular frameworks
constructed by channels and pores an the molecular level. Zeolite catalysts are
employed throughout gasoline production and in the fields of adsorption, ion exchange,
heterogeneous catalysis, sensors, and medicine. These crystals are also frequently used in
solar energy conversion (Mihaela and Ildiko, 2012). Zeolite frameworks have Si tetrahedral
nodes (T-atoms) and T-O-T, a bond referring to the arrangement where T stands for a
tetrahedrally coordinated atom, usually silicon (Si) or aluminum (Al), and O stands for
oxygen. The oxygen atom acts as a bridge between two tetrahedrally coordinated sites.
Replacing Si with Al or other tetrahedral atoms significantly alters the characteristics of
zeolites. This changes the framework’s affinity to other cations, allowing for customization
of ion-exchange characteristics and adsorption surfaces. The tetrahedral atoms’ three-
dimensional geometry forms rings, cages, channels, and pores, resulting in different
frameworks (Kapko et al., 2010; Liebau, 1983; Barrer, 1979). Because there were many
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distinct materials, some with a common framework but differing by
the chemical proposition, we needed to categorize all the different
crystalline aluminosilicate materials. As a result, the concept of
structural variation came into existence (Liebau, 1983; Barrer, 1979).

The aluminophosphate crystalline sieves, denoted as AlPO4 − n
(where n corresponds to distinct structure type), marks the
beginning of the era of open-framework aluminophosphates as a
significant group of zeolites together with associated microporous
materials (Wilson et al., 1982; Richardson et al., 1989). AlPO4 − n is
constructed based on the precise alternation of AlO4 and PO4

tetrahedra through corner exchange to generate a framework that
is neutral and has an Al/P ratio of 1. Microporous
aluminophosphates were discovered (Yu and Xu, 2006), and the
extensive range of framework compositions and potential uses in
catalysis, adsorption, and assembly have attracted much curiosity.
The rational synthesis of novel materials has become increasingly

significant in the field of materials chemistry (Richardson et al.,
1989). Zeolite AlPO4 − 22 or AWW has an innovative topological
structure, which is depicted in Figure 1; it has an equal number of
two new polyhedral units that share faces. In this study, the AWW
zeolite framework is represented by a PDB file containing Si atoms
in tetrahedral coordination linked by O atoms. To model Al and P
atoms, specific Si atoms were substituted based on chemical rules,
ensuring charge balance and structural consistency. The modified
framework, comprising Al, P, and the remaining Si atoms, was used
for topological characterization within the AWW topology.
Topological measures such as degree and degree sum primarily
focus on the contributions of heavier atoms like Al and P, while
lighter O atoms act as linkers, indirectly influencing the
connectivity. This distinction is significant because the structural
and functional properties of zeolite materials largely depend on the
ratio of heavy atoms.

FIGURE 1
Polyhedral views of the zeolite AWW(2, 2, 2) framework.

FIGURE 2
Primary cages in the AWW zeolite material.
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A chemical composition graph is used to demonstrate the basic
structure of a chemical compound (Balaban, 1985; Sato, 1991;
Chandler, 2019). The vertices represent each of the atoms of the
compound, and the edges indicate the bonds that occur among
them. A topological index is used to measure the relationship
between a chemical compound’s structure and various physical,
chemical, or biological characteristics. Degree-based descriptors are
extensively used topological descriptors with applications in
computational chemistry, whereas topological indices based on
neighborhood degree sum are capable of accurately determining
most physicochemical parameters (Gutman and Tošović, 2013;
Mondal et al., 2019; Ramane et al., 2021; Ullah et al., 2024;
Mondal et al., 2021).

Topological descriptors for zeolites were developed to enhance
machine learning, optimization, and algorithmic techniques
(Krivovichev, 2013; Arockiaraj et al., 2022a; Arockiaraj et al.,
2022b; Arockiaraj et al., 2021; Jacob et al., 2023). To better
understand the basis for relating the structure and property to
the synthesis technique, experimental and computational
methods have been closely linked in modern zeolite synthesis.
The zeolite framework influences its physicochemical properties
such as adsorption, phase transformation, complexity, and chirality
of molecules. Recent studies indicate that the topological index
quantifies the relationship between zeolite molecular structures
and a wide range of physicochemical characteristics (Jacob et al.,
2023; Peter and Clement, 2023; Jacob and Clement, 2024; Peter and
Clement, 2024; Prabhu et al., 2020).

The complexity of networks can be evaluated using statistical
information measures (Bonchev, 1983; Anand and Bianconi, 2009;
Mowshowitz, 1968a). Shannon’s information theory was used to
develop the universal quantitative measurements of structural and
chemical complexity, which are helpful for the investigation of
several mineralogical, crystallographic, and chemical processes
(Jacob et al., 2023; Dehmer and Mowshowitz, 2011; Krivovichev,
2012; Shannon, 1948). The probability of electrons in molecules and

the chemical bonds between molecules have been effectively studied
using information theory concepts (Nalewajski, 2006; Nalewajski,
2014). The communication theory for the chemical connection
employs the basic information entropy of molecular systems in
the atoms-in molecules, orbital, or local levels to ascertain electron
probability distributions (Nalewajski, 2006; Nalewajski, 2014;
Nalewajski, 2011). The information entropy (IE) method is used
to quantitatively evaluate the complexity of zeolite structures and
extract structural data from networks with numerous vertices
(Krivovichev, 2013). The concept of structural information
content based on the partitioning of vertex orbits was originally
used to measure the complexity as well as the characteristics of the
structure of molecular graphs (Rashevsky, 1960; Mowshowitz,
1968b; Dehmer, 2008).

