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Introduction: Tuberculosis (TB), caused by the Mycobacterium tuberculosis
(M.tb), remains a serious medical concern globally. Resistant M.tb strains are
emerging, partly because M.tb can survive within alveolar macrophages, resulting
in persistent infection. Protein kinase G (PknG) is a mycobacterial virulence factor
that promotes the survival of M.tb inmacrophages. Targeting PknG could offer an
opportunity to suppress the resistant M.tb strains.

Methods: In the present study, multiple computational tools were adopted to
screen a library of 460,000 molecules for potential inhibitors of PknG of M.tb.

Results and discussions: Seven Hits (1–7) were identified with binding affinities
exceeding that of the reference compound (AX20017) towards the PknG catalytic
domain. Next, the ADMETox studies were performed to identify the best hit with
appropriate drug-like properties. The chromene glycoside (Hit 1) was identified as
a potential PknG inhibitor with better pharmacokinetic and toxicity profiles
rendering it a potential drug candidate. Furthermore, quantum computational
analysis was conducted to assess the mechanical and electronic properties of Hit
1, providing guidance for further studies. Molecular dynamics simulations were
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also performed for Hit 1 against PknG, confirming the stability of its complex. In
sum, the findings in the current study highlight Hit 1 as a lead with potential for
development of drugs capable of treating resistant TB.

KEYWORDS

Mycobacterium tuberculosis, PknG, resistance, multidrug resistant-TB (MDR-TB),
extensively drug resistant-TB (XDR-TB)

1 Introduction

Tuberculosis (TB) is a contagious illness caused by the airborne
bacilli Mycobacterium tuberculosis (M.tb). Its primary site of
infection is the lung, but it can involve other organs in the
human body. Some studies reported that TB is still a serious
global health concern, particularly in the global south (Fernandes
et al., 2022; Bloom, 2023). In 2020, the estimated number of
symptomatic new TB cases was 9.9 million, with over 1.5 million
deaths (Bagcchi, 2023). Fernandes, G.F.S and co-workers reported
high morbidity and mortality rates in TB patients around the globe
(Fernandes et al., 2022). In fact, from 2012 to 2019, TB was the
leading cause of death from a single infectious agent (Friedrich,
2017; WHO, 2020). Since 1960, successful efforts have been made to
develop a variety of antibiotics (Figure 1) which have contributed to
the saving of millions of human lives. However, the number of
currently used drugs in clinical practice is very limited and this has
been further exacerbated by the emergence of resistant strains of TB,
such as multidrug resistant TB (MDR-TB) and extensive drug
resistant TB (XDR-TB) (Dartois and Rubin, 2022). Moreover,

resistant strains to newly approved anti-TB medications,
including Delamanid and Bedaquiline (Figure 1) have been
detected in clinical settings (Yoshiyama et al., 2021).

This troubling condition is due, to some extent, to a nearly
5 decade long gap in anti-TB medication discovery research and
development (Teneva et al., 2023). In general, the current TB
chemotherapy is often inadequate due to multiple factors
including (i) the prolonged treatment regiments; (ii) serious
adverse effects, (iii) the continued evolution of drug resistance,
and (iv) the slow development of new therapeutics (Rock, 2019;
Akinnuwesi et al., 2023; Capela et al., 2023). To this end,
mycobacterial resistance to the currently used anti-TB drugs has
been attributed, in part, to the ability of the M.tb to survive within
macrophages resulting in persistent infection (latent TB) (Simmons
et al., 2018). Multiple research studies have demonstrated that the
virulence factor protein kinase G (PknG), which contains a
thioredoxin motif, aids in the survival of M.tb inside
macrophages through several different mechanisms (Figure 2)
(Koul et al., 2001; Cowley et al., 2004; O’Hare et al., 2008;
Forrellad et al., 2013; Khan et al., 2017; Swain et al., 2022).
Therefore, PknG could be considered as a crucial druggable
macromolecule for the development of new therapeutics with
potential to both, inhibit non-proliferating mycobacteria and
suppress the evolution of M.tb resistant strains (Khan et al.,
2018). Recently, several molecules belonging to secondary plant
metabolites have been investigated as potential anti-tubercular
agents, including diarylheptanoids, 3-glycosyl isocoumarins,
biphenyl and diaryl ether diarylheptanoids, tetrahydropyran-based
diarylheptanoids such as engelheptanoxides, and various 3-aryl
isocoumarins (Sudarshan and Aidhen, 2017; Sudarshan et al., 2024).

Computational methods accelerate drug discovery by
identifying and optimizing therapeutic agents while reducing
time, cost, and experimental efforts. They provide key insights
into molecular interactions and target validation (Athar et al.,
2016). Exploring the structural targets of M.tb through in silico
approaches aids in identifying promising therapeutic candidates.
This method enhances the understanding of protein structures and
interactions, streamlining the process of tuberculosis drug discovery
(Lone et al., 2018).

In this study, we screened the NCI library (https://cactus.nci.nih.
gov/download/roadmap/) of 460,000 molecules using the CADD
approach (Figure 3) [20] against the PknG ATP binding pocket,
aiming to identify novel inhibitors as potential leads against TB.

