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In recent years, medical micro-/nanorobots (MNRs) have emerged as a promising
technology for diagnosing and treating malignant tumors. MNRs enable precise,
targeted actions at the cellular level, addressing several limitations of conventional
cancer diagnosis and treatment, such as insufficient early diagnosis, nonspecific
drug delivery, and chemoresistance. This review provides an in-depth discussion of
the propulsion mechanisms of MNRs, including chemical fuels, external fields (light,
ultrasound, magnetism), biological propulsion, and hybrid methods, highlighting
their respective advantages and limitations. Additionally, we discuss novel
approaches for tumor diagnosis, precision surgery, and drug delivery,
emphasizing their potential clinical applications. Despite significant advancements,
challenges such as biocompatibility, propulsion efficiency, and clinical translation
persist. This review examines the current state of MNR applications and outlines
future directions for their development, with the aim of enhancing their diagnostic
and therapeutic efficacy and facilitating their integration into clinical practice.
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1 Introduction

Despite the remarkable advancements in the diagnosis and treatment of malignant
tumors over the past decades, cancer remains the second leading cause of death in
developed countries (Sung et al., 2021). There are still some limitations in the current
diagnosis and treatment of cancer, including (Sung et al., 2021): The sensitivity of imaging
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or laboratory tests is insufficient, making it difficult to detect some
early malignant tumors (Jelski and Mroczko, 2022; Vasireddi and
Nguyen, 2021; Jelski and Mroczko, 2022) Traditional biopsy and
surgery are difficult to operate at the single-cell level and cannot
obtain tumor heterogeneity information (Kapoor-Narula and
Lenka, 2022; Lou et al., 2022; Vasireddi and Nguyen, 2021) The
non-specific delivery of anti-tumor drugs leads to the inability to
target tumors and inevitable adverse reactions (Babiker et al., 2018;
Di Nardo et al., 2022; Kapoor-Narula and Lenka, 2022) Malignant
tumors can be insensitive or resistant to conventional
chemotherapy, targeted therapy, and immunotherapy, potentially
leading to disease progression (Lim and Ma, 2019; Richardson et al.,
2023; Vesely et al., 2022). To overcome the above difficulties,
medical micro-/nanorobots (MNRs) that can swim freely and
operate in an orderly manner at the micrometer or nanometer
scale have been designed by researchers.

Medical MNRs are defined as unconstrained micro- and
nanostructures. MNRs contain drive structures that can convert
various energy sources into driving forces and perform medical
activities (Go et al., 2022; Li Y. et al., 2023; Soto et al., 2020). At
present, based on the development and cross-integration of multiple
disciplines such as micro/nano processing, biomaterials, and
biomedicine, scientists have developed a variety of MNRs
(Alizadeh et al., 2020; Yan et al., 2017; Song et al., 2021; Zhang
W. et al., 2023). Medical MNR has basic features such as small size,
wireless control, and payload capacity, which can achieve functions
such as improving the sensitivity and specificity of tumor diagnosis,
accurately targeting tumors, and operating at the single-cell level
(Deng et al., 2020; Han et al., 2016; Li et al., 2017). However, it is still
a huge challenge to apply MNRs in clinical tumor diagnosis
and treatment.

To design smart MNRs for cancer patients, the following points
still need to be considered. First, it is essential to take into account
the physiological environment and the driving mode of MNR. Due
to the extremely small size of MNR, its Brownian motion in the body
environment is very strong, and it is extremely challenging to propel
it in a low Reynolds number environment (Wu et al., 2022; Li J. et al.,
2016). Therefore, a specific method is needed to propel and control
the movement of MNR. Currently, the commonly used driving
methods include non-toxic chemical fuels, external field sources,
bioenergy, and hybrid driving modes (Cong et al., 2022; Li Z. et al.,
2016; Ressnerova et al., 2021; Zhu et al., 2021). Secondly, the
materials selected for MNRs should have the characteristics of
low toxicity, good biocompatibility, degradability, and safe
excretion, to ensure that the MNRs themselves will not affect the
normal structure and function of the body (Kim et al., 2020). In
addition, when designing micro-/nanorobots, researchers should
consider the functions that the robots perform in the body and how
they can continuously convert different forms such as magnetic
energy, acoustic energy, and bioenergy into kinetic energy, and
design the structures based on these requirements (Alapan et al.,
2020). Finally, the size of the MNR and its ability to break through
human barriers need to be taken into consideration. Nano drug
carriers must overcome multiple barriers in the body, such as the
vascular barrier, the blood-brain barrier, and the mucus-bicarbonate
barrier on the surface of the gastric mucosa before they can reach the
intended target site (Wang J. et al., 2022). This review mainly
summarizes the latest progress in the driving modes and

diagnostic and therapeutic applications of micro-/nanorobots in
the diagnosis and treatment of malignant tumors, and discusses the
current challenges and solutions in this field, providing ideas for the
future development of new micro-/nanorobots that can be used in
clinical practice.

2 Driving force type of
micro-/nanorobot

2.1 Chemical fuel-driven micro-/nanorobot

Chemical fuel propulsion refers to the reaction between a
catalyst loaded on MNRs and the chemical “fuel” in the
surrounding environment, which converts chemical energy into
kinetic energy, enabling the efficient propulsion of the MNRs
(Figure 1A) (Cai et al., 2023a; Cai et al., 2023b; Zhan et al., 2019).

