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Heart disease is a leading cause of death worldwide, highlighting the need for
effective treatments for hypertension, arrhythmias, and high cholesterol. This
study applies chemical graph theory to analyze the properties of seventeen heart
disease drugs by evaluating minimal dominating sets and counting node
appearances in these sets. Using Python, six domination degree-based
topological indices from the ϕd-polynomial are computed. Regression
analysis, including curvilinear and multilinear models, identified correlations
between these indices and the physicochemical and ADMET properties of
these drugs. QSPR models are developed to assess the ability of these indices
to predict key properties, offering insights into their effectiveness for drug design.
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1 Introduction

Heart disease drugs, also known as cardiovascular drugs, are essential in treating
conditions affecting the heart and blood vessels, including hypertension, coronary artery
disease, heart failure, and arrhythmias. Beta blockers such as atenolol, metoprolol, esmolol,
nadolol, propranolol, and timolol reduce heart rate and blood pressure, making them
effective for hypertension, angina, and heart attack prevention. Diuretics like amiloride,
chlortalidone, hydrochlorothiazide, furosemide, triamterene, and bumetanide manage fluid
retention and high blood pressure by promoting the excretion of excess salt and water.
Other drugs, including methyldopa, minoxidil, clonidine, and enalapril, lower blood
pressure through various mechanisms as beta-blockers and diuretics are also anti-
hypertensives. Antianginal drugs like nitroglycerin alleviate chest pain by increasing
blood flow to the heart, while anticoagulants and antiplatelet drugs such as warfarin
and clopidogrel prevent blood clots. Antiarrhythmics like sotalol regulate abnormal heart
rhythms. These drugs play a vital role in managing heart disease by addressing both
symptoms and underlying causes.

The selection of these heart disease drugs for analysis reflects their importance in
treating conditions like hypertension, arrhythmias, and thrombosis, as well as their diverse
pharmacological mechanisms. These drugs face unique ADMET (Absorption, Distribution,
Metabolism, Excretion, and Toxicity) challenges, such as variable bioavailability due to
solubility and gastrointestinal metabolism, seen with nitroglycerin and warfarin (Hardman
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and Limbird, 2001). Lipophilicity influences their distribution,
affecting tissue targeting and blood-brain barrier permeability,
particularly in drugs like propranolol and clonidine (Lipinski
et al., 1997). Hepatic metabolism, often mediated by cytochrome
P450 enzymes, poses risks of drug-drug interactions, as observed
with clopidogrel and metoprolol. Renal clearance is a key factor for
diuretics like furosemide and hydrochlorothiazide, while toxicity
risks, such as arrhythmias with sotalol or severe hypotension with
minoxidil, highlight safety challenges (Zanger and Schwab, 2013).
Analyzing these drugs provides valuable insights into their
molecular properties and enhances ADMET predictions through
Quantitative Structure-Property Relationship (QSPR) modeling.

Topological indices (TIs) or molecular descriptors are
mathematical representations of a compound’s molecular
structure, where atoms are treated as vertices (nodes) and
chemical bonds as edges (lines) in a graph. These indices capture
key structural features such as atom connectivity, branching, and the
overall shape of the molecule. TIs play a crucial role in various fields,
particularly in QSPR and Quantitative Structure-Activity
Relationship (QSAR) analyses, which predict the physicochemical
and biological properties of molecules based on their structural
characteristics. This provides valuable insights in drug design,
environmental chemistry, and material science. The development
of TIs began in the 1940s with early work in chemical graph theory.
Wiener introduced molecular graphs in 1947 and proposed the
Wiener index, a distance-based descriptor based on the sum of
distances between all pairs of vertices in a molecule’s graph (Wiener,
1947). This laid the foundation for advancements in molecular
property prediction. In 1975, Randic introduced the Randic
index, which measures the balance of connectivity between atoms
and predicts various physicochemical properties, including boiling
point, solubility, and molecular weight (Randic, 1975). The
development of computational tools and these indices enabled
systematic exploration of molecular structure-property
relationships, with QSPR/QSAR becoming a powerful tool in
cheminformatics by the 1990s for modeling properties such as
toxicity, bioactivity, and chemical reactivity. The development of
more advanced indices, such as geometric and topological polar
surface area, molecular volume, and electronic descriptors, further
expanded the scope of QSPR/QSAR models. Using TIs and other
molecular descriptors, such as electronic and geometric features,
QSPR analyses develop statistical models that correlate chemical
structure with desired properties. There is a potential to use QSPR
indices to aid in accelerating drug discovery and material design.

Extensive research has been conducted to explore the
applications of TIs in QSPR analyses, particularly in
understanding the physicochemical and ADMET properties of

chemical structures. Shanmukha et al. utilized degree-based TIs
for anticancer drugs, combined with QSPR analysis, to establish
correlations with various physicochemical properties (Shanmukha
et al., 2020). Tamilarasi and Balamurugan extended QSPR studies to
anti-COVID drugs targeting the Omicron variant, incorporating
degree-based TIs for ADMET evaluations (Tamilarasi and
Balamurugan, 2022). In a recent study (Tamilarasi and
Balamurugan, 2024), new reverse sum Revan indices were
introduced for analyzing the physicochemical and
pharmacokinetic properties of anti-filovirus drugs, highlighting
the adaptability of TIs in predicting the properties of diverse
drug categories. Similarly, Mahboob et al. explored molecular
descriptors in QSPR analysis for kidney cancer therapeutics
(Mahboob et al., 2024b) and applied linear regression models to
analyze anti-hepatitis drugs (Mahboob et al., 2024a). Muhammad
Shoaib et al. conducted a QSPR analysis of Alzheimer’s compounds
using TIs and regression models to effectively predict key properties
(Sardar and Hakami, 2024). Chaluvaraju and T. (2024) performed a
QSPR analysis of the generalized irregular neighborhood valency
descriptor for some basic polycyclic aromatic hydrocarbons, while in
another study (Asha et al., 2022), they investigated different types of
augmented Zagreb indices for selected chemical drugs, developing a
QSPR model. Additional advancements in this area can be found in
the works (Sardar et al., 2024; Sardar et al., 2020; Sardar et al., 2025;
Sardar and Xu, 2024). Collectively, these studies emphasize the
critical role of TIs in enhancing the predictive power and reliability
of QSPR models, facilitating advancements in drug design and the
evaluation of therapeutic compounds.