2 Materials and methods

In this work various computational tools interfaced in
Schrödinger suite were used, including Protein Preparation

FIGURE 1
Chemical structures of the front-line anti-TB drugs
(Pyrazinamide, Ethambutol, Isoniazid, Rifampicin, and Streptomycin).
In addition, the chemical structures of the recently approved anti-TB
drugs Delamanid and Bedaquiline are also depicted.
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Wizard (Sastry et al., 2013), LigPrep (Schrödinger Release, 2023),
Glide (Friesner et al., 2004; Halgren et al., 2024), Prime (Jacobson
et al., 2002a; Jacobson et al., 2002b), Qikprop (QikProp, 2023),
Jaguar (Bochevarov et al., 2013) and Desmond (Bowers et al., 2006).
These tools were accessed utilizing Maestro graphical interface
(Maestro, 2023). Additionally, ADMETlab 2.0 (Xiong et al.,
2021) an integrated online webserver was used for ADMET
properties estimation.

2.1 Molecular docking study

Virtual screening analysis of the NCI library (https://cactus.nci.
nih.gov/download/roadmap/) of 460,000 molecules was conducted,
using Virtual Screening Workflow (VSW) of Schrödinger suite. The
downloaded compounds library were converted to 3D formats and
then OPLS4 force field was used for optimization. The structures

were set for docking and the ligands’ original chirality’s were
maintained, using LigPrep module. For generating the possible
ionization states, the Epik was used at pH 7.00 ± 2 units. For
each ligand one low energy conformer was generated. The 3D crystal
structure of M.tb PknG complexed with the reference ligand
AX20017 (PDB code: 2PZI), was obtained from the Protein Data
Bank (PDB) website (www.rcsb.org). Subsequently, we utilized the
multi-step Protein Preparation Wizard (PrepWizard) to refine and
optimize the protein structure for further analysis. After removal of
all water molecules, only the co-crystallized ligand remained at the
enzyme’s catalytic site. OPLS4 force field was used to perform
optimization and energy minimization. The receptor grid
generation tool implanted within the maestro suite was employed
to create the grid box around the coordinates of the reference ligand.
Prepared ligands were then screened against the refined target
protein following multimode receptor docking workflow using
Glide module of Schrödinger suite. Initially, Glide high-
throughput virtual screening (HTVS) mode was employed for
filtering the compounds library, then for further screening the
standard precision (SP) mode was used and finally more accurate
docking calculations results were obtained utilizing extra precision
(XP) mode. A single optimal pose was generated for each input
molecule, and their ranking was decided based on their Glide
docking score.

2.2 Binding free energy calculations

Estimation of the binding free energies of receptors and docked
ligands was done using Prime module. The free binding energy of
the protein-ligand complexes was computed using the Prime
module, integrated with Schrödinger software. For this purpose,
the Post-docking generated Pose Viewer Files (PVFs) of the top
Hits1-7 were used as input files. Free binding energy parameters
were then calculated using OPLS4 (Optimized Potentials for Liquid
Simulations, version 4) force field along with Variable Dielectric

FIGURE 2
Mechanisms by which PknG enhances the in vivo survival and persistence of M.tb.

FIGURE 3
Multistep virtual screening workflow for the identification of
potential PknG inhibitors.
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Generalized Born (VSGB) 2.0 as solvation model, following the
established protocol (Azam et al., 2021). Molecular Mechanics-
Generalized Born Surface Area (MM-GBSA) dG binding energy
score was employed to rank the ligands based on their
relative affinities.

2.3 In silico absorption, distribution,
metabolism, excretion, and toxicity
(ADMET) profiling

In this study, we evaluated the ADMET profiles and drug-
likeness characteristics of the top 7 candidates using the Qikprop
computational tool within the Schrödinger suite. Furthermore, the
free web-based tool ADMETlab 2.0 available at (https://admetmesh.
scbdd.com) was employed to predict the toxicity parameters. All of
the calculated parameters were evaluated to ensure compliance with
their respective standard ranges.

2.4 Quantum computational calculations

Quantum chemical calculations of the co-crystal ligand and Hit
1 electronic molecular properties such as Electron density,
Molecular Electrostatic Potential Map (MESP) and energies of
both Highest Occupied Molecular Orbital (HOMO) and Lowest
Unoccupied Molecular Orbital (LUMO) were calculated using DFT
method in the Jaguar module of Schrödinger suite (Khan and Singh,
2023). The values of the ELUMO and EHOMO were subsequently
employed to compute the various quantum chemical properties,
including the energy gap HOMO-LUMO Gab (HLG), chemical
chemicals (softness and hardness), global electrophilicity index and
electronegativity, according to equations established in the literature
(Kohn and Sham, 1965; Guezane-Lakoud et al., 2023). Electron-

FIGURE 4
Interactions between the co-crystallized ligand (AX20017) and PknG (PDB ID: 2PZI) as the target enzyme. Panel (A) displays the 3D crystal structure
of the target enzyme complexed with the native AX20017 ligand, Panel (B) presents a superposition of the co-crystallized ligand conformation (yellow)
and the docked ligand conformation (red), with an RMSD value of 0.28 Å. Panel (C) shows the corresponding 3D crystal structure. The interacting amino
acid residues at the binding site are represented by their three-letter codes. Hydrogen bond interactions are indicated by dotted green lines in panel
(C) and solid magenta lines in panel (D).

FIGURE 5
Chemical structures of the top 7 hits and the co-crystal
ligand AX20017.
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deficient surfaces are marked by the blue color, whereas the electron-
rich ones are indicated by the red color.