As a chemical “fuel” in the environment, H₂O₂ has the
characteristics of high reactivity and rapid bubble generation in
the presence of catalysts, which makes H₂O₂ widely used in the early
research on chemical fuel-driven micro-/nanorobots (Peng et al.,
2023). For example, researchers have developed quinacridone and
indigo-based microparticles and coated the microparticles with an
asymmetric platinum layer with a thickness of 30 nm to prepare
microrobots (Jancik-Prochazkova et al., 2023). The asymmetric
coating on the robot can decompose H₂O₂ into water and
oxygen, allowing the pigment-based Janus microrobot to move in
the presence of H₂O₂. At the same time, the researchers found that
increased H₂O₂ concentration and ultraviolet (UV) irradiation can
increase the average movement speed of the microrobot, which can
reach 2.8 ± 0.5 μm/s at the fastest. Compared with static particles, the
chemical fuel-driven microrobot is more likely to accurately target,
internalize, and accumulate in cells, thereby achieving its killing
function (Figure 1B).

Although the increase in H₂O₂ concentration enhances the
mobility of MNRs, high concentrations of H₂O₂ are potentially
toxic to the human body, which limits the application scenarios of
H₂O₂ in the body. Therefore, it is necessary to find chemical “fuels”
that exist naturally in organisms or are harmless to organisms.
Nowadays, researchers have discovered a variety of highly
biocompatible chemical “fuels” such as water (Wavhale et al.,
2021), urea (Choi et al., 2022), and collagen (Ramos-Docampo
et al., 2019) that can be used for MNR propulsion. For example,
Cao et al. developed a nanomotor that can use urea as a fuel for
propulsion (Cao et al., 2021a). The study describes a supramolecular
strategy for fabricating structural intrinsic fluorescence aggregation-
induced emission (AIE) polymersome nanomotors with a gourd-
like topology. Intrinsically asymmetric AIE polymersomes are
decorated with thin polymer layers via a layer-by-layer
supramolecular assembly approach, during which urease is
encapsulated and embedded via strong electrostatic interactions.
Urease can consume urea in its environment, thereby generating a
concentration gradient and active directional flow on the particle
surface, ultimately driving the nanomotor motion (Figure 1C).

Compared with normal cells, tumor cells need to take up a lot of
glucose and are in a unique acidic environment (Wang Y. et al., 2022;
Feng et al., 2024). These characteristics inspired researchers to design
MNRs using the glucose and pH gradients naturally occurring in
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organisms. For example, Ji et al. designed the PDF@JAu@GOx
nanomotor, whose propulsion mechanism is based on the glucose
concentration gradient in the tumor microenvironment, which uses
enzymatic reactions to decompose glucose to produce propulsion
bubbles (Ji et al., 2024). This enhanced diffusion movement effectively
increases the tumor cell uptake of the nanomotor, and the nanomotor
can then exert its efficient delivery capacity.

Chemical “fuel” drive is a driving mode that can move
autonomously and perform functions without external force.
Although chemical “fuel” driven MNRs have broad prospects in
the diagnosis and treatment of malignant tumors, there are still some
problems to be solved. Since high concentrations of H₂O₂ are toxic,

the efficiency of enzymatic reactions needs to be improved when
designing MNRs that use H₂O₂ as fuel to achieve effective
propulsion under low H₂O₂ concentration and dosage conditions.
In view of the potential toxicity of H2O2 as a “fuel”, in our opinion,
the development of more biocompatible “fuels” (such as water, urea,
collagen, etc.) has wider application prospects. In addition, in the
diagnosis and treatment of malignant tumors, if the glucose and
pH concentration gradients in the tumor microenvironment can be
cleverly used to design MNRs, it can not only enhance the effect in
tumor treatment, but also reduce side effects on healthy tissues
through high selectivity and controllability, thereby improving the
safety and efficacy of treatment.

FIGURE 1
(A) Schematic diagram of the functions performed by the chemical fuel-driven motor microprobe. Modified and reprinted from ref (Xie et al., 2017).
Reproduced with permission, Copyright 2016, Elsevier. (B) Schematic diagram of the microrobots exhibiting autonomous motion in the presence of
hydrogen peroxide. Modified and reprinted from ref (Jancik-Prochazkova et al., 2023). Reproducedwith permission, Copyright 2022, American Chemical
Society. (C) Schematic diagram of a gourd-shaped polymer nanomotor with enzyme-powered motion, which generates motion through the
enzyme-catalyzed decomposition of urea and hydrogen peroxide. Modified and reprinted from ref (Cao et al., 2021a). Reproduced with permission,
Copyright 2021, The Authors. Published by American Chemical Society. (D) Schematic illustration of the light-induced motion of the metal–phenolic
microswimmers. Modified and reprinted from ref (Lin et al., 2021). Reproduced with permission, Copyright 2021, Wiley-VCH. (E) SME images and
schematic diagram of PHI (scale bars, 5 μm in A left and 400 nm in A right). Modified and reprinted from ref (Sridhar et al., 2022). Reproduced with
permission, Copyright 2022, The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. (F) Schematic
diagram of NIR-driven nanorocket self-propulsion, propulsion trajectory and mean square displacement. Modified and reprinted from ref (Feng et al.,
2023). Reproduced with permission, Copyright 2023, Wiley-VCH.
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2.2 External field-driven micro-/nanorobot

2.2.1 Light
Light-field driven optically controlled MNR refers to the light

acting on the photosensitive units or structures of the MNR to
produce specific reactions, such as temperature gradient,
interfacial tension gradient, bubbles, and other reactions, which
can realize the propulsion of the MNR (Hong et al., 2010; Villa
et al., 2019; Cao et al., 2021b). Compared with other propulsion
modes, light propulsion has attracted more attention due to its
non-invasive, long-range, fuel-free, and relatively clean
characteristics. In addition, the intensity, direction, time, and
polarization of light are easy to adjust, which gives light-
controlled MNRs higher controllability and freedom (Wang
et al., 2018). In particular, light-activated nanomotors driven
by photothermal conversion elements can ablate tumor cells
while delivering drugs, which expands the application scenarios
of light-driven MNRs (Huang et al., 2022).