Among the prominent contemporary TIs, domination
topological indices (DTIs), introduced by Ahmed A. M. Hanan
et al. (2021), are noteworthy for their innovative integration of two
fundamental concepts in graph theory: topological indices and
domination. These indices are intrinsically linked to the minimal
dominating sets of a chemical graph, providing a unique perspective
on the structural properties of molecular graphs. Although a few
studies have focused on domination topological indices (Wazzan
and Ahmed, 2024; Shashidhara R. et al., 2023; Shashidhara A. A.
et al., 2023; Javaraju et al., 2021), research in this area remains
limited. Furthermore, while several studies have focused on the
QSPR analysis of the physicochemical properties of heart disease
drugs (Arockiaraj et al., 2024; Hasani and Ghods, 2023; Hakeem
et al., 2024), no research has been conducted on their ADMET
properties. Therefore, this study is unique and can assist chemists in
predicting the ADMET properties of these drugs.

There are eight sections in this article. Section 2 introduces
the fundamental formulae used in the calculations. The
methodology and working approach are detailed in Section 3.

TABLE 1 The detailing of some domination TI’s.

D indices f(ddu,ddv)
DM1*(Γ) ddu + ddv

DF*(Γ) d2du + d2dv

DM2(Γ) dduddv

DH(Γ) [ddu + ddv]2

TABLE 2 Computation of domination TI’s from ϕd-polynomials.

D indices Computation fromϕd(Γ)
DM1*(Γ) (Dα +Dβ)(ϕd(Γ))|α�β�1

DF*(Γ) (D2
α +D2

β)(ϕd(Γ))|α�β�1

DM2(Γ) (DαDβ)(ϕd(Γ))|α�β�1

DH(Γ) (Dα +Dβ)2(ϕd(Γ))|α�β�1
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Section 4 presents the study’s primary findings, including the
evaluation of six domination topological indices for seventeen
heart disease drugs. In Section 5, inverse linear, quadratic, and
cubic regression models are developed, and the correlations
between the indices and properties are analyzed. This section
also provides a detailed discussion on the significance of DTIs
and compares the results comprehensively. Section 6 covers

multilinear regression analysis, offering further insights into
the relationships between the indices and drug properties.
Section 7 provides a thorough analysis of the study’s findings,
highlighting their potential contributions to existing literature, as
well as discussing the broader implications and limitations of the
research. The article concludes with a summary in Section 8,
followed by a list of relevant references.

FIGURE 1
Molecular structures of heart disease drugs. (A) Enalapril. (B) Metoprolol, (C) Propranolol, (D) Nitroglycerin, (E) Clopidogrel, (F) Timolol, (G)
Hydrochlorothiazide, (H) Furosemide, (I) Warfarin, (J) Clonidine, (K) Atenolol, (L) Sotalol, (M) Bumetanide, (N) Nadolol, (O) Esmolol, (P) Minoxidil, (Q)
Methyldopa.
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2 Basic definitions

Given a connected simple graph Γ, where a collection of nodes is
V(Γ), and the collection of lines is E(Γ). Consider a subset D of
V(Γ). For any node x ∉ D, there exists a node y ∈ D such that x and
y are connected by a line, thenD ⊆ V(Γ) is considered a dominating
set of Γ. Refer to examples in Haynes (2017); Ahangar et al. (2022);
Abdlhusein and Al-Harere (2021); Raju and Nayaka (2023) for
further information on domination in graphs. For a dominating set
D � {x1, x2, . . . , xr}, if D − xi is not a dominating set then D is
known as the minimal dominating set (M.D.S). The total number of
M.D.S’s of Γ is represented as Tp(Γ). DTIs are new degree-based
topological indices introduced by Ahmed A. M. Hanan et al. (2021).
These are based on the domination degree.

Definition 2.1. (Ahmed et al., 2021a) For every node v in V(Γ), the
domination degree of v is equal to the number of M.D.S.’s of Γ that
contain v, represented by ddv. The minimum and maximum
domination degree of Γ is δd(Γ) � δd � min{ddv:
v ∈ V(Γ)} and Δd(Γ) � Δd � max{ddv: v ∈ V(Γ)}, respectively.

The definitions of the first, second, and modified first Zagreb
DTIs (Ahmed A. M. Hanan et al., 2021) are as given in
Equations 1–3:

DM1 Γ( ) � ∑
v∈V Γ( )

d2
dv

(1)

DM2 Γ( ) � ∑
uv∈E Γ( )

dduddv (2)

DM1* Γ( ) � ∑
uv∈E Γ( )

ddu + ddv[ ] (3)

The following are the definitions of the forgotten, hyper and
modified forgotten DTIs (Ahmed H. et al., 2021) as given in
Equations 4–6:

DF Γ( ) � ∑
v∈V Γ( )

d3
dv

(4)

DH Γ( ) � ∑
uv∈E Γ( )

ddu + ddv[ ]2 (5)

DF* Γ( ) � ∑
uv∈E Γ( )

d2
du
+ d2

dv
[ ] (6)

To derive different TI’s in the scientific realm, algebraic
polynomials, the significant Hosoya polynomials, and others
(Ahmad et al., 2018; Diudea, 2006; Diudea et al., 2008; Knor and
Tratnik, 2023; Chou and Witek, 2014; Balasubramanian, 2023;
Ibrahim et al., 2022; Masmali et al., 2023; Chen, 2023; Aziz et al.,
2023; Ali et al., 2022), are essential tools. These polynomials,
particularly the distance-based ones such as the Wiener (1947)
and hyper-Wiener index (Cash et al., 2002), provide information
about the structures of molecules. According to studies (Afzal et al.,
2021; Deutsch et al., 2014; Rai et al., 2020; Rasool et al., 2023), the
M-polynomial, which was developed in 2015 (Afzal et al., 2020), is
notable for its ability to clarify degree-based graph invariants.

Using polynomial methods, the authors introduced and
produced the domination topological indices (Shashidhara R.
et al., 2023). In this study, ϕd-polynomial is used to evaluate the
DTIs of the molecules.

The ϕd-polynomial is stated as
ϕd(Γ, α, β) � ∑δd ≤ k≤ l≤Δd

ddm(k,l)αkβl, where ddm(k,l)(Γ) � |{e �
uv: ddu � k, ddv � l}|.

FIGURE 2
Molecular graph of Enalapril.