2.5 Molecular dynamics (MD) simulations

MD simulations were achieved using Desmond. The input files
of docked conformers of both Hit 1 and the co-crystallized ligand
complexes were obtained from docking study. These complexes
were immersed in a cubic water box with dimensions of 10 Å ×
10 Å × 10 Å, utilizing Simple Point Charge (SPC) as solvation
medium. To achieve balance in the net charges, Na+ counter ions
were added to the built systems, and subsequently sodium chloride
0.15 M was also added to attain the system’s neutralization. The
simulations were conducted in an NPT ensemble, ensuring that the
temperature and pressure of the system were maintained at 300 K
and 1 bar, respectively. Prior to simulation run, the default
relaxation protocol in the Desmond module of Schrodinger suite
2023-1 was then used to minimize and pre-equilibrate the system.
The MD simulations extended over a duration of 100 ns, generating
1,000 frames of data captured at every 100 ps interval. The
Simulation Interaction Diagram tool in Desmond was used to
perform post-simulation trajectory analysis. Critical parameters
such as Root Mean Square Deviation (RMSD), Root Mean
Square Fluctuation (RMSF), and protein-ligand contacts were
computed to assess the stability of the complexes and the nature
of their interaction profiles throughout the simulation period.

3 Results and discussion

Despite the existence of several drugs for treatment of TB
infection, drawbacks associated with them such as prolonged
treatment regimens, adverse effects, poor patient compliance and
emergence of drug resistance, dictates the development of novel
drugs with optimum therapeutic properties (Rock, 2019;
Akinnuwesi et al., 2023; Capela et al., 2023). An in silico strategy
is considered an attractive approach that could be applied at
different drug discovery stages to accelerate the identification of
potential anti-TB drug leads (Macalino et al., 2020). In the current
work, we report on high-throughput multilevel virtual screening of

460,000 molecules from an NCI database against the ATP binding
site of PknG to identify potential hits using molecular docking score
and the free binding energy to as filtering parameters. Further,
ADMET profiling and quantum computational calculations were
performed to better understand their drug utility and to discriminate
between hits for further optimization studies.

3.1 Molecular docking study

Initially, the 3D crystal structure of PknG, of M.tb (PDB ID
2PZI) in complex with tetrahydrobenzothiophene (AX20017), was
downloaded from the protein data bank (PDB: https://www.rcsb.
org/) for structure-based virtual screening. The bound AX20017
(Figure 4A) was docked into the same binding cavity to confirm the
validity of the docking protocol and the RMSD between the docked
and the experimental co-crystallized poses (Figure 4B) was 0.28 Å
which was within the acceptable range (Santiago-Silva et al., 2023).
As shown in Figures 4C,D, AX20017 formed three H-bonds with the
hinge region residues using its amide side chains, two with
Val235 and the other with Glu233. Further, hydrophobic
interactions were observed with residues Ile86, Asp87, Ala91,
Ile157, Ala158, Ile165, Val179, Tyr234, Met283, and Ile292.
These results were found consistent with what has been reported
by Arica-Sosa et al. (2022). Following this step, a multilevel docking
approach was employed, beginning with docking in Glide High
Throughput Virtual Screening mode (Glide-HTVS), followed by
Glide Standard Precision mode (Glide-SP), and concluding with
Glide Extra Precision mode (Glide-XP). Molecules exhibiting a
Glide-XP docking score lower than that of AX20017 (−8.14 kcal/
mol) were then selected as top hits Chemical structures of these Hits
1-7 are provided in Figure 5. The analysis of docking results
indicated that Hits 1-7 displayed XP docking score within the
range of −8.31 to −12.75 kcal/mol (Table 1). Hit 1, a chromene
glycoside, had the highest docking score (−12.75 kcal/mol) followed
by the oxazepine derivative 7 which scored −10.03 kcal/mol. The
remaining top hits generally exhibited similar docking scores, all of
which were higher than that of the reference ligand (Table 1). While
Hits 2, 3, 4, and 7 feature the tricyclic triazinobenzoxazepin ring
system, Hits 5 and 6 are derivatives of benzene sulphonamide and
quinazoline, respectively.

TABLE 1 Docking results and the interaction forces of the top hit molecules.

PubChem ID Hit Docking score (kcal/mol) Interactions

H-bond Pi-cation

673,481 Co-crystallized ligand(AX20017) ‒8.14 Val235 and Glu233 -

6,604,620 1 ‒12.75 Val235; Tyr234; Glu233; Gly237; Ser239 and Arg242 -

285,8302 2 ‒8.96 Val235 and Arg242 -

285,8937 3 ‒8.31 Val235 Arg242

2,849,297 4 ‒8.53 Val235 and Arg242 -

2,928,782 5 ‒8.76 Ala91; Ile157; Lys181; Val235; Arg242 and Glu280 -

3,234,587 6 ‒8.86 Val235 and Lys241 -

6,410,292 7 ‒10.03 Val235 and Ile157 -
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In addition, Hits 1‒7 formed multiple hydrogen bonds with
various residues in the catalytic site (Figure 6; Supplementary Figure
S1), exhibiting interaction patterns similar to those reported for
experimentally validated molecules (Singh et al., 2015; Arica-Sosa
et al., 2022).