Lin et al. reported a metal (Zn2+)-ellagic acid particle
microswimmer that can autonomously sense and swim toward
an external UV light source (Lin et al., 2021). Under a
microscope, it was observed that exposure of the particle
microswimmer to UV light caused it to move toward the
illumination focus. When the light was enhanced, the speed of
the microswimmer could reach 102 μm/s, and the directional
movement of the microswimmer could be repeatedly activated
and deactivated by turning the light source on and off. To
further understand the phototaxis of the microswimmer, the
researchers used five solutions of different polarities to conduct
experiments and found that the speed of the microswimmer was
inversely proportional to the polarity of the solution, which suggests
that the positive phototaxis of the microswimmer may be driven by
the conformational transition of ellagic acid at the molecular level
(Figure 1D). Sridhar et al. developed a polyheptazine imide (PHI)
microswimmer that can be driven by visible light (Sridhar et al.,
2022). Under the irradiation of 415 nm blue light with an intensity of
0.42W/cm2, the PHI microswimmer can be proposed at a speed of
7.2 ± 1.1 μm/s in the DMEM culture medium. At the same time,
considering the actual medical application scenarios, the researchers
proposed that a light source can be provided in the deep area of the
body through a catheter to guide the PHI microswimmer to be
deployed at the target location to overcome the challenge of limited
penetration of visible light (Figure 1E).

Although there are many studies on ultraviolet and visible light-
driven MNRs, the limited penetration depth of these two types of
light cannot be effectively solved (Sridhar et al., 2022). Therefore,
near infrared (NIR) that can penetrate several centimeters of tissue
may be more suitable for medical scenarios. For example, Feng et al.
demonstrated a nanorocket (NR) with an asymmetric geometry
(Feng et al., 2023). The NR can be remotely controlled by 808 nm
NIR, which triggers photothermal conversion and Curtius
rearrangement within the particle, thereby strongly releasing
nitrogen to achieve ultrafast propulsion of nearly 300 μm/s. This
powerful propulsion allows the NR to break through the
physiological barriers in the tumor microenvironment and reach
the target lesion directly (Figure 1F).

Light field-driven MNRs have high flexibility, improving the
ability of light sources to penetrate deep tissues and reducing the

damage of the light source itself to normal tissues are issues that
must be studied before this driving mode can be applied clinically.

2.2.2 Ultrasound
Ultrasound is an external field that is widely used in clinical

diagnosis and treatment (Bachu et al., 2021). Compared with light
fields, ultrasound has stronger tissue penetration ability, excellent
biosafety, and lower cost. As a common external field, ultrasound
can propagate in solids, liquids, and gases, and can also penetrate
biological tissues to safely and effectively drive MNRs in vivo (Wang
et al., 2019).

Wang et al. demonstrated an asymmetric needle-shaped MNR
(Wang et al., 2020). The prepared MNR is a sound field-driven
leukocyte membrane-coated gallium nanoswimmer (LMGNS). The
speed of LMGNS is related to the ultrasonic frequency of the
ultrasonic field. In the frequency range of 415–425 GHz, the
average speed of LMGNS can reach more than 100 μm/s. In
addition, the frequency of ultrasound can also adjust the
movement direction of LMGNS. When the ultrasonic frequency
drops from 420 GHz to 410 GHz, two LMGNS moving in opposite
directions and moving away from each other can rotate 180° in 1.3 s
and move in the opposite direction. At the same time, due to the
characteristics of LMGNS such as strong absorption ability in the
near-infrared region and excellent drug loading capacity, it exhibits
a strong anti-cancer effect.

In recent years, micromachines that use the rapid expansion and
evaporation of perfluorocarbon droplets for high-speed propulsion
have received considerable attention. Ultrasound in an external field
can trigger the electrostatically bound perfluorocarbon droplets
inside the machine, allowing the micromachine to obtain
significant mechanical thrust, with an average speed of up to
6.3 m/s. Kagan et al. reported this ultrasound-triggered
micromachine propulsion strategy, and the microbullet can
achieve penetration, deformation, and cutting of sheep kidney
tissue (Figure 2A) (Kagan et al., 2012). Soto et al. demonstrated
an acoustically controlled microcannon (Mc) that can effectively
load and launch nanobullets (Nb) (Soto et al., 2016). The
electrochemically synthesized hollow Mc was loaded with a gel
matrix containing Nb and perfluorocarbon emulsion. Ultrasound
can trigger the rapid evaporation of the perfluorocarbon emulsion,
resulting in the rapid ejection of Nb, similar to the barrel firing a
bullet, with an average velocity of 1.05 ± 0.26 m/s (Figure 2B).

Although ultrasound-propelled MNRs have powerful
penetration and propulsion capabilities, there are still some
limitations to be addressed. For example, the geometry of the
MNR needs to be designed appropriately to achieve efficient
propulsion (Yu et al., 2024). It is necessary to select an
appropriate ultrasonic power range to achieve high-speed and
efficient propulsion without damaging tissue.