TABLE 3 ddv of each node of Γ.

ddv 840 1050 1134 1176 1260 1350 1386 1428 1470

Number of nodes 1 4 1 1 2 3 4 1 1

ddv 1500 1575 1650 1680 1764 - - - -

Number of nodes 2 2 3 1 1 - - - -
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The domination (D) indices on E(Γ) can be expressed as follows
as give in Equation 7:

D Γ( ) � ∑
uv∈E Γ( )f ddu, ddv( ) (7)

Then, Table 1 gives the detailing of some DTIs. Hence, the DTIs
from ϕd-polynomials are defined as in Table 2, in which
Dα(f(α, β)) � α ∂(f(α,β))

∂α and Dβ(f(α, β)) � β ∂(f(α,β))
∂β .

In this article, the DTIs of Γ of some heart disease drugs via
ϕd-polynomials are derived.

3 Method and material used for
computations

In this study, two primary computations are conducted:
evaluating the DTIs and analyzing statistical parameters. Given
that each descriptor is additive, results are obtained by summing
the terms. The indices DM1*(Γ), DF*(Γ), DM2(Γ), DH(Γ), DM1(Γ),
and DF(Γ) are calculated using the node and line partition method
based on node domination degrees. These partitions are then used to
derive the ϕd-polynomials. Python software is employed for
verification of these calculations, while scientific methods are
applied. Experimental data for heart disease drugs are sourced
from the chemical sites ChemSpider, PubChem and pkCSM.
Regression models use the DTIs and experimental values as inputs.
SPSS software manages the statistical computations, and Microsoft
Excel can be used for regression calculations. The steps involved in
using regression modeling and topological indices to analyze the
properties of heart disease drugs are as follows:

• Domination Degree Calculation: Calculate the domination
degrees for each node and partition the lines of each heart
disease drug structure accordingly.

• DTI Calculation: Compute the DTIs by inserting the values of
each line partition into the equations of the ϕd-polynomial.

• Data Collection: Obtain experimental values for the
physicochemical properties of heart disease drugs from
ChemSpider and PubChem, and ADMET properties
from pkCSM.

• Regression Modeling: Develop inverse curvilinear and
multilinear regression models using both estimated and
experimental values.

• Statistical Analysis: Use SPSS software to analyze the
relationship between experimental and estimated values,
and determine correlations between the indices and
properties.

• Descriptor Significance: Identify molecular descriptors with
strong correlations as significant, while those with weak
correlations are deemed less effective in describing the
properties of heart disease drug structures.

4 Main results

In this section, the above mentioned DTIs are evaluated for
17 heart disease drugs (see Figure 1) using ϕd-polynomials.

Consider Enalapril. Let Γ be the molecular graph of Enalapril.
Figure 2 represent Γ with order 27 and size 28. To compute the total
number of M.D.S’s for Γ, start by splitting Γ into two components S1
and S2 with nodes {v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14}
and {v9, v15, v16, v17, v18, v19, v20, v21, v22, v23, v24, v25, v26, v27},
respectively. First, compute the number of M.D.S’s for each
component, obtaining Tp(S1) � 56 and Tp(S2) � 84. Then,
combine every M.D.S of S1 with every M.D.S of S2, resulting in
56 × 84 � 4704 potential sets. Next, verify the minimality of these sets
by removing redundant nodes: if a node vi in a combined set is
redundant (i.e., vi is in a minimal dominating set of S1 and is adjacent
to any node in S2), then vi is removed. After checking and removing
redundancies, the total number of M.D.S’s for Γ is Tp(Γ) � 3150.

Remark 4.1. Finding all M.D.S’s in a graph with more than
10 nodes manually is challenging. Therefore, one can use
Algorithm 1 to identify all M.D.S’s and determine the node
appearance count in the graph. This approach leverages a
combination of brute-force methods and verification steps,
specifically tailored for scenarios where the graph size is
manageable. The corresponding Python code for this algorithm is
available on GitHub.

By evaluating the domination degree of each node of Γ, the
following Tables 3, 4 are obtained.

Let ddm(k,l)(Γ) � |{e � uv: ddu � k, ddv � l}|. Based on the
domination degree of each line’s end nodes, the line set of Γ is
divided into 19 partitions, as shown in Table 4. The expression
ϕd(Γ, α, β) � ∑

δd ≤ k≤ l≤Δd
ddm(k,l)αkβl is then evaluated, serving as

Supplementary Equation S1. The DTIs of Γ are evaluated from the

TABLE 4 Line division according to the domination degree of the end nodes of each line.

(k, l) (840, 1470) (840, 1575) (1050, 1386) (1050, 1428) (1050,1050)

ddm(k,l) 1 1 3 1 1

(k, l) (1050,1350) (1050, 1500) (1134, 1260) (1134, 1428) (1176, 1260)

ddm(k,l) 2 2 1 1 2

(k, l) (1176, 1386) (1350, 1350) (1386, 11764) (1386, 1500) (1260, 1386)

ddm(k,l) 1 2 1 1 2

(k, l) (1428, 1470) (1575, 1575) (1500, 1650) (1470, 1680) -

ddm(k,l) 1 1 3 1 -
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ϕd-polynomial using the Python code, which is available at GitHub.
The computed values are

DM1* Γ( ) � 74403, DF* Γ( ) � 101375127,

DM2 Γ( ) � 49431141, DH Γ( ) � 200237409.

Also, DM1(Γ) � ∑
v∈V(Γ)

d2dv � 51874146 and DF(Γ) �
∑

v∈V(Γ)
d3dv � 74699221950.

Require: A graph Γ � (V,E)
Ensure: A list of minimal dominating sets in Γ and a count

of node appearances

Check if a set is a dominating set

Initialize nodes_covered as the set of all nodes in S

and their neighbors.

Return True if nodes_covered � V, otherwise False.

Check if a set is a minimal dominating set

if S is not a dominating set then

Return False.

end if

for each node u in S do

Create a copy of S, called S′.
Remove u from S′.
if S′ is a dominating set then

Return False.

end if

end for

Return True.

Find all minimal dominating sets

Initialize minimal_dominating_sets as

an empty list.

for each r from 1 to |V| do
Generate all combinations of r nodes from V.

for each combination S do

if S is a minimal dominating set then

Add S to minimal_dominating_sets.

end if

end for

end for

Return minimal_dominating_sets.