All hits were positioned precisely within the same binding site as
the reference compound AX20017, which validated the robustness
of the docking protocol and confirmed the hits’ suitability as
potential inhibitors. Detailed analysis of interaction patterns
revealed that the hits formed key hydrogen bonds with Val235, a
critical residue located in the hinge region. This interaction was
particularly significant because the hinge region played a central role
in maintaining the structural integrity and proper folding of the

active site, thereby facilitating effective ligand binding. Hydrogen
bonding with Val235 was pivotal for stabilizing the ligand-enzyme
complex, as previously reported by Arica-Sosa et al. (2022). This
residue, due to its position in the hinge region, mediated essential
interactions that anchored the ligand within the binding pocket.
Furthermore, similar to AX20017, the hits engaged in hydrophobic
interactions and π-π stacking with neighboring residues, which
further enhanced the binding affinity. Notably, the spatial
positioning and interaction patterns observed in Figures 6, 7
confirmed that the hits not only mimicked the binding
mechanism of AX20017 but also exhibited comparable
interaction strength, reinforcing their potential as strong
inhibitors. These findings underscored the importance of

FIGURE 6
3D Interaction diagrams of top identified Hits (1–7) with the M. tb PknG binding site. Hydrogen bonds (green), aromatic-H bonds (yellow), and π-
cation interactions (red) shown. Amino acid residues are displayed using three-letter codes.
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targeting the hinge region to achieve high binding stability and
effective inhibition of the enzyme. By exploiting such conserved
interactions, these hits provided a promising starting point for
further optimization and lead development.

3.2 Binding free energy calculations

To estimate the binding free energy of the enzyme-ligand
complexes, MM-GBSA method was utilized. This is one of the
most common methods used to estimate the binding free energy of
the small molecules to their respective macromolecular targets
(Wang et al., 2019). This could be attributed to its relatively high

scoring function accuracy relative to the molecular docking
simulation and is thus employed here to improve the results of
virtual screening (Genheden and Ryde, 2015). Table 2 displays the
binding free energy values for the top 7 hits alongside that of the co-
crystal ligand. Hits 1‒7 displayed free binding energies ranging
from −60.92 to −69.95 kcal/mol, which were lower than that of the
co-crystal ligand (−60.23 kcal/mol), pointing to their higher affinity
towards the enzyme binding pocket.

Hits 3, the triazinobenzoxazepin derivative, showed the lowest
free binding energy (−69.95 kcal/mol). It is evident that out of the
top 7 hits, 4 hits incorporate the triazinobenzoxazepin ring system.
Replacement of the nitrofuran moiety attached to the C-2 of
benzoxazepine ring in 2 by the pyridine ring in 3 increased the
binding affinity. Unsaturation of the C2-C3 of the propyl side chain
in 3 (compound 8 shown in Figure 8) resulted in slight reduction in
the binding affinity (−68.99 kcal/mol). Inversion of the chirality in
Hit 3 (compound 9 shown in Figure 8) increased both the docking
score (−5.28 kcal/mol) and the total binding energy (−65.88 kcal/
mol) indicating the importance of the R configuration for higher
affinity. Substitution of the pyridine ring in compound 8 with the
hyroxyphenyl ring afforded Hit 7 with relatively lower binding
affinity (−65.81 kcal/mol). Extension of the methyl group in 4 to
n-propyl as in 2 and 3 (compound 10 shown in Figure 8) reduced
the binding affinity (−58.17 kcal/mol), as did the shortening of the
n-propyl in Hit 3 to methyl in compound 11 (Figure 8) (binding
energy = −69.47 kcal/mol). Thus, it could reasonably be concluded
that, pyridine ring linked to C-2 of the benzoxazepine ring together
with the n-propyl chain attached to the triazine ring might be
important for optimal affinity.

The overall binding free energy for each hit arose from multiple
energy components (Table 2; Figure 9), encompassing Coulombic
energy (Coulomb), covalent bonding (Covalent), hydrogen bonding
(Hbond), lipophilic interactions (Lipo), π-π packing interactions
(Packing), generalized solvent binding (Solv GB), and van derWaals
interactions (VdW)Among these terms, the contribution of the
VdW energy was more than the others in the total binding
energies of the top 7 hits and the co-crystal ligand. Coulomb
energy came in the second place after the VdW energy as
contributing force of interaction for Hits 1, 3, 5 and 6 alongside

FIGURE 7
The overlay of the co-crystallized ligand AX20017 (red) and the
docked conformations of the top 7 hits (blue) interacting with the 2PZI
binding pockets (the hydrophobic and the hinge). The conventional
H-bonds are shown in green color, while the aromatic H-bonds
are shown in yellow. The most critical residues for proper interaction
and for ligand-enzyme complex stability (Glu233 and Val235) are
shown in red and blue colors, respectively.

TABLE 2 Energy terms contributing to the free energy (Gbind) of Hits 1-7 and the co-crystal ligand AX20017.

Hit MMGBSA
dG bind
(kcal/mol)