2.2.3 Magnetic fields
Magnetically controlled MNR means that under the control of

an external magnetic field, the MNR can convert the magnetic
energy it receives into mechanical energy to achieve propulsion
(Gong et al., 2022; Li T. et al., 2023). Compared with other external
fields, magnetic fields have the characteristics of remote operation,
high flexibility, and high biocompatibility, which makes external
magnetic fields a common driving method for manipulating MNRs
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FIGURE 2
(A)Microbullets penetrate, deform, and cut tissue in response to US pulse signals (scale bars, 100 µm in a, 40 µm in b, and 80 µm in c). Modified and
reprinted from ref (Kagan et al., 2012). Reproduced with permission, Copyright 2012, WILEY-VCH. (B) SEMmicrographs showing Nb loading density and
emission characteristics (scale bars, 1 μm in A, 10 μm in B top, and 1 μm in B bottom). Modified and reprinted from ref (Soto et al., 2016). Reproduced with
permission, Copyright 2015, American Chemical Society. (C) MoSBOT single-cell manipulation under magnetic actuation. Modified and reprinted
from ref (de la Asunción-Nadal et al., 2022). Reproduced with permission, Copyright 2022, The Authors. Small published by Wiley-VCH. (D) Schematic
diagram of MTB crossing the vascular endothelial barrier and colonizing the tumor. Modified and reprinted from ref (Gwisai et al., 2022). Reproducedwith
permission, Copyright 2022, The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. (E) SEM image
of the multi-chain artificial nanofish and schematic diagram of magnetic propulsion of the nanofish by a planar oscillating magnetic field (scale bars,
800 nm). Modified and reprinted from ref (Li T. et al., 2016). Reproduced with permission, Copyright 2016, WILEY-VCH. (F) Motion characteristics of a
single microswimmer (scale bars, 30 μm). Modified and reprinted from ref (Sun et al., 2020). Reproduced with permission, Copyright 2020, WILEY-VCH.
(G)Collectivemotion characteristics ofmagneticmicroswimmers (scale bars, 50 μm).Modified and reprinted from ref (Sun et al., 2020). Reproducedwith
permission, Copyright 2020, WILEY-VCH.
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(Chen et al., 2021; Dogan et al., 2022; Park et al., 2021). To
manufacture magnetically driven MNRs, magnetic materials are
usually added to the surface or inside of the MNRs to achieve unique
magnetically driven motion (Ussia et al., 2023; Wang et al., 2023).
Although traditional static magnetic fields can allow magnetic
micro-nano materials to move, the speed and direction of
movement are poorly controlled (Liu et al., 2020). Dynamic
magnetic fields (such as rotating magnetic fields and oscillating
magnetic fields) can achieve remote and precise control, which has
advantages that static magnetic fields cannot match (Yang and
Zhang, 2020; Ji et al., 2021; Yu et al., 2019).

The researchers designed a MoS2-based microrobot (MoSBOT)
that can achieve effective movement under a rotating magnetic field.
To produce MoSBOT, the researchers adopted a bio-template
method, using spirulina as a scaffold, and after creating a suitable
Fe3O4 magnetic chassis, they used a hydrothermal reaction to evenly
distribute the MoS2 nanosheets throughout the spiral structure. This
allows MoSBOT to achieve propeller-like movement at a rotating
magnetic field frequency of 3–6 Hz, and to achieve sufficient speed
and controllability. In addition, MoS2 is a well-known photothermal
material. The same MoSBOT can exhibit excellent ablation
capabilities when triggered by NIR and can achieve similar
effects to the most advanced anti-cancer drugs (Figure 2C) (de la
Asunción-Nadal et al., 2022). Swiss researchers have found that
compared with directional magnetic fields, uniform rotating
magnetic fields (RMF) can enhance the ability of magnetotactic
bacteria (MTB) to cross the vascular endothelial barrier, thereby
enhancing the tumor colonization ability of anticancer therapeutic
bacteria (Gwisai et al., 2022). By constructing a tissue barrier model
to evaluate, it was found that the mechanism by which MTB
translocation is enhanced in the presence of RMF is that the
translational motion driven by the torque of the cell interface
leads to increased surface exploration, making it easier to pass
through any gaps between cells (Figure 2D).

Li et al. demonstrated a nanofish that uses a vibrating magnetic
field for propulsion. This new nanoswimmer consists of gold
segments as the head and tail, and two nickel segments as the
body, and all segments are connected by three flexible porous silver
hinges. Under the action of a vibrating magnetic field, the wave
motion of the nanofish from head to tail is activated in sequence to
generate a backward propagating wave, which can produce a
traveling wave motion of 30 μm/s (Figure 2E) (Li T. et al., 2016).

In biomedical applications, the ability to deploy numerous
microrobots simultaneously is often essential, highlighting the
importance of studying the collective behavior of MNRs (Yu Y.
et al., 2022). Sun et al. reported a sea urchin-like microswimmer
based on sunflower pollen (Sun et al., 2020). When different input
rotating magnetic fields are applied, the nickel coating gives each
microswimmer two different motion modes (rolling and rotation).
These two modes can be used for drug delivery and cell drilling,
respectively. In addition, multiple individual microswimmers can
form a kayak-mode polymer. The principle is that as the distance
between microswimmers decreases, the fluid flow field coupling
effect becomes greater. In addition, in the rotation mode, the
polymer can stand up and transform from a 2D state to a 3D
state as the input frequency increases (Figures 2F, G).

In summary, external magnetic field drive has good operability,
and the variety and functions of magnetically controlled MNRs

makemagnetically controlled drive the most common drive mode in
biomedical applications. However, current research on magnetically
controlled actuation is mostly limited to the operation of a single
MNR. In order to enable MNRs to play a more powerful clinical
diagnosis and treatment role, the collective motion behavior of
MNRs still needs further exploration.

2.3 Biologically driven micro-/nanorobot

Although researchers have developed a wide variety of chemical
fuels and external field-driven micro-/nanorobots, the
biocompatibility and degradability of micro-/nanorobots in the
body are still unavoidable issues. Therefore, researchers use
bacteria and cells in nature and in organisms to develop
bioenergy-driven micro-/nanorobots. Directed movement can be
achieved by utilizing the tropism of bacteria and cells, and preset
functions can be realized (Chu et al., 2022; Suh et al., 2019).