The model obtained good accuracy and provided information
about the connection between the zeolite framework structure and
their mechanical stability (Evans and Coudert, 2017). The
connections between zeolite frameworks and their characteristics
are complicated, making an in-depth experimental investigation for
novel zeolites necessary (Burtch et al., 2014). Various density
functional theory computational techniques for determining
zeolite characteristics have been established (Ranjan et al., 2023;
Román-Román and Zicovich-Wilson, 2015; Fischer and Angel,
2017; Balasubramanian, 2023a; Balasubramanian, 2023b).
Determining the zeolite lattice energy linked to formation
enthalpy can help understand zeolite stability and structure,
although computations are expensive but accurate (Román-
Román and Zicovich-Wilson, 2015; Fischer and Angel, 2017;
Stacey et al., 2023). Machine learning techniques can help
determine the characteristics of zeolites by learning from a vast
collection of known zeolites and their characteristics. It was
demonstrated that some structural descriptors are suitable to
characterize the lattice energy of zeolites in a comprehensible
manner using a linearized equation, focusing on the intricate
connection between structural features (Jacob et al., 2023; Peter

FIGURE 3
AWW(2,2, 2) framework.
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and Clement, 2023; Jacob and Clement, 2024; Balestra et al., 2024).
Electronic structural calculations help us understand how zeolite
structures influence their performance. Long-range and short-range
interaction energies significantly affect the geometry of the zeolite
framework and their stability of transition states and adsorption
behavior. Notably, long-range zeolite electrostatic interactions play a
crucial role in describing transition-state structures and in
predicting experimentally determined activation energies (Ranjan
et al., 2023; Román-Román and Zicovich-Wilson, 2015; Fischer and
Angel, 2017; Mansoor et al., 2018).

This article focuses on developing generalized expressions for
descriptors such as degree-based and degree-sum-based measures
specifically for the AWW zeolite structure, with any arbitrary
dimension used to obtain structural data. A detailed analysis of
bond information and spectral entropies is presented to evaluate the
complexity of the AWW zeolite. Furthermore, we incorporated the
exponential regression models that establish relationships between
the measured entropies and molecular interaction energies, offering
deeper insights into the energy and structural characteristics of
zeolite. Global chemical reactivity descriptors and the spectral
properties are also calculated using the eigen values of AWW
zeolite structures.

2 Computational methods of the
molecular topological index

Let G � (V(G), E(G)) be a simple undirected graph. The
number of atoms and bonds between atoms in the graph G is
denoted by |V(G)| and |E(G)|, respectively. The degree of an atom
u ∈ V(G) is given by du, the number of bonds that are adjacent to
atoms u and dsu can be described by the sum of the degrees of the
neighborhood atoms of u, and it can be expressed as
dsu � ∑v∈NG(u)dv, where NG(u) � v ∈ V(G): uv ∈ E(G){ }.

For ψ ∈ {d, ds}, we define the degree and degree sum-type
molecular topological indices (Gutman and Tošović, 2013;
Mondal et al., 2019; Ramane et al., 2021; Gutman, 2013;
Leszczynski, 2012) with the following expression:

Tψ G( ) � ∑
uv∈E G( )

Tψ uv( ), (1)

where Tψ(uv) is a structural function of the molecular topological
index with respect to the edge of molecular graph, for example,
Tψ(uv) defined for the first Zagreb Mψ

1(uv) � ψu + ψv, second
Zagreb Mψ

2(uv) � ψuψv, Randić Rψ(uv) � 1���ψvψu
√ , atom bond

connectivity ABCψ(uv) =
������
ψu+ψv−2
ψuψv

√
, harmonic Hψ(uv) = 2

ψu+ψv
,

sum-connectivity SCψ(uv) = 1����ψu+ψv
√ , hyper-Zagreb HMψ(uv) =

(ψu + ψv)2, geometric–arithmetic GAψ(uv) = 2
���ψuψv

√
ψu+ψv

, irregularity

irrψ (uv) = |ψu − ψv|, sigma σψ(uv) = (ψu − ψv)2, forgotten

Fψ(uv) = (ψu + ψv)2 − 2(ψuψv), augmented Zagreb

AZψ(uv) ( ψuψv
ψu+ψv−2)

3, symmetric division degree SDDψ(uv) =

(ψu+ψv)2−2(ψuψv)
ψuψv

, and Sombor SOψ(uv) � �������
ψ2
u + ψ2

v

√
.

The molecular topological descriptors based on the degree and
degree sum are obtained via the atomic valences of the framework’s

chemical bonds. Various degree-type topological indices have been
developed and employed extensively in molecular modeling of a
wide range of zeolite framework characteristics and activities
(Arockiaraj et al., 2022a; Jacob et al., 2023; Zhang et al., 2024;
Peter and Clement, 2023). Self-powered multiplicative topological
indices of chemical structure are derived from the product of edge
functions associated with the degrees of end vertices of an edge
(Kavitha et al., 2021). These indices have been developed using
exponential vertex degree-based descriptors (Rada, 2019).
Therefore, one can develop a self-powered multiplicative version
of degree and degree sum-based topological indices using the
following general form:

Tψ ŝ* G( ) � ∏
uv∈E G( )

Tψ uv( )[ ] Tψ uv( )[ ]. (2)

The edge partition technique is applied to derive the various
degree and degree sum-based molecular topological indices. The
sizes of the partitions on the basis of end vertex degrees are denoted
by d(p, q), and the sizes of the partitions on the basis of end vertex
degree sum are denoted by ds(p, q). These quantities are explicitly
presented as follows:

• d(p, q) � | uv ∈ E(G): (du, dv) � (p, q), ∀p, q≥ 1{ }|
• ds(p, q) � | uv ∈ E(G): (dsu, dsv) � (p, q), ∀p, q≥ 1{ }|.
By considering Δ � maxu∈V(G)ψu and

C � (p, q) ∈ N × N: 1≤p≤ q≤Δ2{ }, the generalized form of
degree and neighborhood degree sum molecular topological
indices Equations 1, 2 can be modified as Equations 3–6.

Td G( ) � ∑
p,q( )∈C

d p, q( ) Td pq( )[ ], (3)

Tds G( ) � ∑
p,q( )∈C

ds p, q( ) Tds pq( )[ ], (4)

Tdŝ* G( ) � ∏
p,q( )∈C

Td pq( )( ) Td pq( )( )[ ]d p,q( )
, (5)

Tdsŝ* G( ) � ∏
p,q( )∈C

Tds pq( )( ) Tds pq( )( )[ ]ds p,q( )
. (6)

2.1 Bond information entropy

The studies (Krivovichev, 2013; Krivovichev, 2012; Kaußler and
Kieslich, 2021; Krivovichev, 2016) used the following equation to
determine the quantity of structural Shannon’s information of the
crystal structure:

IE G( ) � −∑n
i�1

ρi log ρi, (7)

where i represents the number of different crystallographic orbits in
the structure and pi is the random choice probability for an atom
from the ith crystallographic orbit, in other terms ρi � mi

n , where mi

and n are the multiplicity of the crystallographic orbit and the
number of atoms in the primitive unit cell, respectively.
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Now, Equation 7 will be modified to characterize the structural
characteristics of the zeolite framework. The bonds of the zeolite
framework are taken into account, and each of them receives a
probability value based on the topological indices. The topological
information entropy measures for degree type are defined using that
molecular topological index T (Bonchev, 1983).