MMGBSA
dG bind
coulomb

MMGBSA
dG bind
Hbond

MMGBSA
dG bind
lipo

MMGBSA
dG bind
packing

MMGBSA
dG

bind vdW

MMGBSA
dG bind
covalent

MMGBSA
dG bind
solv GB

Co-
crystal
ligand

‒60.23 ‒20.65 ‒1.51 ‒19.54 0.00 ‒44.71 0.41 25.76

1 ‒61.27 ‒38.16 ‒3.63 ‒20.85 0.00 ‒41.03 7.07 35.32

2 ‒64.55 ‒0.221 ‒1.36 ‒25.21 ‒0.04 ‒52.91 0.41 23.78

3 ‒69.95 ‒60.75 ‒0.52 ‒27.80 ‒0.14 ‒49.80 0.95 68.10

4 ‒60.92 ‒6.58 ‒1.02 ‒27.54 ‒0.01 ‒54.27 1.41 27.09

5 ‒60.98 ‒36.32 ‒4.08 ‒19.32 ‒0.13 ‒43.44 4.07 38.23

6 ‒69.14 ‒56.21 ‒1.08 ‒22.95 ‒0.32 ‒50.44 1.55 60.31

7 ‒65.81 ‒9.95 ‒1.04 ‒27.40 ‒0.21 ‒52.33 1.25 23.86
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the co-crystal ligand. In contrast, for the triazinobenzoxazepin 2, 4
and 7 the second most contributing force was the lipophilic one.
Interestingly, the triazinobenzoxazepin 3 (the hit with the highest
affinity), coulomb energy was the principal contributing force of
interactions. This could be attributed to the presence of the ionizable
positively charged pyridine ring, which interacts via pi-cation forces
with Arg242. As for co-crystal ligand, the contributions of
H-bonding and the π-π packing forces to the total binding
energy of the top 7 hits were very little. Overall, the outcome of
this analysis indicates that, Hits 1‒7 possessed affinity towards the
PknG binding domain higher than that of the co-crystal ligand.
Additionally, the decomposed energy terms contributing to the total
free binding energies for Hits 1‒7 were similar to those of the co-
crystal ligand and were therefore considered all for the next ADMET
filtering step.

To provide context for our findings, we conducted a
comparative analysis with previously reported potent inhibitors
of M.tb PknG (Figure 10). Tables 1–3 revealed notable
differences in docking scores and binding energies for M.tb
PknG inhibitors. Tables 1 and 2 summarized the results for the
computationally identified Hits 1–7, while Table 3 provided data for
experimentally validated inhibitors. The docking scores of Hits 1–7
were significantly better than those of the validated inhibitors. For
example, Hit 1 achieved a docking score of −12.75 kcal/mol,
outperforming AX20017, the co-crystallized ligand in Table 3,
which had a docking score of −8.14 kcal/mol. Other hits, such as
Hit 7 (−10.03 kcal/mol) and Hit 6 (−8.86 kcal/mol), also showed
stronger docking affinities compared to most validated inhibitors,
whose scores ranged from −2.43 kcal/mol to −8.14 kcal/mol. In
terms of binding energies, the Hits 1–7 in Table 2 demonstrated
more favorable values. Hit 3 exhibited the strongest binding energy
at −69.95 kcal/mol, followed by Hit 6 (−69.14 kcal/mol) and Hit 7
(−65.81 kcal/mol). In contrast, AX20017, the most potent validated
inhibitor in Table 3, had a binding energy of −60.23 kcal/mol. Other
inhibitors in Table 3 showed weaker binding energies, ranging
from −32.23 kcal/mol to −60.23 kcal/mol. Overall, the results
indicated that Hits 1–7 exhibited stronger predicted binding
affinities and docking scores compared to the experimentally
validated inhibitors. These findings suggest that the
computationally identified hits have promising potential as
superior candidates for M.tb PknG inhibition, though
experimental validation would be necessary to confirm their
effectiveness. As shown in Supplementary Figure S2, with the
exception of AX20017 and RO9021, the experimentally validated
inhibitors displayed less efficient interactions compared to our
identified hits (Supplementary Figure S1), particularly in terms of

binding to the hinge region. This difference in interaction patterns
correlates with the lower binding affinities observed for these
inhibitors, as their suboptimal binding to critical residues in the
hinge region likely reduces the overall stability and strength of the
ligand-enzyme complex.

Compared to the reported PknG inhibitors, the identified hits in
this study represent novel classes of PknG inhibitors, marking a
significant advancement in tuberculosis drug discovery. To the best
of our knowledge, these are the first reported examples of PknG
inhibition for the following scaffolds: chromene glycoside,
triazinobenzoxazepin derivative, quinzoline, and benzene
sulphonamide. These scaffolds are not only structurally unique
but also provide a promising basis for the development of new
anti-tubercular therapies targeting the PknG enzyme, which is
essential for the survival and pathogenicity of M.tb. The
chromene glycoside scaffold, while known for its diverse
biological activities (Amen et al., 2021), has never been explored
for PknG inhibition before. Similarly, the triazinobenzoxazepin
derivatives, which have been previously studied for their activity
in other therapeutic areas (Stefaniak and Olszewska, 2021), are also
reported here for the first time as potential PknG inhibitors. The
quinzoline scaffold, traditionally associated with anti-tubercular
properties (Kushwaha et al., 2023), has been linked to PknG
inhibition in this study for the first time. This discovery is
particularly exciting, as quinzoline derivatives have shown
promise in other aspects of tuberculosis treatment, and their
application as PknG inhibitors may offer an additional,
synergistic mechanism of action. Finally, the benzene
sulphonamide scaffold, widely known for its antimicrobial
properties (Kapısuz et al., 2024), has not previously been
explored in the context of PknG inhibition. The identification of
this scaffold as a potent PknG inhibitor is a significant milestone and
could lead to the development of compounds that specifically target
drug-resistant strains of M.tb, a growing concern in the fight against
tuberculosis. Collectively, these scaffolds represent a promising
foundation for the development of new anti-TB therapies. The
discovery of these novel scaffolds as PknG inhibitors could
therefore pave the way for more effective treatments, particularly
in the context of drug resistance, marking a significant advancement
in the search for new tuberculosis therapies. Current anti-TB drugs

FIGURE 8
Chemical structures of the designed triazinobenzoxazepin
derivative 8‒11.