Count vertex appearances in minimal dominating sets

Initialize node_count with each node in V having a

count of 0.

for each minimal dominating set S

in minimal_dominating_sets do

for each node u in S do

Increment node_count[u] by 1.

end for

end for

Return node_count.

Execution

Call the procedure to find all minimal

dominating sets.

Call the procedure to count node appearances.

Return the list of minimal dominating sets and the

node appearance counts.

Algorithm 1. Finding Minimal Dominating Sets and Node Appearance Count.

The 3D plot of the ϕd-polynomial for Enalapril, depicted in
Figure 3, is generated using MATLAB. The analysis reveals that the
values obtained from the ϕd-polynomial exhibit distinct behaviors in
relation to the parameters α and β. By adjusting these parameters,
one can effectively control the values of the ϕd-polynomial. Using
the method described for the drug Enalapril, the DTIs are computed
for 16 additional heart disease drugs. Table 5 presents the computed
data for these indices.

5 Curvilinear regression analysis of
heart disease drugs

Numerous statistical methods are used in regression analysis to
calculate the correlations between a dependent variable and multiple
independent variables. There are several varieties of this technique,
including multiple linear, nonlinear, and linear regression. Among
the most popular models are multiple linear regression and simple
linear regression. However, nonlinear regression analysis is better
suitable when there is a nonlinear relationship between the variables.
Simple linear, quadratic, and cubic regression are all performed
using the following model Equations 8–10 (Roustaei, 2024).

P � a1 DTI( ) + b (8)
P � a1 DTI( )2 + a2 DTI( ) + b (9)

P � a1 DTI( )3 + a2 DTI( )2 + a3 DTI( ) + b (10)
Here, DTI represents the independent variable, P (which could

be a physicochemical or ADMET property) is the dependent
variable, ai; 1≤ i≤ 3 are the regression coefficients, and b is the
constant term. To obtain the best fitting model, we considered the
inverse of the DTI values and the physicochemical or ADMET
properties in this study. The following model Equations 11–13 are
used in this analysis.

1
P
� a1

1
DTI

( ) + b (11)
1
P
� a1

1
DTI

( )
2

+ a2
1

DTI
( ) + b (12)

FIGURE 3
Plotting of ϕd-polynomial of enalapril.
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1
P
� a1

1
DTI

( )
3

+ a2
1

DTI
( )

2

+ a3
1

DTI
( ) + b (13)

Multivariate regression is the most common type of linear
regression. It shows how a single dependent variable is linearly
correlated with multiple independent variables. The model is as
follows in Equation 14 (Roustaei, 2024):

1
P
� ∑

n

i�1
ai

1
DTI

( )
i

+ b. (14)

Where, ai; 1≤ i≤ n are the regression coefficients and b is the
constant term.

Table 5 presents the calculated DTI values for the selected heart
disease drugs, which were determined using Python software. The
experimental data for the drugs are obtained from ChemSpider and
PubChem and are detailed in Table 6. This data includes Molar
Refraction (MR), Polarizability (P), Molar Volume (MV), Melting
Point (MP), and Molecular Weight (MW). Additionally, the
experimental values for the ADMET properties of the drugs are
sourced from pkCSM and are listed in the Table 7. These values
encompass Oral Rat Chronic Toxicity (OC), Caco2 Permeability
(Caco2), Skin Permeability (SKIN), Intestinal absorption (IA), and
T. Pyriformis toxicity (TP).

Table 8 depicts the correlation coefficient (R) between these TIs
and the physicochemical properties of the drugs, derived from
inverse linear regression analyses. The highest R value is
emphasized in bold. Table 9 outlines the optimal linear
regression equations for approximating the physicochemical
properties of these drugs, characterized by the maximum R value,

the minimum standard error (SE), the maximum F value and
significance (P) value less than .10. Table 10 displays the R
obtained from quadratic regression analyses, with the highest R
value emphasized in bold. Table 11 presents the quadratic regression
equations that best approximate the physicochemical properties of
the drugs studied. Furthermore, Table 12 shows the R from cubic
regression analyses, and Table 13 lists the corresponding cubic
regression equations.

The table compares R from inverse linear, quadratic, and cubic
regression models, analyzing relationships between domination
indices (DM1*, DF*, DM2, DH, DM1, DF) and physicochemical
properties (MR, P, MV, MP, MW). It highlights the trends in
correlations under different regression models.

For the linear regression model, DM1* exhibits the strongest
correlations with MR (R � 0.964) and P (R � 0.963), indicating
strong linear relationships. Other properties, such asMV (R = 0.905)
and MP (R = 0.638), also exhibit good correlations. DH achieves a
notable correlation with MP (R � 0.963), but indices like
DM2 perform poorly, especially with MP (R � 0.151). These
results suggest that inverse linear models are effective for
predicting the physicochemical properties of heart disease drugs.

The quadratic regression model improves correlations,
capturing nonlinear relationships. For DM1*, R increases to
0.968 and 0.967 for MR and P, respectively. DH shows an
excellent correlation with MP (R � 0.990), while DM1 performs
well for MV (R � 0.924). However,DM2 exhibits weaker
performance with MP (R = 0.423). Overall, inverse quadratic
models prove effective for predicting the physicochemical
properties of heart disease drugs.

TABLE 5 DTIs of 17 heart disease drugs.

Drugs DM1* DF* DM2 DH DM1 DF

Enalapril 74403 101375127 49431141 200237409 51874146 74699221950

Metoprolol 5174 732078 347169 1426416 346940 51071346

Propranolol 5042 646492 318215 1282922 333947 45987239

Nitroglycerin 597 12945 25753 6404 7509 171591

Clopidogrel 18142 7272140 3585416 14442972 3541100 1496155096

Timolol 7614 1345370 659611 2664592 718478 134875043

Hydrochlorothiazide 1332 51844 24028 99900 23696 932074

Furosemide 7365 1270449 613062 2496573 611755 107769039

Warfarin 13878 4078100 1882880 7843860 1925380 593539224

Clonidine 1319 58769 28837 116443 27403 1238517

Atenolol 3541 341349 163097 667543 190242 17337492

Sotalol 1572 71738 33910 139558 41067 2075401

Bumetanide 28551 16118757 7795211 31709179 8121561 4569726806

Nadolol 11246 2800530 1378695 5557920 1488290 401836542

Esmolol 11792 3411104 1652216 6715536 1812712 552344512

Minoxidil 1200 46840 22476 91792 21656 862976

Methyldopa 795 21497 10592 42681 10527 294615
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The cubic regression model provides the best overall fit,
achieving the highest correlations across most combinations. For
DM1*, the cubic model achieves R � 0.977 for both MR and P. DF*
and DM1 exhibit near-perfect correlations with MP (R � 0.991).
DM1 also shows strong correlations with MV (R � 0.930). Even
DM2, which performed poorly in earlier models, shows slight
improvement under the cubic model. This highlights the cubic
model’s ability to handle complex relationships. Key insights
derived from Tables 8–13:

• Among the six domination indices, DM1* and DF are the
most effective for predicting properties like MR, P, MV,
MP, and MW.