IET G( ) � − ∑
e∈E G( )

ρr e( )log ρr e( ),

where ρr(e) is the probability function of an edge that is based on the
degree which is given by

ρr e( ) � Td uv( )∑uv∈E G( )Td uv( ) �
Td uv( )
Td G( ) .

The information entropy measure based on the degree sum
molecular topological descriptors is obtained by replacing Td with
Tds. As observed in (Kazemi, 2016), the study introduces a new
method for calculating graph entropy, utilizing degree-based

topological indices as edge weights to evaluate the complexity and
uncertainty of a graph’s structure.We could develop andmanufacture
an extensive range of novel materials with the desired characteristics
using the information entropy concept, which was initially applied to
inorganic and organic materials (Jacob et al., 2023; Peter and Clement,
2023; Abraham et al., 2022; Rahul et al., 2022; Kalaam et al., 2024), and
study the compositional intricacy and structural disorder to change
the structural and functional characteristics. Therefore, by using
different topological indices, we obtain various entropy values
given as follows:

IETψ G( ) � log Tψ G( )( ) − 1
Tψ G( ) ∑

uv∈E G( )
Tψ uv( )log Tψ uv( )( )[ ]. (8)

By reformulating Equation 8 using self-powered multiplicative
degree-based indices, as described in (Kavitha et al., 2021), we could
establish a relationship between the self-powered multiplicative
indices and the entropy computation typically associated with
bond additive indices.

TABLE 1 Information entropy measures of AWW( j,k, l) zeolite, when j � k � l.

Entropies j � 2 j � 3 j � 4 j � 5 j � 6 j � 7 j � 8

IEM1 d 5.9425 7.1603 8.0246 8.6949 9.2425 9.7055 10.1065

ds 5.9273 7.1484 8.0151 8.6871 9.2359 9.6998 10.1014

IEM2 d 5.9188 7.1415 8.0096 8.6825 9.232 9.6964 10.0984

ds 5.862 7.1004 7.978 8.657 9.2106 9.678 10.0823

IER d 5.9425 7.1594 8.0234 8.6937 9.2414 9.7044 10.1055

ds 5.927 7.1444 8.0102 8.6821 9.2311 9.6952 10.0972

IEABC d 5.9499 7.1664 8.0295 8.699 9.246 9.7085 10.1092

ds 5.9457 7.1624 8.0261 8.6961 9.2435 9.7063 10.1071

IEH d 5.9425 7.1594 8.0235 8.6938 9.2415 9.7045 10.1056

ds 5.9268 7.1445 8.0104 8.6824 9.2314 9.6955 10.0975

IESC d 5.9486 7.1652 8.0285 8.6982 9.2453 9.7079 10.1086

ds 5.9446 7.1616 8.0255 8.6955 9.243 9.7059 10.1068

IEHM d 5.919 7.142 8.0101 8.683 9.2324 9.6967 10.0988

ds 5.863 7.1018 7.9793 8.6582 9.2116 9.6789 10.0831

IEGA d 5.9506 7.167 8.0301 8.6995 9.2465 9.7089 10.1095

ds 5.9506 7.167 8.0301 8.6995 9.2465 9.7089 10.1095

IEF d 5.9192 7.1424 8.0105 8.6834 9.2328 9.6971 10.0991

ds 5.8638 7.103 7.9805 8.6592 9.2126 9.6797 10.0838

IESDD d 5.9505 7.1669 8.03 8.6994 9.2464 9.7089 10.1095

ds 5.9503 7.1667 8.0298 8.6993 9.2463 9.7088 10.1094

IEAZ d 5.9246 7.1452 8.0121 8.6845 9.2336 9.6976 10.0995

ds 5.7921 7.0514 7.9408 8.6271 9.1857 9.6566 10.0635

IESO d 5.9425 7.1604 8.0247 8.695 9.2426 9.7056 10.1065

ds 5.9274 7.1487 8.0154 8.6874 9.2362 9.7 10.1016
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IETψ G( ) � log Tψ G( )( ) − 1
Tψ G( ) log Tψ ŝ* G( )[ ]. (9)

The developed Equations 8, 9 are used to measure the various
bond information entropy values of AWW zeolite. Furthermore, the
measured information entropy was used to develop the possibility of
machine learning of the AWW zeolite structure for studying the
properties and activities (Arockiaraj et al., 2022a; Peter and Clement,
2023; Jacob and Clement, 2024; Peter and Clement, 2024).

2.2 Spectral information entropies

To define the spectral entropies for each edge uv ∈ E(G), we first
construct a symmetric square matrix of order |V(G)| using the degree-
based topological index of the graph as defined below (Bozkurt et al.,
2010; Ghanbari, 2022; Rodríguez and Sigarreta, 2016):

M Td( ) � 0 if the vertices u and v of G are not adjacent
Td uv( ) if the vertices u and v of G are adjacent

{ ,

(10)
where Td(uv) is a structural function of topological indices with
respect to an edge, as defined in Section 2. For example, the matrix
with respect to the sum connectivity index is defined as follows:

M SCd( ) � 0 if the vertices u and v of G are not adjacent

1������
du + dv

√ if the vertices u and v of G are adjacent

⎧⎪⎪⎨⎪⎪⎩ .

The study of graph energy obtained from the topological matrix indices
offers insights into the structural properties of graphs, with potential
applications in chemistry and communication networks (Bozkurt et al.,
2010; Ghanbari, 2022; Rodríguez and Sigarreta, 2016; Chen et al., 2014;
Hayat et al., 2024; Hui et al., 2022; Kosar et al., 2023). The novelty of this
section is that we use the computed eigen values of the topological

TABLE 2 Spectral entropy measures of AWW( j, k, l) zeolite, when j � k � l.