FIGURE 9
The major energy components contributing to the free energies
(ΔGbind) of the top 7 hits and the co-crystal ligand, including
electrostatic (ΔGbind Coulomb), Van der Waals (ΔGbind VDW),
lipophilic (ΔGbind Lipo), and hydrogen bonding (ΔGbind Hbond).
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face significant limitations, including lengthy treatment durations,
low cure rates ranging from 40% to 50%, and the challenge of being
confounded by factors such as poor nutrition and co-infections.
Additionally, these drugs often require large dosages and are
associated with more side effects due to poor pharmacokinetic
properties (Wei et al., 2024). These shortcomings present a
critical mechanistic gap in existing treatments. The identified hits
in this study address this gap by specifically targeting PknG, offering
a novel approach to inhibit M.tb persistence and survival within the
host. These hits are unique in that they have the potential to target
non-proliferating mycobacteria during the latency stage and prevent
the development of Mtb-resistant strains, which could significantly
enhance treatment outcomes. Furthermore, these hits have the
potential to be used in combination with existing anti-TB drugs,
increasing their efficacy, reducing the risk of resistance, and
overcoming the limitations of current therapies. By targeting a
novel pathway and providing an additional layer of treatment,
these inhibitors could not only improve therapeutic efficacy but
also shorten treatment durations, offering a crucial solution to
address the global TB crisis (Farhat et al., 2024).

However, off-target effects in PknG inhibitors pose a significant
challenge in drug development, as these unintended interactions
with non-target molecules can lead to adverse biological responses.
Such interactions compromise treatment specificity and may cause
harmful side effects, limiting the clinical utility and safety of these
compounds. Given that PknG is a kinase in M.tb, understanding
kinase off-target effects is critical. Numerous studies have shown
that off-target kinase inhibition can result in adverse outcomes,
highlighting the necessity of comprehensive screening to ensure the
selectivity of the identified hits as PknG specific inhibitors and
reduce potential therapeutic risks (Green et al., 2023). Our docking
analysis of the top identified hits revealed interactions with residues
in the PknG binding site that are specific to PknG, such as Ile165,
Val179, Gly236, Ile292, Ile87, and Ala92. These residues are absent
in the 11 other serine/threonine protein kinases (STPKs) from M.tb
and are also absent in human kinases, which aligns with the behavior
of the previously reported inhibitor NU-6027 (Kidwai et al., 2019).
Furthermore, the frequencies of occurrence for the residues Ile165,
Val179, Gly236, and Ile292 in the surrounding PknG binding site are
minimal (Scherr et al., 2007). The combination of these residues is
not observed in any other human kinase sequences. Additionally,
the Ile87 and Ala92 residues, which are located within the amino-
terminal peptide stretch, are also unique to the ligand-binding
pocket of PknG (Scherr et al., 2007; Kidwai et al., 2019). While
these findings suggest that our identified hit may exhibit selectivity,
it is important to note that these conclusions are based solely on in
silico studies and require further experimental validation. Such
validation includes conducting comprehensive kinase profiling to
identify potential off-target interactions and chemically modifying
the inhibitors to enhance selectivity for PknG. Structural
modifications can be made to prevent binding to off-target
kinases while preserving strong affinity for PknG.

3.3 In silico ADMET profiling

In-silico prediction approaches of ADMET properties for
potential hits have become an integral component of modern
drug discovery process (Vrbanac and Slauter, 2017; Ferreira and
Andricopulo, 2019). Owing to their reduced cost compared to the

FIGURE 10
Chemical structures of the experimentally validated M.tb PknG
inhibitors.

TABLE 3 Experimentally validated M.tb PknG inhibitors with docking scores, binding free energies, and IC₅₀ values.

No. Name Docking score
(kcal/mol)

Binding energy
(kcal/mol)

IC50 References

1 AX20017 (Co-crystallized
ligand)

‒8.14 ‒60.23 0.2 ± 0.04 μM Scherr et al. (2007), Arica-Sosa
et al. (2022)

2 RO9021 ‒2.43 ‒52.48 4.4 ± 1.1 μM Arica-Sosa et al. (2022)

3 NRB04248 ‒4.75 ‒38.17 43% inhibition at 25 μM Singh et al. (2015)

4 Aminopyrimidine derivative ‒4.48 ‒42.49 43 ± 2.94 at 100 μM Anand et al. (2012)

5 NU-6027 ‒4.83 ‒32.23 at 50 μM selectively inhibits
PknG

Kidwai et al. (2019)

6 R406 ‒5.37 ‒47.53 83.8% inhibition at
16.1 µM

Kanehiro et al. (2018)