• DM1* provides the bestMRmodels withR � 0.964, 0.968, and
0.977 for linear, quadratic, and cubic regression models,
respectively. A close alternative MR model is derived from
DF*, DM1, and DF with R � 0.97 in the cubic model.

• DM1* is the best predictor for P, achieving R � 0.963, 0.967,
and 0.977 across the three models. A close alternative cubic
model is derived from DF*, DH, DM1, and DF, with R � 0.97.

• The best cubic model for MV comes from DF (R � 0.935),
followed closely by DM1 (R � 0.93). Linear and quadratic
models show the best fit with DM1* (R � 0.905) and
DM1 (R � 0.924).

• The cubic regression models of DF* and DF provide the best
correlations (R � 0.991). For linear and quadratic models, DH
shows strong performance (R � 0.963 and R � 0.990).

• DM1* offers the best MW models, with R � 0.796, 0.845, and
0.845 across the three models.

The cubic regression model demonstrates consistent superiority
over linear and quadratic models in predicting the physicochemical
properties of heart disease drugs. However, both linear and
quadratic models also show strong predictive performance and
closely approximate the observed physicochemical properties in
several cases. Among the indices, DM1* and DM1 emerge as the
most reliable predictors, especially for properties like MR,
P, and MP.

The comparison of actual and predicted values for
physicochemical properties using inverse linear, quadratic, and
cubic regression models (Supplementary Tables S1–S3)
highlights the predictive accuracy of the proposed models. All
regression models demonstrate a strong correlation between
actual and predicted values for most physicochemical
properties, such as MR, P, MP, and MW. However, their
accuracy varies depending on the specific property and
regression type. For instance, in the case of MR for drugs like
Enalapril and Metoprolol, the predictions from linear, quadratic,
and cubic regression models exhibit close alignment with the
actual values.

The results from Table 14 highlight the efficacy of cubic
regression models in correlating DTIs with various ADMET
properties of heart disease drugs. Among the indices, DF and
DH consistently exhibit high predictive accuracy, with nearly
perfect correlations (R > 0.99) for properties like OC,
demonstrating their reliability in such analyses. While DF
stands out as the best predictor for Caco2 permeability (R =
0.951), indices like DM2, DF*, and DM1 also show strong
correlations, making them suitable alternatives. For skin

TABLE 6 Physicochemical properties of drugs for heart disease.

Drugs MR P MV MP MW

Enalapril 99.5 39.5 312.6 143 376.4

Metoprolol 77.1 30.6 258.7 120 267.36

Propranolol 79 31.3 237.2 96 259.34

Nitroglycerin 39.2 15.5 135.9 13.5 227.09

Clopidogrel 85.5 33.9 244.3 158 321.8

Timolol 82.2 32.6 258.5 71.5 316.42

Hydrochlorothiazide 62.7 24.9 175.8 273 297.7

Furosemide 75.8 30 205.8 206 330.74

Warfarin 84.4 33.5 235.8 161 308.3

Clonidine 57.3 22.7 153.2 130 230.09

Atenolol 74.3 29.4 236.7 146 266.34

Sotalol 72.1 28.6 219.7 206.5 272.37

Bumetanide 94.1 37.3 270.5 230 364.4

Nadolol 85.8 34 260 124 309.4

Esmolol 81.7 32.4 272.4 - 295.37

Minoxidil 54.6 21.6 137.6 - 209.25

Methyldopa 53.9 21.4 150.5 300 211.21
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permeability, DM1* achieves the highest correlation (R = 0.718),
indicating its dominance for this property, whereas DF* is the
best fit for IA with R = 0.622. Interestingly, DM2 outperforms
other indices for TP with R = 0.673, emphasizing its unique
predictive capacity for this property.

These findings underscore the ability of DTIs to serve as robust
structural predictors, particularly for OC and Caco2, while
suggesting the need for further exploration of weaker
correlations, such as those observed with DM2 for OC and DH
for TP. The strong performance of DF in predicting both OC and
Caco2 permeability supports the hypothesis that specific
domination indices may reflect critical molecular features
influencing drug absorption and permeability. Additionally, the
moderate correlations for properties like skin permeability and
IA indicate that while cubic regression captures significant
relationships.

In conclusion, the cubic regression model effectively captures
the complex relationships between DTIs and ADMET properties,
offering a robust framework for predicting critical drug
characteristics. Table 15 highlights the most effective cubic
regression models for predicting these properties. The strong
correlations observed between most ADMET properties and
DTIs underscore the reliability of these indices as predictors.

To further enhance prediction accuracy, future studies could
explore the role of specific molecular features represented by DTIs
and investigate alternative modeling techniques. Overall, the results
demonstrate that DTIs are valuable tools for modeling the ADMET
properties of heart disease drugs.

6 Multivariate regression analysis

Supplementary Equations S2–S6 represent the best-fitting
multivariate regression models for the five physicochemical
properties of heart disease drugs. Table 16 presents the statistical
parameters between the computed DTIs and the physicochemical
properties of heart disease drugs using multilinear regression
models. The key statistical values displayed in this table are:

• This shows a very high positive correlation for the properties
listed, such as MR, P, MV, MP, and MW, all with values
greater than 0.93. These high R values suggest that the

TABLE 7 ADMET properties of drugs for heart disease.