Entropies j � 2 j � 3 j � 4 j � 5 j � 6 j � 7 j � 8

IE
M(Mλd

1 ) 4.8234 5.9198 6.6881 7.3033 7.8158 8.244 8.626

IE
M(Mλd

2 ) 4.7986 5.8947 6.6636 7.2815 7.7965 8.2265 8.6103

IEM(Rλd ) 4.8259 5.9278 6.7003 7.3155 7.8276 8.2557 8.6368

IEM(ABCλd ) 4.8318 5.9318 6.7024 7.3169 7.8285 8.2561 8.637

IEM(Hλd ) 4.8258 5.9281 6.7006 7.3158 7.8279 8.256 8.637

IEM(SCλd ) 4.8308 5.9317 6.7028 7.3175 7.8291 8.2569 8.6377

IEM(HMλd ) 4.798 5.8948 6.6639 7.2817 7.7968 8.2267 8.6105

IEM(GAλd ) 4.8323 5.9317 6.7015 7.3159 7.8274 8.255 8.636

IEM(Fλd ) 4.7986 5.895 6.6641 7.2819 7.7971 8.2269 8.6107

IEM(SDDλd ) 4.8319 5.9307 6.7006 7.315 7.8267 8.2542 8.6352

IEM(AZλd ) 4.8055 5.9012 6.6695 7.2866 7.8008 8.2306 8.6139

IEM(SOλd ) 4.8233 5.9197 6.6881 7.3032 7.8158 8.244 8.6259

TABLE 3 Molecular interaction energy properties of AWW( j,k, l), when j � k � l.

AWW(j, k, l) |V | |E| Molecular interaction energies (eV) of AWW zeolites

Ees Edse Ete Edhd E2b E3b

AWW(2,2,2) 224 384 0.7434 −4.7931 694.0131 22.5778 592.2638 83.2212

AWW(3,3,3) 720 1,296 6.1657 −17.6518 2372.0346 85.6196 1996.6792 301.2218

AWW(4,4,4) 1,664 3,072 13.7597 −43.6160 5652.7948 214.2766 4730.2483 738.1260

AWW(5,5,5) 3,200 6,000 20.2031 −87.2845 11070.4142 431.8839 9235.6949 1469.9167

AWW(6,6,6) 5,472 10,368 25.8579 −161.7722 20135.1759 804.6664 16768.2665 2698.1572

AWW(7,7,7) 8,624 16,464 36.4116 −246.1287 30472.7760 1227.2898 25333.1150 4122.0882

AWW(8,8,8) 12,800 24,576 46.1900 −370.5015 45532.4173 1851.7584 37810.5359 6194.4345
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matrix indices of the zeolite framework to measure the spectral
information entropies. Let λd1 , λ

d
2 , λ

d
3 , . . . , λ

d
r be non-zero eigenvalues

of the degree-basedmolecular topological indexmatrices obtained from
Equation 10. Then, in order to compute the spectral entropies, we now
modify Equation 7 as follows:

IE
M Tλd( ) G( ) � −∑r

i�1

|λdi |∑r
j�1|λdj |

log
|λdi |∑r
j�1|λdj |

⎛⎝ ⎞⎠, (11)

where the ratio
|λdi |∑r

j�1 |λdj |
is the random choice probability of eigen

values. The degree sum-based entropies of the zeolite AWW can be
measured using Equation 11 by exchanging Tλds for Tλd .

3 Molecular topological indices of
zeolite AWW

The AWW zeolite structures are characterized by using the
measurements provided in Section 2. As depicted in Figure 2, the
cavities serve as the primary building component for the zeolite
AWWmolecular communication system, which has 32 vertices and

48 edges connected by eight squares and two octagons, such that
some bonds are shared. In order to form a three-dimensional
molecular structure, the cavities of AWW are arranged in the
j × k × l configuration. This leads to the crystal lattice, which is
represented by AWW(j, k, l), as shown in Figure 3, with j, k, and l
indicating the number of cavities arranged along the bottom to top,
along left to right, and front to back copies, accordingly. Since
translational symmetry repeats a single unit cell an infinite number
of times to fill the pores and topological indices are numerical values
that cannot be generalized in terms of infinity, we have considered
point symmetry and not translational symmetry.

Figure 3 depicts the polyhedral structural growth of AWW.
Figure 2 shows the primary cavities that are interconnected to
generate the AWW(2, 2, 2) zeolite. Two types of polyhedral
structures are considered in Figure 3: the front and back view
frameworks. These are generated by connecting the two cavities via
a tunnel and sharing all six rings between them. In contrast, the top- and
side-view frameworks are directly connected by all eight rings and
connected by the tunnels between the cavities. The total number of
vertices (T-atoms) and edges (T-O-T bonds) in zeolite AWW(j, k, l)
are 8jk(3l + 1) and 4[12jkl + 2jk − jl − kl] for j, k, l≥ 1.

TABLE 4 Significant coefficients for exponential fit of entropies with molecular energies.

IETψ P x0 y0 z0 R2

IERd Edhd −14.37505 0.08337 0.991 0.9995

IEFds Edse 2.44953 −0.01934 0.97843 0.9996

IERds E3b −39.03459 0.30396 0.98325 0.9995

IEM(Tλd ) P x0 y0 z0 R2

IE
M(Mλd

2 ) E2b −358.21311 5.90356 1.0191 0.9996

IE
M(Mλd

2 ) Ees −5.61257 0.51405 0.53482 0.9965

IE
M(Mλd

2 ) Ete −440.91722 6.934 1.02202 0.9996

TABLE 5 Comparison of molecular interaction energy values for AWW zeolite using the force-field method and predictive model AWW( j, k, l) for j � k � l.