7 Sclerotiorin ‒1.68 ‒24.43 76.5 μM Chen et al. (2017)
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experimental ones, these approaches have attracted the attention
of the scientific community (Ntie-Kang, 2013). In this context, in
silico ADMET prediction of the 7 top-ranked hits was achieved
using the QikProp module in Schrödinger software and the
publicly accessible webserver ADMETLab 2.0. The predicted
descriptors were compared with the limiting ranges. In general,
results indicated positive physicochemical and pharmacokinetic
properties for the 7 top ranked hits (Supplementary Table S1). The
overall ADME-compliance score–drug-likeness parameter
(indicated by #stars) of these hits were within the specified
limit indicating that they had properties similar to those for
95% of known drugs. In addition they showed no violations to
Lipinski (Rule of Five) or Rule of Three. With Hits 1 and 5 showing
medium oral absorption (<60%), the rest exhibited high oral
absorption rate (>85%) pointing for their potential for oral
administration, a favorable criterion for ideal anti-TB drug
(Sotgiu et al., 2015). Since TB could involve CNS as a primary
site of infection (Rock et al., 2008) anti-TB drug’s crossing of the
BBB is considered an important feature. To this end, the predicted
brain/blood partition coefficient (QP log BB) and the Polar Surface
area (PSA) are Qikprop descriptors employed to evaluate the BBB
permeability of potential drug candidates (Dighe et al., 2020). The
values for these descriptors for the top-ranked hits were within the
designated ranges, indicating their high potential for CNS
penetration. Further, the efficient distribution of Hits 1‒7 in
the human body was estimated using apparent Caco-2
(QPPCaco) and MDCK cell (QPPMDCK) permeability
parameters (Dighe et al., 2020; Amengor et al., 2022). Excluding
the chromene glycoside, Hit 1, the rest displayed an enhanced
permeability in both Caco-2 and MDCK cells (the predicted values
fell within the recommended ranges) confirming their potentiality
for efficient distribution in the human body following oral
administration. Binding of a given drug to the blood plasma
proteins is a crucial factor affecting the efficacy of that drug,
since it determines its free concentration that would be
available to cross the biological membranes and consequently to
interact with its target (Hann et al., 2022). Accordingly, the
QPlogKhsa parameter was done here for evaluating the binding
of Hits 1‒7 to the human albumin which is considered the highly
abundant plasma protein capable of binding to a variety of drugs
(Hann et al., 2022). Hits 1-7 were found to be compliant to this
parameter, and thus would be expected to circulate in the blood
smoothly from side to side until they reach their site of action.
Human Ether-a-go-go Related Gene (HERG) encodes a potassium
ion channel that is documented to play a key role in a fatal type of
arrhythmia known as torsade de pointes (Lamothe et al., 2016).
Further, it represents a macromolecular via which several drugs
mediate their cardiotoxic effects (Lamothe et al., 2016; Amengor
et al., 2022). In this context, the IC50 value for blockage of HERG
K+ channels parameter (QPlogHERG) was used in the present
study to evaluate the propensity of Hits 1‒7 to impose cardiotoxic
side effects. All the investigated hits, except Hit 1, were detected to
have the potential to induce HERG-related cardiotoxic effects since
their predicted IC50 values for blockage of HERG K+ channels fell
outside the specified limit (concern below −5). The number of
likely metabolic reactions of a drug candidate is an essential
descriptor used to identify whether it could reach its site of
action following entering the blood circulation. The computedT
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numbers of possible metabolic reactions for Hits 1‒7were between
2‒5 which were within the recommended set limit (1–8). Overall,
attractive pharmacokinetic profiles. Given the above information,
Hits 1‒7, in general, had appropriate ADMET profiles,
nevertheless further optimization is required to boost up their
therapeutic properties. Based on the obtained favorable ADME
profiles for Hits 1‒7, the research was directed to assess their
potential toxicity. In-silico assessment of potential adverse effects
of a drug candidate has now become a routine practice in the
pharmaceutical industry, particularly at the earlies stages of the
drug discovery program to reduce the drug attrition rate (Liu et al.,
2023; Rababi and Nag, 2023). In the same regard, the webserver
ADMETLab 2.0 was used to perform toxicity evaluation of Hits
1–7. As shown in Supplementary Table S2, all of the investigated
Hits had the high risk to induce liver injury. Hits 1 and 5 had the
low probability to be hepatotoxic (the output values < 0.3), Hit 7
had the borderline low probability to precipitate liver toxicity (the
output value < 0.7), the rest had greater potential to be hepatotoxic
(the output values > 0.7). It was noticed that the
triazinobenzoxazepines 2‒4 and 7 showed active remarks in
both AMES and respiratory toxicity parameters (output
values > 0.7). Estimation of the carcinogenic properties of the
investigated hits pointed to the high risk of Hits 2 and 4 to induce
cancer. To get an insight on the possible side effects that could
emerge upon prolonged and frequent administration of Hits 1‒7,
rat oral acute toxicity descriptors (ROA) were determined. It was
observed that all of the hits were safe and having less potential to
impose acute toxic effects in human. Calculated values for eye
corrosion (EC), eye irritation (EI) and skin sensitization (SkinSen)
were found to meet the standards for safe drug candidate. In
addition, we conducted a comparative study between the most
widely used and clinically established first-line anti-TB drug
Isoniazid (INH) and Hit 1 to gain a deeper understanding of
their pharmacokinetic characteristics and toxicity profiles

(Supplementary Tables S1, S2). The anti-TB drug INH had a
smaller molecular weight (137.14) and solvent accessible surface
area (SASA: 329.65) compared to Hit 1, indicating that INH was
smaller in size and had different polarity. INH demonstrated
superior permeability (QPPCaco: 273.87 nm/sec) and solubility
(QPlogS: –1.03) than Hit 1, suggesting better drug-likeness.
Additionally, INH had fewer hydrogen bond acceptors (4.5)
and higher human oral absorption (66.7%) compared to Hit 1
(42.33%). Both INH and Hit 1 complied with Lipinski’s Rule of
Five, although Hit 1 violated Jorgensen’s Rule of Three. Regarding
toxicity, INH displayed a poorer profile for hepatotoxicity (H-HT:
0.71) and drug-induced liver injury (DILI: 0.70) compared to Hit 1
(0.12 and 0.81, respectively). INH also showed higher mutagenicity
(AMES: 0.93) and skin sensitization (SkinSen: 0.98) compared to
Hit 1 (0.33 and 0.69). However, Hit 1 exhibited significantly better
respiratory toxicity (0.03) than INH (0.99). Both compounds had
low recommended daily doses (FDAMDD: 0.06 for INH, 0.0 for
Hit 1), and although INH had a higher eye irritation potential (EI:
1.00), Hit 1 showed a more favorable value (0.23) for this
parameter. In summary, while INH demonstrated better
pharmacokinetics, Hit 1 exhibited a safer toxicity profile,
making it a promising candidate with potential advantages in
terms of safety. Thus, the selection of Hit 1 was primarily
driven by its superior safety profile, which emerged as the most
significant factor distinguishing it from the other top hits. Among
the evaluated candidates, Hit 1 demonstrated the lowest predicted
toxicity risks, ensuring its suitability for further development. In
addition, it exhibited favorable ADMET properties, which further
supported its drug-likeness and potential for clinical translation.
The prioritization of Hit 1 was also influenced by its balanced
physicochemical characteristics, aligning with the criteria for
successful drug candidates. This comprehensive evaluation
provided strong justification for advancing Hit 1 to more
detailed computational studies. These investigations aim to