Drugs OC Caco2 SKIN IA TP

Enalapril 2.099 0.334 −2.735 43.99 0.285

Metoprolol 1.606 1.387 −2.831 90.657 1.151

Propranolol 1.762 1.629 −2.783 92.304 1.073

Nitroglycerin 0.049 −0.279 −2.531 68.208 0.216

Clopidogrel 1.436 1.608 −2.597 90.84 0.352

Timolol 1.64 1.054 −2.955 86.261 0.257

Hydrochlorothiazide 2.105 0.35 −2.901 72.659 0.336

Furosemide 1.97 −0.157 −2.735 61.358 0.285

Warfarin 1.081 0.928 −2.754 96.161 0.591

Clonidine 1.438 1.48 −2.729 89.872 0.406

Atenolol 2.22 0.632 −3.022 67.901 0.509

Sotalol 1.655 0.985 −2.938 77.294 0.484

Bumetanide 1.737 0.939 −2.735 65.845 0.285

Nadolol 2.366 0.521 −2.89 65.391 0.246

Esmolol 2.163 0.661 −2.908 90.35 1.078

Minoxidil 1.098 0.653 −2.798 94.641 0.017

Methyldopa 1.995 −0.039 −2.735 44.13 0.285

TABLE 8 The correlation coefficient (R) determined using linear regression
models.

Domination index 1/MR 1/P 1/MV 1/MP 1/
MW

1/DM1* 0.964 0.963 0.905 0.638 0.796

1/DF* 0.948 0.947 0.822 0.766 0.685

1/DM2 0.724 0.722 0.812 0.151 0.767

1/DH 0.838 0.839 0.602 0.963 0.435

1/DM1 0.95 0.949 0.857 0.703 0.722

1/DF 0.92 0.92 0.771 0.795 0.633

TABLE 9 Linear regression equations offer the most precise estimates of
physicochemical properties.

Linear regression equation R F SE P

1
MR = 7.658 ( 1

DM1*) + 0.011 0.964 198.233 0.001 < 0.001

1
P = 19.367 ( 1

DM1*) + 0.028 0.963 192.634 0.003 < 0.001

1
MV = 2.504 ( 1

DM1*) + 0.004 0.905 67.478 0.001 < 0.001

1
MP = 424.657 ( 1

DF) + 0.005 0.963 166.296 0.005 < 0.001

1
MW = 1.062 ( 1

DM1*) + 0.003 0.796 25.897 0.000 < 0.001

TABLE 10 The correlation coefficient (R) determined using quadratic
regression models.

Domination index 1/MR 1/P 1/MV 1/MP 1/
MW

1/DM1* 0.968 0.967 0.921 0.893 0.845

1/DF* 0.953 0.952 0.909 0.962 0.807

1/DM2 0.826 0.824 0.898 0.423 0.796

1/DH 0.953 0.953 0.884 0.990 0.793

1/DM1 0.951 0.950 0.924 0.919 0.806

1/DF 0.932 0.931 0.885 0.974 0.780
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proposed multilinear regression models are highly effective in
predicting the corresponding properties.

• The R2 values indicate how well the regression models explain
the variance in the physicochemical properties. For most
properties, R2 values are very close to 1, particularly for
MR (0.9889) and P (0.9886), signifying that the models can
explain over .98.

• The SE values are quite low, especially for MR (5.15E-04), P
(0.00132), and MV (4.19E-04), indicating a high level of
accuracy in the predictions made by the models.

• The F values are consistently high, particularly for MR
(148.7425) and P (144.8956), implying that the models
significantly explain the variability in the data compared to
random chance.

• All p-values are less than 0.0001, which indicates that the
relationships between the computed DTIs and the
physicochemical properties are statistically significant.

Supplementary Table S4 provides a comparison of the actual and
predicted values for the physicochemical properties (MR, P, MV,
MP, MW) of the heart disease drugs using the multilinear regression
models. This Table reveals the following observations.

• The predicted values are very close to the actual values for
most drugs. For example, for Enalapril, the predicted MR
value (0.01064) is very close to the actual value (0.01005), and
similarly, for Metoprolol, the predicted P value (0.03312)
closely matches the actual value (0.03268). These minor
discrepancies suggest that the multilinear regression models
have strong predictive power.

• For some drugs, such as Nitroglycerin and Warfarin, the
predictions are very accurate across all properties, with
values almost identical to the actual ones. This indicates
that the model is particularly robust for certain drugs.
However, for Minoxidil and Esmolol, the prediction for MP
and MV has some variability, but the predictions are still
relatively close to the actual values.

• In general, the model consistently predicts the
physicochemical properties with minimal deviation from
the actual values. The use of multilinear regression models
appears to offer a reliable approach to predict the properties of
heart disease drugs.

The results in Table 16 confirm that the multilinear regression
models are highly effective in capturing the physicochemical properties
of heart disease drugs, as evidenced by the very high R and R2 values,
low SE, high F-statistics, and statistically significant p-values.
Furthermore, the analysis of Supplementary Table S4 demonstrates
that the model’s predictions for the various physicochemical properties
are remarkably accurate, affirming the model’s strong predictive power.
This highlights the effectiveness of the proposed regression models in
drug property prediction and their potential for further applications in
computational drug design.

The best-fitting multivariate regression models for the ADMET
properties of heart disease drugs are presented in Supplementary
Equations S7–S11. The multilinear regression models for predicting
the ADMET properties of heart disease drugs, presented in Table 17,
exhibit strong performance for certain properties while being less
effective for others. The model for OC demonstrates exceptional
accuracy, with an R value of 0.999, a low standard error, and a
highly significant F-statistic, indicating near-perfect prediction.
Similarly, the model for Caco-2 permeability performs well, achieving
an R value of 0.961. In contrast, the models for SKIN, IA, and TP show
varying levels of effectiveness. The SKIN model provides a good fit with
an R value of 0.812, while the IA and TP models, with R values of
0.704 and 0.603, respectively, exhibit moderate predictive power,
particularly for TP. Overall, these results highlight the potential of
multilinear regression models to predict ADMET properties of heart
disease drugs, with varying degrees of accuracy depending on the specific
property being analyzed.

Although several studies have concentrated on the QSPR
analysis of the physicochemical properties of heart disease drugs,
there is no research on their ADMET properties. Additionally, our
proposed cubic and multilinear regression models demonstrate a
strong correlation between the indices and the ADMET properties

TABLE 11 Quadratic regression equations offer the most precise estimates of physicochemical properties.

Quadratic regression equation R F SE P

1
MR = 1443.558 ( 1

DM1*)2 + 5.553 ( 1
DM1*) + 0.011 0.968 104.346 0.001 < 0.001

1
P = 3725.182 ( 1

DM1*
2) + 13.9333 ( 1

DM1*) + 0.028 0.967 101.577 0.003 < 0.001

1
MV = −322703.072 ( 1

DM1)2 + 67.148 ( 1
DM1) + 0.004 0.924 40.924 0.001 < 0.001

1
MP = 4622930.313 ( 1

DH)2 - 296.996 ( 1
DH) + 0.008 0.990 311.123 0.003 < 0.001

1
MW = −793.034 ( 1

DM1*)2 + 2.219 ( 1
DM1*) + 0.003 0.845 17.407 0.000 < 0.001

TABLE 12 The correlation coefficient (R) determined using cubic regression
models.