The swimming trajectory of bacteria can be affected by
environmental gradients such as nutrients and oxygen, and they
can use their energy to propel themselves. Such bacteria can take
advantage of the tumor-specific pathological environmental gradients
to accumulate in tumors. Singh et al. reported a biohybrid
microswimmer composed of a double emulsion driven by
Escherichia coli (Singh et al., 2017). The average swimming speed
of the microswimmer in the motility medium can reach 6.5 ± 0.8 μm/
s, and it can swim toward cancer cells across the microporous
membrane barrier along the glucose concentration gradient and
deliver tracking fuel to cancer cells, thereby achieving real-time live
cell imaging. Subsequently, bacteria attached to the microswimmer
will also be internalized and degraded by macrophages. Chen et al.
constructed a biological/abiotic cross-linking system (YB1-INPs) for
the treatment of solid tumors, in which the essential gene asd of
Salmonella typhimurium YB1 (YB1) was replaced by a gene structure
controlled by a hypoxia-targeting promoter, which endowed YB1with
excellent hypoxia-targeting and tumor accumulation capabilities.
Indocyanine green nanoparticles (INPs) are highly biocompatible
photosensitizers. When INPs are covalently linked to the surface of
YB1, the hypoxia-targeting ability of YB1 is utilized to allow INPs to
effectively accumulate in the hypoxic tumor core. Finally, under the
irradiation of the NIR laser, the tumor and the YB1 inside the tumor
are simultaneously eliminated (Figure 3A) (Chen et al., 2019).

Sperm is a highly specialized and self-propelled cell that is
particularly well suited to move in the female reproductive tract, so
transforming sperm into MNRs is well suited to perform functions in
the female reproductive tract. Xu et al. successfully loaded doxorubicin
(DOX) into human sperm and constructed a sperm micromotor (Xu
et al., 2020). The activity of sperm can remain unchanged after drug
loading. The average movement speed of sperm can still reach 18 ±
5 μm/s after 1 h of DOX loading, which is the same as before loading
the drug. At the same time, the sperm micromotor showed a strong
killing effect on HeLa cells and 3D ovarian cancer cells.

Although bioenergy-driven MNRs have shown great advantages
in biocompatibility and unique targeting, some issues still need to be
considered before clinical application. Although microorganisms
can be killed and degraded by the body’s immune system,
chemotherapy drugs still pose certain safety risks to cancer
patients who are receiving chemotherapy drugs because they kill
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normal immune cells while fighting tumors. If bacterial MNRs are
only used in non-sterile body cavities, the risk of infection may
be reduced.

2.4 Hybrid-driven micro-/nanorobot

To achieve stronger thrust andmore complex medical functions,
many researchers use hybrid power to drive micro-/nanorobots.
Among them, the use of magnetic field drive combined with other
driving methods to propel micro-/nanorobots is the most common
method in the diagnosis and treatment of malignant tumors.

The driving method of magnetic field combined with other
physical external fields has the characteristics of non-invasiveness,
remote controllability, and sensitive operation. For example, in the
work of Peng et al., a hematite microrobot with a dendritic structure
in a magnetic/optical dual propulsion mode was proposed (Peng

et al., 2022). The robot exhibits negative phototropism under light
and can be affected by an external rotating magnetic field to perform
controllable movement along a predetermined path. The magnetic/
optical dual propulsion mode can generate a powerful fluid flow to
propel the robot. At the same time, in vitro experiments have shown
that the robot can produce abundant reactive oxygen species based
on the Fenton reaction, which enhances the efficacy of
photodynamic therapy on prostate cancer cells (Figures 3B, C).
Tang et al. proposed a CAR T microrobot (M-CAR Ts) with
artificially modified immunomagnetic beads, which can maintain
a predetermined route under magnetic guidance, show excellent
acoustic controllability, and actively penetrate tumor tissue under
magnetic/acoustic sequential drive. Further experiments showed
that anti-CD3/CD28 immunomagnetic beads can significantly
enhance the anti-cancer efficacy of CAR T cells (Tang et al., 2023).

The engineered bacterial hybrid microrobot based on magnetic
nanomaterials has two propulsion control systems: magnetic

FIGURE 3
(A) Schematic diagram of the preparation process of YB1-INPs. Modified and reprinted from ref. (Chen et al., 2019). Reproduced with permission,
Copyright 2019, Elsevier. (B) Themotion trajectory of the hematite microrobot in rotatingmagnetic fields of 3 mT and 5mT. Modified and reprinted from
ref (Peng et al., 2022). Reproduced with permission, Copyright 2022, Wiley-VCH. (C) Light-controlled steering of a single hematite microrobot by
negative phototaxis in 1%H2O2 (scale bars, 10 μm). Modified and reprinted from ref (Peng et al., 2022). Reproducedwith permission, Copyright 2022,
Wiley-VCH. (D) Schematic preparation of engineered bacteriahybrid microrobots. Modified and reprinted from ref. (Chen et al., 2022). Reproduced with
permission, Copyright 2022, American Chemical Society.
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guidance and bacterial tropism, which improves the propulsion
speed and response speed. For example, Chen et al. conjugated
magnetic nanoparticles (MNP) to non-pathogenic bacteria EcN
through amide bonds to obtain bacterial hybrid microrobots
(EcN@MNP) (Chen et al., 2022). EcN@MNP achieves positive
migration ability against tumors through magnetotaxis and
hypoxia sensing (Figure 3D).

Although hybrid microrobots constructed using engineered
bacteria have excellent propulsion effects and tumor-killing
capabilities, there are still some limitations to the application of
bacteria in living organisms. Therefore, researchers have turned
their attention to macrophages in the collective immune system.
Macrophages have an innate phagocytic function and can be used to
make eukaryotic cell-based microrobots by endocytosing
nanoparticles (Song et al., 2022). Macrophages are circulating
cells that can penetrate blood vessels and invade tumors. The
researchers loaded citric acid-coated MNPs into primary mouse
macrophages to construct a macrophage-based dual-targeted
microrobot, which has both the inherent tumor-homing ability of
macrophages and can be manipulated by external magnetic fields.
Tumor targeting experiments have shown that the microrobot can
penetrate the tumor spheres, and this effect is enhanced with the
addition of magnetic fields (Nguyen VD. et al., 2021).