Zeolites (2,2, 2) (3, 3,3) (4,4,4) (5, 5, 5) (6,6,6) (7 , 7 , 7) (8,8,8)
Edhd Force field 22.57785 85.61961 214.2766 431.884 804.6665 1227.29 1851.758

Predicted 15.7257 86.1592 222.3082 445.5162 848.8865 1237.7453 1848.8865

Edse Force field −4.79332 −17.6518 −43.616 −87.2846 −161.772 −246.129 −370.502

Predicted −3.5503 −17.7207 −45.148 −90.017 −156.4551 −248.52 −370.23

E3b Force field 83.2212 301.2218 738.1260 1469.9167 2698.1572 4122.0882 6194.4345

Predicted 64.1855 302.645 761.412 1510.6639 2619.7381 4157.2141 6191.4708

E2b Force field 592.2638 1996.6792 4730.2483 9235.6949 16768.2665 25333.1150 37810.5359

Predicted 426.8851 2040.8758 4894.134 9500.7099 16305.1658 25468.9412 37831.1494

Ees Force field 0.7434 6.1657 13.7597 20.2031 25.8579 36.4116 46.1900

Predicted 1.0797 6.4146 12.5324 19.6382 27.6452 36.2446 45.7817

Ete Force field 694.0131 2372.035 5652.795 11070.41 20135.18 30472.78 45532.42

Predicted 494.2282 2425.8439 5849.416 11387.6812 19581.66 30631.7666 45556.2758
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3.1 Degree-type molecular descriptors of
AWW zeolite

We employed the edge partition technique according to the
degrees of the end atoms of bonds, and the degree sum of the end
atoms of bonds used to generate different degree-based molecular

topological descriptors of zeolite AWW(j, k, l) for j, k, l≥ 1 is
listed below.

Bond degree partitions:

• d(3, 3) � 2[8jk + 3(jl + kl) + 4(j + k) + 2l]
• d(3, 4) � 4[4jk + 3(jl + kl) − 4(j + k) − 2l]

FIGURE 4
Exponential fitting of bond and spectral information entropy with properties of AWW zeolite.
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• d(4, 4) � 2[24jkl − 12jk − 11(jl + kl) + 4(j + k) + 2l]
• ds(9, 9) � 10[j + k + 2]

Bond degree-sum partitions (when j, k, l≥ 2):

• ds(9, 10) � 4[3j + 3k − 2]
• ds(10, 10) � 2[8jk + jl + kl − 5(j + k) + 6l − 10]
• ds(10, 14) � 4[jl + kl + j + k + 2l −6]
• ds(10, 15) � 4[4jk − 3(j + k) + 2]
• ds(11, 9) � 4[j + k − 2]
• ds(11, 10) � 4(j + k − 2)(l − 2)
• ds(11, 14) � 4(j + k − 2)(l − 1)
• ds(11, 15) � 4(j + k − 2)(l − 1)
• ds(14, 14) � 2[jl + kl + 2l − 4]
• ds(14, 16) � 4l[j + k − 2]
• ds(15, 15) � 2[8jk + jl + kl − 5(j + k) − 2l + 2]
• ds(15, 16) � 4[4jk + 2(jl + kl) − 7(j + k) − 4l + 10]
• ds(16, 16) � 2[24jkl − 28jk − 19(jl + kl) + 23(j + k) + 14l − 18]

Now let us obtain the molecular topological indices using Equation
1, and the estimated bond degree and bond degree sum partition are
obtained from the above-listed partitions. The results of the zeolite
AWW(j, k, l) are shown in Theorems 3.1, 3.2.

Since the results from Theorem 3.2 are applicable for j, k, l≥ 2,
we present the neighborhood degree sum-based bond partitions of
two-dimensional zeolite AWW, i.e., l � 1 and j, k≥ 1.

Bond degree-sum partitions (when l � 1 and j, k≥ 1):

• ds(9, 9) � 10(j + k) + 28
• ds(14, 14) � 2(j + k) − 4
• ds(10, 10) � 4(j + k) +16(j − 1)(k − 1) − 8
• ds(10, 14) � 8(j + k) − 16
• ds(10, 15) � 4(j + k) + 16(j − 1) (k − 1) − 8
• ds(14, 15) � 4(j + k) − 8
• ds(9, 10) � 16(j + k) − 32
• ds(15, 15) � 4(j + k) + 24(j − 1) (k − 1) − 8

By using the same procedure and the above-listed partitions, we
can calculate the neighborhood degree sum-based indices of two-
dimensional zeolite AWW.

Theorem 3.1: Let G denote the AWW(j, k, l) zeolite
framework, j, k, l≥ 1. Then, the degree-form molecular
topological descriptors are

1. Md
1(G) � 384jkl + 16jk − 56jl − 56kl

2. Md
2(G) � 768jkl − 48jk − 154(jl + kl) + 8(j + k) + 4l

3. Rd(G) � 12jkl + 3.95213548685034jk
−0.0358983848622456(jl + kl) + 0.0478645131496611
(j + k) + 0.0239322565748306l

4. ABCd(G) � 29.3938769133981jkl + 6.29768379985404j k
− 1.72622689289264(jl + kl) − 0.0956427709867551(j + k)
− 0.0478213854933776l

5. Hd(G) � 1
420 [1050jkl + 140jk − 15(jl + kl) + 26(j + k)

+ 20l]

6. SCd(G) � 16.9705627484771jkl + 4.09412284133087jk
−0.793111174158119(jl + kl) + 0.0469818803094588(j + k)
+ 0.0234909401547294l

7. HMd(G) � 3072jkl − 176jk − 604(jl + kl) + 16(j + k) + 8l
8. GAd(G) � 48jkl + 7.83589309777259jk

− 4.12308017667056(jl + kl) + 0.16410690222741(j + k)
+ 0.0820534511137048l

9. irrd(G) � σd(G) � 16jk + 12(jl + kl) − 16(j + k) − 8l
10. Fd(G) � 1536jkl − 80jk − 296(jl + kl)
11. SDDd(G) � 1

6 [120jkl + 12jk − 9(jl + kl) − 5(j + k) − 4l]
12. AZd(G) � 1

54000 [10240000jkl − 2368000jk
−2689024(jl + kl) + 555008(j + k) + 584407l]

13. SOd(G) � 271.529003975634jkl + 12.1177490060914jk
− 38.9949493661167(jl + kl) − 0.804040507106677j
− 0.804040507106677k − 0.402020253553339l

Theorem 3.2: Let G denote the AWW(j, k, l) zeolite framework,
j, k, l≥ 2. Then, the degree-sum-form molecular topological
descriptors are

1. Mds
1 (G) � 1536jkl − 96jk − 308(jl + kl) + 16(j + k) + 8l

2. Mds
2 (G) � 12288jkl − 2896jk − 3594(jl + kl) + 696(j + k)

+ 308l − 24
3. Rds(G) � 3jkl + 1.50585675513967jk

+ 0.238024998461628(jl + kl)
+ 0.140745376492254(j + k) + 0.0476253820709413l
+ 0.0199696427492026