Domination index 1/MR 1/P 1/MV 1/MP 1/
MW

1/DM1* 0.977 0.977 0.923 0.982 0.845

1/DF* 0.97 0.97 0.921 0.991 0.807

1/DM2 0.827 0.825 0.91 0.471 0.808

1/DH 0.953 0.953 0.884 0.99 0.793

1/DM1 0.973 0.973 0.93 0.99 0.806

1/DF 0.97 0.97 0.935 0.991 0.788

The numbers in bold are the highest R values in each property.
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of these drugs. Therefore, our model is valuable for predicting the
ADMET properties of these drugs.

7 Discussion

This study offers significant improvements over traditional
methods by enhancing both efficiency and accuracy. By using
chemical graph theory and computational algorithms, it
streamlines the evaluation of minimal dominating sets and
computation of domination degree-based indices, reducing
manual effort and potential errors. Unlike traditional methods
that rely on time-consuming experimental measurements, the
ϕd-polynomial and DTIs provide a computationally efficient
framework that captures molecular structural properties. The
integration of curvilinear and multilinear regression models
further improves predictive accuracy, addressing nonlinear
relationships often overlooked by traditional approaches. This
method demonstrates superior scalability, reproducibility, and
precision, making it a valuable tool for drug property prediction
and molecular analysis, with potential for further validation on
larger datasets and diverse drug classes.

Our study offers a significant advancement over existing QSPR
investigations. In Hasani and Ghods (2023), QSPR analysis was
conducted on four calcium channel-blocking heart treatment drugs,
resulting in higher correlation values. However, it is not directly feasible
to compare these regression models with our proposed models, which
are based on a data set of 17 drug molecules. Similarly, the study
(Hakeem et al., 2024) reports higher correlation coefficients for certain

physicochemical properties compared to our models. Nevertheless, our
models yield more accurate property predictions than the models
referenced in these studies. This enhanced accuracy can be
attributed to the extended dataset used in our analysis, which
represents a significant increase compared to the existing datasets
employed in previous QSPR models.

The carefully chosen 17 drug molecules not only provide a
strong correlation between DTIs and drug properties but also reflect
a diverse set of molecular structures, which enhances the
generalizability of the resulting QSPR models. By incorporating
drugs from different cardiovascular drug classes, such as
antihypertensives, antiarrhythmic agents, and lipid-lowering
medications, the selection allows for a deeper understanding of
how variations in molecular architecture can influence key
physicochemical and ADMET properties. This diversity ensures
that the developed models are versatile and applicable to a wider
range of compounds. Additionally, the focus on these 17 molecules
enables efficient computation, which is critical for maintaining
reproducibility and reliability in the predictive analysis. The use
of DTIs as a core feature of the model further enhances its scientific
value, offering valuable insights into the relationship between
molecular structure and drug behavior. This approach also
establishes a methodological framework that can be extended to
future studies, promoting a more comprehensive understanding of
drug properties across different classes and chemical spaces.

The inverse regression method is selected for its capability to
effectively capture complex, nonlinear relationships between
variables, providing greater flexibility compared to regression
models. This method is particularly suited for scenarios where
the relationship between independent and dependent variables is
nonlinear, enabling more precise modeling. Using SPSS software, we
implemented the inverse regression models (linear, quadratic and
cubic) to calculate the constants and coefficients that minimize the
error between observed and predicted values, ensuring a superior fit
for the dataset. In QSPR analysis, the statistical evaluation
incorporates R, SE, and P-value. The R value quantifies the
strength of the relationship between variables, indicating the
proportion of variance in the dependent variable explained by
the model. SE measures the square root of the average squared
differences between observed and predicted values, while a P-value
less than 0.10 signifies the statistical significance of the model. An
ideal regressionmodel is characterized by a high R value, low SE, and
a significant P-value. SPSS software is employed to calculate these
metrics, ensuring accurate and reliable analysis.

TABLE 13 Cubic regression equations offer the most precise estimates of physicochemical properties.

Cubic regression equation R F SE P

1
MR = 6534284.602 ( 1

DM1*)3 - 14629.820 ( 1
DM1*)2 + 15.024 ( 1

DM1*) + 0.011 0.977 92.912 0.001 < 0.001

1
P = 16853876.058 ( 1

DM1*)3 - 37732.872 ( 1
DM1*)2 + 38.361 ( 1

DM1*) + 0.027 0.977 90.979 0.002 < 0.001

1
MV = 1.185E+14 ( 1

DF)3 - 1186151596 ( 1
DF)2 + 3479.016 ( 1

DF) + 0.004 0.935 30.376 0.001 < 0.001

1
MP = 9.402E+14 ( 1

DF)3 - 3469413686 ( 1
DF)2 - 305.448 ( 1

DF) + 0.008 0.991 192.588 0.003 < 0.001

1
MP = 5.019E+11 ( 1

DF*)3 - 31128294.957 ( 1
DF*)2 + 272.756 ( 1

DF*) + 0.007 0.991 198.214 0.003 < 0.001

1
MW = 265571.449 ( 1

DM1*)3 - 1446.300 ( 1
DM1*)2 + 2.604 ( 1

DM1*) + 0.003 0.845 10.833 0.000 < 0.001

TABLE 14 The correlation coefficient (R) between the computed DTIs and
ADMET properties determined using cubic regression models.