3 Micro-/nanorobot for cancer
diagnosis and treatment

3.1 Imaging and tumor diagnosis

Early diagnosis of cancer can greatly improve the patient’s
prognosis (Loomans-Kropp et al., 2022), but many malignant
tumors have hidden early symptoms and lack effective detection
methods, causing patients to miss the best time for treatment.
Although tumor markers and imaging diagnosis can detect some
early tumors, MNR improves the sensitivity and specificity of early
cancer diagnosis due to its small size, flexible controllability, and
ability to perform multiple medical functions (Maheswari et al.,
2018; Peng et al., 2018).

During the occurrence and development of malignant tumors, a
class of substances produced by the tumor itself that can reflect the
existence and growth of the tumor can be considered tumor markers.
MNR can intercept this signal change in the body and achieve early
diagnosis of cancer. For example, researchers have designed a new type
of intelligent DNA nanorobot, using molecular programming and
logic gate operations based on toehold-mediated strand displacement
reaction to simultaneously detect two tumormiRNAs, namely, miR-21
and miR-125b. In addition, DNA nanorobots were used to seal the
pores of DOX-loaded silica nanoparticles. When the target miRNA is
present, the drug will be released, which can achieve efficient detection
of two tumor miRNAs and tumor killing (Mirzaiebadizi et al., 2022).
When tumor cell clusters progress to solid tumors, tumor cells produce
a large amount of vascular endothelial growth factor (VEGF) to
promote angiogenesis. To detect VEGF early, researchers designed
non-pathogenic E. coli equipped with a naturally synthesized bio-
nanosensor system. The living robot has a chemotactic effect onVEGF,
which can be used to detect early cancer (Figure 4A) (Al-Fandi
et al., 2017).

Circulating tumor cells (CTCs) refer to tumor cells that fall off
from the primary lesion and enter the blood circulation during
tumor formation or progression. The detection of CTCs can assist
clinicians in diagnosing tumors. However, since CTCs are relatively
rare, with an average of only 1–10 CTCs per milliliter of blood, and
the presence of normal blood cells can also interfere with current
detection methods, there is an urgent need to study detection
methods that improve CTC enrichment efficiency and detection
sensitivity. Zhang et al. proposed a novel microswimmer dual-mode
aptamer (electrochemical and fluorescent) homogeneous cell sensor
that can be used to simultaneously detect three biomarkers: PTK7,
EpCAM, and MUC1(87). After the markers are detected, the
electrochemical and fluorescent signal intensities increase and the
sensor can recognize two output signals to identify five different
malignant tumor cells. This method has the potential to efficiently
identify CTCs (Figure 4B). The glucose level in cancer cells is usually
higher than that in normal cells. Dolev et al. took advantage of this
feature to design a nanorobot that can examine CTCs by increasing
the glucose-driven current in cancer cells and can expose drugs to
the tumor site under the action of the driving force (Dolev
et al., 2019).

In addition to detecting tumor markers and CTCs to indirectly
detect cancer, MNR can also detect primary tumors to directly detect
cancer. Taking advantage of the high expression of matrix
metalloproteinase-2 (MMP2) in local tumors, the researchers
designed a hydrogel microrobot based on MMP2 environmental
sensing to achieve diagnostic functions (Ceylan et al., 2019). When
the microrobot reaches the periphery of the tumor under the control
of an external magnetic field, the local pathological concentration of
MMP2 can cause the hydrogel microrobot to expand rapidly and
increase the mesh size, and then the magnetic contrast agent labeled
with anti-ErbB2 antibodies is released into the local environment to
target and label SKBR3 cancer cells with high
ErbB2 expression (Figure 4C).

Due to the special metabolism and proliferation patterns of
tumor cells, the physical and chemical properties in the tumor
microenvironment are somewhat different from those of normal
tissues. Exploring these differences in physical and chemical
properties can provide clues for tumor diagnosis, understanding
pathological processes, studying pathogenesis, and developing
effective drugs. Li et al. developed magnetically propelled
responsive photonic nanorobots (RPNRs) that can perform
controllable collective motion in complex environments and then
visualize tumor lesions by mapping local abnormal physicochemical
changes (such as pH, temperature, or glucose concentration
changes) through their responsive structural colors (Li L. et al.,
2023). The structural colors of RPNRs are in the visible light range,
so they can be directly used in organs that can be endoscopically
viewed, such as the digestive tract, respiratory tract, and
bladder (Figure 4D).