4. ABCds(G) � 16.431676725155jkl + 5.08922741392934jk
− 0.211371474742995(jl + kl)
+ 0.0995211198551319(j + k) + 0.0356164974373255l
+ 0.00466120021924266

5. Hds(G) � 3jkl + 1.4789247311828jk
+ 0.225964197093229(jl + kl)
+ 0.159886990014324(j + k) + 0.0528335105754461l
+ 0.0251943547868845

6. SCds(G) � 8.48528137423857jkl + 2.67308563317728jk
− 0.0862161391140532(jl + kl)
+ 0.131697210934123(j + k) + 0.0427038837370124l
+ 0.0178547409567882

7. HMds(G) � 49152jkl − 11168jk − 14184(jl + l) + 2440(j
+ k) + 1104l − 64

8. GAds(G) � 48jkl + 7.66840752524941jk
− 4.15007191255512(jl + kl) + 0.2499927179825(j + k)
+ 0.0763565800425527l + 0.0332182510198214

9. irrds(G) � 96jk + 64(jl + kl) − 88(j + k) − 64l + 32
10. σds(G) � 416jk + 192(jl + kl) − 344(j + k) − 128l + 32
11. Fds(G) � 24576jkl − 5376jk − 6996(jl + kl) + 1048(j + k)

+ 488l − 16
12. SDDds(G) � 96jkl + 18.7333333333333jk

− 6.78008658008658(jl + kl) − 2.05894660894661(j + k)
− 0.611255411255411l − 0.266233766233766

13. AZds(G) � 29826.1617777778jkl − 10244.258617031jk
− 10484.839762917(jl + kl) + 3201.8324609039(j + k)
+ 1437.40740464836l − 261.075052832933

14. SOds(G) � 1086.11601590254jkl − 62.0984297085552jk
− 215.133170624545(jl + kl) + 6.72793994101937(j + k)
+ 4.0908228573993l − 0.0601654666833156
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For computing the degree and degree sum-type multiplicative
self-powered molecular descriptors of the AWW zeolite,
Equations 5, 6 were employed to generate the corresponding
indices using the listed bond degree and bond degree sum
partitions. For instance, the analytical expression for degree-
based self-powered sum connectivity index is

Tdŝ* G( ) � Td 33( )Td 33( )( )d 3,3( )
× Td 34( )Td 34( )( )d 3,4( )

× Td 44( )Td 44( )( )d 4,4( )

Tdŝ* G( ) � 1558910783423325
2251799813685248

( )2 8jk+3 jl+kl( )+4 j+k( )+2l[ ]

×
779568926258033
1125899906842624

( )4 4jk+3 jl+kl( )−4 j+k( )−2l[ ]

×
390508353708945
562949953421312

( )2 24jkl−12jk−11 jl+kl( )+4 j+k( )+2l[ ]
.

Furthermore, the information entropy measures
multiplicative self-powered for bond additive degree, and
bond additive degree sum topological indices are easily
obtained using Equation 9.

4 Determining molecular interaction
energies of AWW zeolite through
entropy measures

4.1 Degree and degree sum-type
information and spectral entropies

This section summarizes the information entropy of AWW
zeolite and suggests possible development using the degree,
degree sum-based information, and spectral entropies of
Equations 8, 11 by assessing the mineral complexity given in
Tables 1, 2. It can be very useful for selected dimensions for
training in an attempt to analyze the information entropies for
larger complex molecules. For all entropy measures, the IETd

values are consistently higher than the IETds values, indicating
that IETds incorporates more detailed structural aspects of the
system, as shown in Table 1. Different entropy measures increase
at different rates as j increases. Some information entropy
measures are distributed unequally for each layer of AWW
zeolite frameworks, except the geometric arithmetic degree
and degree sum-based information entropy compared to

TABLE 6 Spectral properties and global reactivity descriptors of zeolite AWW( j, k, l).

Zeolites (2,2,1) (2,3,1) (2,2,2) (3,4,1) (3,6,1) (3,3,3) (4,5,1) (4,4,4)

ΔHL/β 0.1666 0.1112 0.0246 0.0448 0.0117 0.003 0.0004 0.0059

SD 6.995 7.0574 7.4448 7.1454 11.4739 7.717 7.181 7.8028

GE 214.4309 295.5472 349.7192 594.3956 1166.9287 1144.112 993.6112 2,303.201

SGE 2.000962 2.191812 2.252636 2.489498 2.656461511 2.753511 2.709569 3.064081

η 0.0833 0.0556 0.0123 0.0224 0.00585 0.0015 0.0002 0.00295

μ 0.0833 0.0556 0.0123 0.0224 0.00585 0.0015 0.0002 0.00295

σ 24.0096 35.97122302 162.6016 89.28571 341.8803 1333.333 10,000 677.9661

μ 0.000289 8.59398 × 10−5 9.3 × 10−7 5.62 × 10−6 1 × 10−7 1.69 × 10−9 4 × 10−12 1.28 × 10−8

Here ΔHL is the difference of minimum positive and maximum negative eigenvalues with respect to zeolite adjacency matrix.

β is the Hückel energy parameter.

TABLE 7 Molecular interaction energies of various AWW zeolites.

Zeolites E2b E3b Edhd Ees Edse Ete

AWW(2,2,1) 322.066035 42.623374 10.428624 0.066132 −2.305049 372.879116

AWW(2,3,1) 489.336864 66.449394 16.444560 0.088597 −3.592838 568.726576

AWW(2,2,2) 592.263894 83.221202 22.577852 0.743495 −4.793315 694.013128

AWW(3,4,1) 1839.169786 274.806936 75.990215 3.427539 −15.775537 2177.618938

AWW(3,6,1) 2777.468110 419.753403 116.470960 5.347468 −24.082915 3294.957026

AWW(3,3,3) 1996.679237 301.221814 85.619606 6.165783 −17.651809 2372.034631

AWW(4,5,1) 3098.551299 471.421336 131.088470 6.261098 −27.040602 3680.281600

AWW(4,4,4) 4730.248377 738.126087 214.276638 13.759779 −43.616033 5652.794848
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others. Only the geometric arithmetic information entropy has a
significant level of discrimination among all the measured
information entropies. Geometric arithmetic entropy is more
effective in discriminating the structural complexity because it
integrates both local and global structural information, balances
contributions across the framework, and is highly sensitive to
connectivity variations. On the other hand, the discriminatory
power is low for the second Zagreb, harmonic, and forgotten
information entropies. This variation indicates that each
measure might be sensitive to different aspects of structural
complexity in the zeolite. In this study, we exclude the irr and
sigma entropies as they are indeterminate with respect to bond
additive degree and bond additive degree sum-type entropies.