Domination
index

1/
OC

1/
Caco2

1/
SKIN

1/
IA

1/
TP

1/DM1* 0.982 0.714 0.718 0.619 0.422

1/DF* 0.999 0.938 0.625 0.622 0.454

1/DM2 0.41 0.942 0.375 0.606 0.673

1/DH 1 0.718 0.588 0.354 0.299

1/DM1 0.996 0.914 0.618 0.612 0.463

1/DF 0.999 0.951 0.604 0.621 0.532

The numbers in bold are the highest R values in each property.
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The correlation coefficient (R) is chosen for this study because it
effectively measures how well the regression model aligns with the
data, providing a clear indication of the strength of relationships
between variables. Its simplicity and widespread use in statistical
analysis make it an ideal choice. In this work, the evaluation of DTIs
is based on their correlation with selected physicochemical and
ADMET properties, ensuring that indices with stronger correlations
are prioritized. Previous studies, such as those by Gutman and
Tošović (2013) and Sardar and Hakami (2024), have employed
similar approaches to assess the ability of graphical indices to explain
physicochemical characteristics. Our findings reveal that DM1*
shows strong correlations with MW, P, MR, and SKIN; DF
demonstrates excellent correlations with MV, MP, OC, and
Caco2; DF* exhibits high correlations with MP and IA; and
DM2 correlates strongly with TP. These results highlight the
reliability of these indices as predictors of physicochemical and
ADMET properties, underscoring their importance in
QSPR modeling.

The practical interpretability of DTIs offers valuable insights for
pharmaceutical applications, particularly in the design and optimization
of drug candidates. DTIs, which quantify the structural properties of
molecules by modeling them as graphs, provide a quantitative measure
of how the connectivity and arrangement of atoms in a molecule can
influence its physicochemical and pharmacokinetic properties.
Medicinal chemists can use DTIs to gain a deeper understanding of
the molecular structure of potential drug candidates and how these
structures might influence important properties like solubility, stability,
and permeability. By analyzing the relationship between specific
topological features (such as connectivity, branching, or ring
structure) and desired properties (e.g., boiling point, logP, or water
solubility), chemists can prioritizemolecular designs that aremore likely
to exhibit optimal characteristics. This enables more efficient
identification of candidates with favorable physicochemical profiles,
reducing the time and cost involved in the drug development process.

Extending DTIs to other therapeutic areas, such as
antimicrobial, anticancer, or neurological drugs, could enhance
their utility in drug discovery by predicting specialized properties
required for different diseases. Incorporating domain-specific
knowledge could improve predictions for drug properties like
cellular uptake or receptor binding. Integrating DTIs with
machine learning models, such as random forests or neural
networks, offers the potential to capture complex, nonlinear
relationships, improving prediction accuracy for drug properties,
including ADMET profiles and efficacy. This integration could also
enhance scalability, accelerating the drug discovery process and
leading to more personalized therapeutic approaches.

7.1 Implications

DTIs have the potential to aid in predicting potential drug-drug
interactions, and therefore improve the safe use of drugs.
Understanding the structural properties may help pharmacists
and chemists enhance treatment outcomes and optimize
medication development, leading to more efficient drug creation.

7.2 Limitations

The scalability of DTIs is challenging especially when applied to
larger datasets. As the size of the drug database grows, the
computational complexity of calculating the minimal dominating

TABLE 15 Cubic regression equations offer the most precise estimates of ADMET properties.

Regression equation R F SE P

1
OC = 1.439E+14 ( 1

DF*)3 - 9514352004 ( 1
DF*)2 + 133711.664 ( 1

DF*) + 0.486 0.999 2214.038 0.236 < 0.001

1
OC = 3.006E+17 ( 1

DF)3 - 1.370E+12 ( 1
DF)2 + 1183585.413 ( 1

DF) + 0.551 0.999 3667.509 0.183 < 0.001

1
Caco2 = 1.345E+18 ( 1

DF)3 - 9.566E+12 ( 1
DF)2 + 9382583.380 ( 1

DF) + 0.406 0.951 41.158 2.311 < 0.001

1
SKIN = 47795612.252 ( 1

DM1*)3 - 159034.158 ( 1
DM1*)2 + 117.532 ( 1

DM1*) - 0.368 0.718 4.622 0.013 0.021

1
IA = −2.719E+11 ( 1

DF*)3 + 28042144.698 ( 1
DF*)2 - 535.8550 ( 1

DF*) + 0.014 0.622 2.727 0.003 0.087

1
TP = −9.709E+14 ( 1

DM2)3 + 1.242E+11 ( 1
DM2)2 - 3095176.302 ( 1

DM2) + 6.433 0.673 3.580 11.213 0.044

TABLE 17 The statistical parameters between the computed DTIs and
ADMET properties of heart disease drugs using multilinear regression
models.

Property R SE F P

OC 0.999 0.161 2392.349 < 0.0001

Caco2 0.961 2.356 20.222 < 0.0001

SKIN 0.812 0.012 3.28647 0.04917

IA 0.704 0.003 1.644 0.2323

TP 0.603 13.781 0.9527 0.501

TABLE 16 The statistical parameters between the computed DTIs and
physicochemical properties of heart disease drugs using multilinear
regression models.

Property R R2 SE F P

MR 0.994 0.9889 5.15E-04 148.7425 < 0.0001

P 0.994 0.9886 0.00132 144.8956 < 0.0001

MV 0.969 0.9396 4.19E-04 25.91746 < 0.0001

MP 0.993 0.9861 0.00274 94.3163 < 0.0001

MW 0.939 0.8821 2.82E-04 12.47079 3.89E-04
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sets and corresponding topological indices can also increase
significantly. This issue could potentially slow down the analysis
or require additional computational resources. However,
optimization techniques and more efficient algorithms may be
developed to address these scalability concerns.

8 Conclusion

In this study, we computed domination degree-based
topological indices for chemical drugs used in the treatment of
heart disease and applied them in QSPR analysis to predict their
physicochemical and ADMET properties. The findings reveal that
inverse linear, quadratic, and cubic regression models have the
potential to predict physicochemical properties, with the cubic
regression model demonstrating superior predictive performance
for ADMET properties. Multivariate regression models also show
potential for predicting physicochemical and ADMET properties.
However, the DTIs serve as potential predictors rather than
replacements for laboratory experiments. These findings highlight
the significance of these indices in establishing a theoretical
foundation for drug synthesis, offering a valuable predictive tool
for chemists and the pharmaceutical industry. By minimizing the
reliance on time-intensive laboratory experiments, these analyses
facilitate the efficient design of new drugs by leveraging the strong
correlations between critical properties. Additionally, the
methodologies presented in this study can be adapted for other
drugs targeting different diseases, using computed topological
descriptors to predict their respective physicochemical and
ADMET properties. Future directions include extending this
approach to a broader range of drug classes and exploring the
integration of machine learning techniques to further enhance the
predictive power of the models. Additionally, further studies may
focus on refining the accuracy of predictions for specific ADMET
properties by incorporating more complex molecular descriptors.
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