3.2 Precision surgery

Different from traditional surgery, micro-/nanorobot limits the
size of surgery to the cellular level, which is an area that traditional
surgery cannot reach (Sun et al., 2020). This makes surgery using
MNRs precise, less invasive, and quick to recover.
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FIGURE 4
(A) The living robot responds to the VEGF gradient in a homemade microfluidic chip. The left channel of the chip is filled with VEGF solution (10µg/
10 µL) and the right channel is filled with buffer solution (deionized water). Modified and reprinted from ref (Al-Fandi et al., 2017). Reproduced with
permission, Copyright 2017, by the authors. Licensee MDPI, Basel, Switzerland. (B) Schematic diagram of using microswimmer cell sensors to detect
multiple biomarkers and then classify cancer cells. Modified and reprinted from ref (Zhang Y. et al., 2023). Reproduced with permission, Copyright
2023, Elsevier. (C)Microswimmers release anti-ErbB2-modified magnetic nanoparticles to target and label SKBR3 cells. Modified and reprinted from ref
(Ceylan et al., 2019). Reproduced with permission, Copyright 2019, American Chemical Society. (D) Schematic diagram of RPNRs visualizing tumor
lesions based on changes in local physicochemical properties. Modified and reprinted from ref (Li L. et al., 2023). Reproduced with permission, Copyright
2023, The Author(s). (E) The gripper captures and excises cells from a live cell mass. Modified and reprinted from ref (Breger et al., 2015). Reproduced with
permission, Copyright 2015, American Chemical Society.
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Currently, in the field of tumor surgery, the main application
scenarios ofMNRs are single-cell biopsy (Jin et al., 2020) and drilling
(Xi et al., 2013). Many tumor lesions are highly heterogeneous at the
single-cell level, and operations at the single-cell level can reduce
invasiveness and improve accuracy. Breger et al. designed amagnetic
field-driven thermally responsive gripper (Breger et al., 2015). The
gripper is fully folded in one direction in a cold storage fluid and
then deployed to the desired part of the body using a catheter. When
the gripper transitions from a cold state to a physiological
temperature, a self-folding transition occurs, through which cells
in fibroblast bundles can be grasped and removed. The gripper is
finally retrieved using an external magnetic field and catheter
(Figure 4E). In addition, other research teams have also achieved
the extraction of intact cells from free pig liver tissue (Gultepe et al.,
2013) and esophagus (Ghosh et al., 2021), showing great potential
for clinical application. In addition to single-cell biopsy, MNR can
also drill holes in single cells and open cell membranes to create cell
incisions. Researchers have designed a “dual-function micro-
dagger” that provides the dual functions of cell membrane
drilling and drug release to achieve non-invasive surgery and
precise killing of single cells (Srivastava et al., 2016).

Although single-cell level operations cannot be extended to
clinical practice today, precision tumor surgery offers distinct
advantages that cannot be achieved through traditional surgical
techniques. We believe that this is a research direction with potential
and development.

3.3 Drug delivery

Drug delivery and targeted therapy are the core functions of
using MNRs to treat malignant tumors. Under traditional drug
delivery methods, the amount of effective drug reaching the target
area is less than 1% of the total amount of drug administered. To
achieve the target treatment effect, side effects will increase
significantly. Using MNRs to deliver drugs can target specific
lesions to achieve directional and controllable drug release, which
can effectively avoid the high doses and serious adverse reactions of
traditional tumor treatments and achieve targeted drug delivery.

When using MNRs to treat malignant tumors, the most common
cargo loaded on MNRs is chemotherapy drugs. For example, Nguyen
et al. developed a magnetically guided microrobot consisting of a
ceramic-based self-rolled body and an MNP coating (Nguyen KT.
et al., 2021). Because of the porous shape and large surface area of the
microrobot body, it can support high-load MNP, drugs (DOX), and
X-ray contrast agents, making it have functions such as magnetic
control, killing, and real-time imaging under X-ray. The researchers
verified the effect of blood flow on the performance of the microrobot
in the body by constructing a fluid channel. The results showed that
the microrobot can smoothly use an external magnetic field to control
its precise reach to the lesion site and release drugs under real-time
X-ray imaging (Figure 5A). Park et al. designed a magnetic
nanoparticle encapsulated with DOX and magnetite, which
combined with E. coli and used magnetic guidance and chemotaxis
to precisely target 4T1 tumor cells. Compared with the conventional
drug treatment group, this smart drug delivery system increased the
accumulation of DOX in 4T1 cells and enhanced the anti-cancer
efficiency (Park et al., 2017).

In addition to common chemotherapy drugs, MNRs can also be
loaded with inhibitors or siRNA targeting specific targets. Although
such inhibitors and siRNA can significantly inhibit specific targets in
tumor cells and kill tumors, normal cells will also be affected and
cause strong side effects. Therefore, researchers have designed a
precise delivery system based on MNRs to reduce side effects and
improve treatment efficiency. Mu et al. developed a novel hydrogel
microrobot to deliver a PRMT5 inhibitor EPZ01566, which can
selectively inhibit the growth of MTAP-deficient osteosarcoma
under the control of an external magnetic field (Figure 5B) (Mu
et al., 2022). To perform RNA interference at the post-
transcriptional level and inhibit the expression of specific
proteins, researchers designed a self-propelled nanowire using the
siRNA-DNA nanotechnology platform to deliver siRNA inside cells.
The study used green fluorescent protein-targeted siRNA (siGFP),
which can cut the target mRNA when entering the cell, thereby
silencing the formation of new fluorescent proteins. The rapid
disappearance of green fluorescence in the experiment can reflect
the effective delivery of siRNA inside the cell. Driven by ultrasound,
the acoustic nanomotor can silence HEK293-GFP cells up to 94%
(Figure 5C) (Esteban-Fernández de Ávila et al., 2016). This provides
an outstanding smart delivery platform for the precise delivery of
siRNA to tumors.

In addition to being loaded with chemotherapy drugs and
therapeutic compounds, micro-/nanorobots loaded with
therapeutic stem cells can solve the problem of current cell
therapies being unable to target therapeutic cells to diseased parts
of the body (Jeon et al., 2019). For example, Wei et al. developed a
magnetically driven microrobot with a burr-like porous spherical
structure and carried human induced pluripotent stem cell-derived
mesenchymal stem cells that can deliver glutathione peroxidase 3
(hiPSC-MSC-GPX3), which plays a role in inhibiting cancer cell
proliferation in cancer treatment (Wei et al., 2020). Under the action
of an external magnetic field, the microrobot can achieve automatic
navigation for cell delivery in vascular tissue. In vivo experiments,
the engineered stem cells released by the microrobot can
significantly reduce the growth of orthotopic liver
tumors (Figure 5D).