The characteristics of the AWW zeolite structure can be
studied using the data provided in Table 1. This allows for the
investigation of atomic chemical properties, structural
complexity, diversity, similarity, modularity, chirality, and
molecular structure information in crystal systems. In
addition, in this study, degree spectral entropies were
measured to assess the structural complexity of zeolite
frameworks. The spectral degree-based entropies have the
lowest discriminative values compared to degree and degree
sum-based information entropies. This implies that spectral
entropy focuses on specific modes or energy distributions
within the structure rather than the overall disorder. The zero
eigenvalue of the zeolite adjacency matrix is indeterminate in the
spectral information entropy calculations from Equation 11 as it
causes issues in logarithmic terms. To ensure accuracy, the zero
eigenvalue must be excluded or addressed through normalization
techniques.

Section 4.2 will address the prediction abilities of our measured
bond information and spectral entropies obtained from the AWW
zeolite structure.

4.2 Predictive model of various entropies
with molecular interaction energies of
AWW zeolite

Density functional theory (DFT) has limitations in calculating the
molecular interaction energies for large AWWzeolite systems due to its
high computational costs, difficulty in capturing long-range
interactions, and challenges in modeling non-covalent interactions
and strongly correlated electron systems. It also struggles with the

flexibility of zeolite frameworks and dynamic effects (Cohen et al.,
2012). These issues make DFT impractical for application in large
zeolite systems, underscoring the need for predictive models like
machine learning to efficiently estimate interaction energies, so there
is another computational method to calculate the molecular energies of
zeolites: force field method. Force-field methods, in contrast, offer an
efficient, cost-effective alternative for studying zeolite structures. These
methods allow for scalable simulations of large, complex frameworks
and can provide insights into time-dependent behaviors such as
adsorption, diffusion, and framework flexibility. Although they rely
on parameterized potentials and may struggle with modeling larger
zeolite structures, force-fieldmethods, when tailored to specific systems,
complement experimental data and fill gaps in case of limited
experiments, thus playing a crucial role in advancing our
understanding of zeolite properties (Dubbeldam et al., 2019;
Jaramillo and Auerbach, 1999).

Determining the properties of zeolites experimentally is challenging
due to their structural complexity, which includes intricate pore networks,
large unit cells, and diverse atomic environments. These challenges are
further compounded by the limited crystallinity, structural defects, and
difficulties in synthesizing high-quality samples, all of which impede
accuratemeasurements (Price et al., 2021). The unique crystal structure of
the AWW zeolite, characterized by intricate cages and novel
configurations, exemplifies this complexity and contributes to the
limited availability of experimental data. Additionally, zeolite
properties are highly sensitive to environmental factors such as
temperature and pressure, complicating the reproducibility. Advanced
techniques like X-ray diffraction, neutron diffraction, and nuclear
magnetic resonance add to the difficulty, given their high costs and
time requirements (Van Vreeswijk and Weckhuysen, 2022).

This subsection investigates the entropies of zeolite AWW using
both the bond additive and bond additive sum indices. The results
are then correlated with the physical properties of zeolites. For force-
field calculations, the Molecular Mechanics 3 (MM3) and Universal
Force Field (UFF) approaches are employed within the CRYSTAL
computing tools. These tools are essential for analyzing the zeolite’s
structural and energetic properties, enabling accurate calculation of
molecular interaction energies such as (Ees), total energy (Ete),
dispersion (Edse), dihedral (Edhd), two-body (E2b), and three-body
(E3b), which are associated with various AWW zeolite structures
(Dovesi et al., 2005; Palmer, 2015). Consequently, the following
Table 3 presents the experimental data calculated for AWW zeolite
structures. With the goal of evaluating the measured information
entropy’s predictive ability, data were obtained.

TABLE 8 Significant coefficients for polynomial fit of spectral properties with molecular energies.

P SP a b c R2

E2b SGE 4719.62372 −6503.2536 2117.1465 0.92393

E3b GE −54.3851 0.48815 6.4209 × 10−5 0.926

Ees SGE 47.01358 −47.2824 11.87595 0.99352

Edhd GE −16.3696 0.13496 1.55871 × 10−5 0.93377

Edse GE 3.21832 −0.02788 3.37231 × 10−6 0.93221

Ete SGE 5968.9825 −8055.11231 2587.39569 0.92488
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A detailed exponential fit analysis was performed between the
properties provided in Table 3 and the information entropy values to
determine the possible molecular energies and construct models for
prediction. The AWW zeolite’s bond degree, degree sum, and

spectral information entropy are taken into account for
developing the following exponential fit prediction model:

P � x0 + y0 × e z0×IETψ( ). (12)

FIGURE 5
Polynomial fitting of spectral values with properties of AWW zeolites.
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where P represented that the potential energies, x0, y0, and z0 are
coefficients that significantly fit the exponential curve, and IETψ

information entropies of AWW are listed in Table 4. To test the
prediction ability of spectral-based information entropy of the
AWW zeolite structure, we substitute IEM(Tλd ) with IETψ in
Equation 12. The exponential models were developed using
Equation 12 to establish relationships between the data presented
in Tables 1–3. The established exponential fit model is a good
approximation for modeling the information entropy of the
zeolite structure as a function of potential energies because the
model attained the coefficient of determination (R2) as 0.99.

The exponentialmodel is chosen for it accurately captures the rapid,
non-linear growth of entropy as molecular interaction energies increase
in large zeolite frameworks. Unlike polynomial models, the exponential
model reflects the exponential increase in the complexity and entropy,
providing a more accurate and meaningful representation of their
relationship, particularly in complex systems where small energy
changes lead to significant increases in entropy.

Table 4 presents the significant coefficients for exponential fit of
entropies with molecular energies. The proposed model obtained from
Table 4 shows that IEM (Md

2 ) could be utilized for forecasting
molecular properties such as E2b, Ees, and Ete. The relationship
between information entropy and complexity of zeolite AWW
demonstrates that increased entropy results in more intricate and
flexible zeolite AWW structure. Figure 4 depicts the exponential fit
of the measured bond information, spectral entropies, and molecular
energies for the zeolite AWW. The topological indices and information
entropies were calculated using MATLAB software, and the statistical
OriginLab package was used for evaluating the correlations between
experimental data and various information entropies.

Table 5 presents a comparison between properties and predicted
molecular interaction energies for AWW zeolites. The table also
highlights consistent trends across different zeolite frameworks,
particularly for larger structures, demonstrating the robustness of
entropy-based models in capturing complex molecular interactions
and effectively predicting energy properties.

4.3 Global chemical reactivity descriptors
and spectral properties of AWW zeolite

Assessing global chemical reactivity descriptors such as ionization
potential (IP), electron affinity (EA), hardness (η), chemical potential
(μ), softness (σ), and electrophilicity index (ω) is challenging for
complex materials like zeolites due to the computational and
experimental requirements, high resource demands, and the
impracticality of DFT and quantum mechanical calculations. Studies
use global chemical reactivity descriptors to evaluate the electron-
attracting ability, negative of electronegativity, reflects the resistance
to electron density changes, and molecule’s tendency (Hemelsoet et al.,
2007; Yong et al., 2014; Manda et al., 2024; Gázquez and Sen, 1993;
Pearson, 1988; Padmanabhan et al., 2007). The HOMO (highest
occupied molecular orbital) and LUMO (lowest unoccupied
molecular orbital) energies are closely related to the ionization
potential (IP) and electron affinity (EA) in quantum chemistry (Yin
et al., 2021). Therefore, using the HOMO and LUMO energies, several
important chemical quantum descriptors can be calculated using the
given below equations:

IP � −EHOMO, (13)
EA � −ELUMO, (14)
η � IP − EA

2
, (15)

μ � − IP + EA
2

( ), (16)

σ � 2
η
. (17)

ω � μ2

2η
. (18)

In this section, we propose the measurement of the global
chemical reactivity descriptors using the eigen values of the
zeolite graph as the HOMO–LUMO gap. Therefore, we employ
the graph-theoretic approach to compute the HOMO–LUMO gap,
which involves modeling the zeolite structure as a graph,
constructing adjacency, and calculating the eigenvalues of the
zeolite matrix. The difference between the maximum negative
and minimum positive eigenvalues of the characteristic
polynomial gives the HOMO–LUMO gap, which is a key
indicator of the molecule’s electronic properties and reactivity
(Arockiaraj et al., 2022a; Fowler and Pisański, 2010; Dias and
Guirgis, 2002; Aihara, 1999; Bacalis and Zdetsis, 2009; Mushtaq
et al., 2022; Ghosh, 2019).

The HOMO–LUMO gap in the zeolite structure reflects their
chemical reactivity. A larger HOMO–LUMO gap typically indicates
greater stability and lower chemical reactivity as it requires more
energy to excite an electron from the HOMO to the LUMO.
Conversely, a smaller gap implies higher chemical reactivity as
less energy is needed for electronic transitions, facilitating
interactions with adsorbates or reactants (Yin et al., 2021).
Furthermore, the spectral properties (SP) of chemical structure
such as spectral diameter (SD), graph-energy (GE), and spectral
entropy (SGE) (Arockiaraj et al., 2022a; Balasubramanian, 2023b;
Balasubramanian, 2023c) are computed using the eigen values of
characteristic polynomials for the different AWW zeolites listed in
Table 6. The global chemical reactivity descriptors are calculated
using Equations 13–18, and the summarized values in Table 6 are
measured using Python code. One can observe from Table 6 that as
the AWW zeolite structure increases, the global descriptors such as
hardness, chemical potential, and electrophilicity index decrease. On
the other hand, the softness of the AWW zeolite structure is
increasing.

Table 7 presents molecular energy properties of various AWW
zeolite structures, serving as a benchmark to validate predictive
models developed using the measured spectral values of AWW
zeolite. It establishes a critical link between computed molecular
energies and spectral values, demonstrating the reliability of
theoretical calculations in predicting energy properties. The table
also highlights how structural variations in zeolites influence energy
behavior, emphasizing the practical utility of spectral and entropy-
based analyses in evaluating the stability and reactivity.

The data in Table 8 summarize the significant coefficients of the
developed polynomial fit Equation 19. By using the molecular
energies and spectral values of zeolite AWW listed in Tables 6, 7,
the models demonstrate their effectiveness in predicting potential
energies, as evidenced by the high R2 values, which indicate strong
relationships.
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P � a + b SP( ) + c SP( )2. (19)

whereP, a, b, and c represent the property and coefficients of themodels,
and SP denotes the spectral properties of the AWW zeolite structures.

Figure 5 highlights the polynomial fitting of spectral values with
AWW zeolite properties, demonstrating a strong correlation
between spectral entropy and molecular characteristics. The
model shows high accuracy, validating the use of spectral
properties for predicting molecular energies.

The obtained data, such as the HOMO–LUMO gap and spectral
information entropy, directly relate to the applications of AWW
zeolites. A smaller HOMO–LUMO gap suggests higher reactivity,
enhancing catalytic activity, while spectral information entropy
reflects the structural complexity, influencing adsorption capacity
through pore connectivity and active site diversity. These
comparisons contextualize the findings, linking structural
properties to their functional performance in industrial applications.

5 Conclusion

Predicting the characteristics of complicated multicomponent zeolite
materials and extremely high-molecular weight systems of molecules is an
essential step in the development of QSPR advances in technology. We
have developed the degree-sum-based molecular descriptors for zeolite
AWW, analyzing three information entropies obtained from topological
indices and their spectral aspects. Furthermore, we proposed the
exponential regression and polynomial models to predict its potential
energies using the computed information measures. The eigenvalue
difference approximation of the HOMO–LUMO gap reduces
computational demands compared to more complex DFT calculations,
enabling faster reactivity predictions in large systems or high-throughput
screening. The results of the present investigation illustrate the usefulness
and efficacy of the quantitative structure–property relationship approach
for the prediction of an extensive variety of properties of the
zeolite material.
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