To achieve targeted tumor therapy using MNR carriers,
appropriate drug release is as important as efficient delivery.
Reasonable drug release can not only increase local drug
concentration but also reduce damage to normal cells. The most
common mode of local drug release in tumors is pH-responsive
release (Xin et al., 2021; Darmawan et al., 2022). For example,
researchers designed a small biomedical robot based on a metal
organic framework (MOFBOTs) and studied the drug release
pattern of the robot’s drug delivery component (Fe@ZIF-8) by
comparing the drug release of Fe@ZIF-8-loaded DOX under
acidic (pH = 6, which is also the extracellular environment of
tumor cells) and physiological (pH = 7.4) conditions. At acidic
pH, DOX was rapidly released within the first 12 h, and complete
drug release was observed within 48 h. In contrast, no DOX release
was observed within 96 h at physiological pH. This shows that Fe@
ZIF-8 can maintain stable drug loading under physiological
conditions and release drugs under acidic conditions in the
tumor matrix (Figure 5E) (Terzopoulou et al., 2020). In addition
to pH-responsive release, there are also drug release modes that are
triggered by temperature (Zhou et al., 2023) and light (Sridhar et al.,
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FIGURE 5
(A) Schematic diagram of the assembly, imaging, drug release, and automated retrieval of the targeted drug delivery microrobot. Modified and
reprinted from ref (Nguyen KT. et al., 2021). Reproduced with permission, Copyright 2021, Wiley-VCH. (B) In vitro experiments of drug-loaded hydrogel
microrobots. D + M, Microrobots with EPZ015666; D, Dissociative EPZ015666; M, Drug-free microrobots. Modified and reprinted from ref (Mu et al.,
2022). Reproduced with permission, Copyright 2022, The Authors. (C) Schematic diagram and fluorescence images of nanomotor silencing genes
(scale bars, 1,000 μm). Modified and reprinted from ref (Esteban-Fernández de Ávila et al., 2016). Reproduced with permission, Copyright 2016, American
Chemical Society. (D) SME and confocal images of the microrobot when empty and loaded with cells. Modified and reprinted from ref (Wei et al., 2020).
Reproduced with permission, Copyright 2020, Wiley-VCH. (E) The release amount of DOX in buffer solutions with different pH values. Modified and
reprinted from ref (Terzopoulou et al., 2020). Reproduced with permission, Copyright 2020, Wiley-VCH.
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2022). Therefore, not only can the physicochemical properties of the
tumor microenvironment be used to design drug-responsive release,
but changes in external conditions can also be artificially created to
promote drug release.

The drug delivery targeted therapy mode provided by MNR is
expected to change the current situation of low drug delivery
efficiency of traditional drug delivery modes, realize the efficient
transportation and conditional release of drugs or other therapeutic
substances, and provide a solution for “real” targeted therapy in
tumor treatment.

4 Conclusion and perspectives

MNR is one of the most promising tools in nanomedicine
(Zhang et al., 2025; Yu S. et al., 2022). It can optimize the current
early diagnosis and precision treatment strategies in the field of
tumors, thereby improving the prognosis of tumor patients. In
recent years, with the development of nanotechnology and other
multidisciplinary disciplines, the use of MNRs in tumor
treatment has evolved from theory to practice and has
gradually matured. However, further development and
verification are still needed from the laboratory to the actual
clinical treatment of patients. This review starts with the driving
mode of MNR and its application in the field of tumors and
reviews the development process and latest progress of MNR in
recent years.

Although MNRs have made encouraging progress in treating
malignant tumors in vitro and in vivo, there are still some limitations
in their applications:

(1) Although the driving of micro-/nanorobots has achieved
remote control and movement in low Reynolds number
environments, solutions are still needed to solve the
problems of byproducts generated to generate propulsion,
the ability of external fields to penetrate tissues, and the
damage of high-intensity external fields to normal tissues.
Therefore, we should not be limited to the current driving
methods of micro-/nanorobots but should explore new
driving modes and driving combinations.

(2) Although in vitro and in vivo experiments have confirmed
that MNR can accurately reach the tumor site under the
control of driving force, different tumors are located in
different organs and have different physiological and
pathological characteristics and environments. Therefore, it
is necessary to optimize the targeting path according to the
part of the body where the tumor is located, and even design
individualized solutions according to the different conditions
of different patients. At the same time, we should also explore
an MNR real-time tracking system that is more suitable for
clinical use. The establishment of such a visualization system
can improve treatment accuracy and shorten the average
treatment time of patients.

(3) At present, most strategies for treating tumors with MNRs are
single-drug delivery solutions. However, due to the
heterogeneity and drug resistance of tumors, tumor cells
may not be sensitive to the delivered drugs, resulting in
insufficient treatment intensity. Therefore, in the process of

delivering drugs to treat tumors, the driving mode can be
combined to enhance the tumor treatment effect. For
example, light-field-driven MNRs can be combined with
photothermal or photodynamic therapy; chemical-driven
MNRs can be combined with chemodynamic therapy to
enhance the tumor-killing effect.

(4) When using non-organic materials to treat diseases, the
inevitable topic is biosafety, especially for MNRs. In
addition, MNRs also involve mechanical failure issues.
Therefore, when designing and testing MNRs, materials
with good biocompatibility are selected, and strict quality
control is performed on MNRs to reduce their failure rate to
an acceptable range. In addition, due to their excellent
biocompatibility, even if a failure occurs, it will not affect
the normal function of the body.

Although many technical problems still need to be solved before
MNRs can be applied to clinical diagnosis and treatment, we believe
that with the multidisciplinary cooperation and development related
to MNRs, researchers can overcome the difficulties and enable
MNRs to perform more and more complex medical tasks,
providing more precise treatment for future cancer patients.
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