FIGURE 11
(A, B) are the electron density and MESP of the reference ligand; (C, D) are the molecular orbital distribution plots of EHOMO and ELUMO of the
reference ligand, respectively.
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explore its structural and electronic features, laying the
groundwork for targeted modifications to enhance its efficacy,
selectivity, and overall therapeutic potential.

3.4 Quantum computational calculations

The molecular orbital and electronic features of the investigational
hits are commonly computed employing quantummechanicalmethods
(Zhou et al., 2010). In this study the DFT (density functional theory)
analysis of Hit 1 and the co-crystal ligand was performed using Jaguar
module of Schrödinger suite. Table 4 illustrates the Frontier Molecular
orbitals (FMOs) EHOMO and ELUMO, the HOMO-LUMO Gap (HLG)
along with the quantum chemical reactivity descriptors of Hit 1 and the
co-crystal ligand. Molecule’s electron affinity is directly related to its
ELUMO, while its ionization potential is associated with its EHOMO

(Ahmad et al., 2023). Hit 1 exhibited EHOMO value similar to that of the
co-crystal ligand indicating their similar ability to donate electrons to an
acceptor molecule, meanwhile, it displayed more negative ELUMO

pointing to its relatively higher electron affinity as compared to the
co-crystal ligand. The EHOMO and ELUMO plots of the co-crystal ligand
(Figures 11C,D) implies that nearly the entire structural units of the
molecule involved in FMOs and are thus could significantly participate
in the electron donation/acceptance processes.

On the other hand, the EHOMO and ELUMO plots of Hit 1 (Figures
12C,D) localized exclusively over the chromene ring rather than the
sugar moiety, HLG indicates whether the molecule is kinetically and
chemically stable or not (Alsehli et al., 2021). Both, the co-crystal
ligand and Hit 1 demonstrated similar HLG values (Table 4)
implying that they had similar chemical and kinetic stability and

are thus having similar electrons transferring and exchanging
liabilities. Likewise, the molecular hardness (ƞ) and softness (σ)
of the co-crystal ligand and Hit 1 were similar which further
confirmed their intermediate chemical stability since these
descriptors are directly related to HLG. It was observed that the
computed electronegativity (χ) for the co-crystal ligand and Hit 1
were 3.385 and 3.975 eV, respectively, indicating the comparatively
high potential of Hit 1 for electron attraction. Further, the global
electrophilicity index (ω) was calculated to evaluate the capacity of
Hit 1 and the co-crystal ligand to accept from molecules. As shown
in Table 4, the calculated electronegativity ω of Hit 1 and the co-
crystal ligand is found to be 2.507 and 3.71, eV, respectively which
reflects the strong electrophilic property of the identified Hit relative
to that of the reference ligand (Rana et al., 2021; Burkhanova et al.,
2022). The electron density and the MESP of the co-crystal ligand
and Hit 1 (Figures 11A, B, 12A, B, respectively) were computed to
display the electron-rich, electron-deficient and neutral regions of
these molecules. In addition it also provide information regarding
the molecular size and shape of the tested compounds. The
electrostatic potential differences on the regions are depicted in
red, yellow, and blue colors which refer to the highly negative,
negative and the highly positive molecular regions, respectively.
While the positive regions represent the favorable site for
nucleophilic attack, the negative regions are the favorable site for
electrophilic attacks. As illustrated in Figures 11A, B, 12A, B, the
negative surfaces are presented in the electronegative oxygen atoms
alongside the C=C bonds, meanwhile the positive ones are localized
at the hydrogen atoms. These electrostatic surfaces were shown to
play a critical role in helping co-crystal ligand and Hit 1 to interact
with diverse forces of interactions to the PknG catalytic site.

FIGURE 12
(A, B) show the electron density and MESP of Hit 1; (C, D) show the molecular orbital distribution plots of EHOMO and ELUMO of Hit 1, respectively.
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3.5 MD simulation

To assess the strength of binding of the most promising
compound, Hit 1, to PknG binding site, all-atom MD simulation
was performed for 100 ns time frame. The docked complexes of Hit
1 and the co-crystallized ligand were used as input files, alongside the
unbound PknG for comparison. MD descriptors such as the Root
Mean Squire Deviation (C-α RMSD) (Figure 13), Root Mean Squire
of Fluctuation (RMSF) (Figure 14) and protein-ligand contacts
(Figure 15) were extracted from the 100 ns trajectory simulation
run. C-α RMSD calculations used extensively to evaluate the
deviation of a protein relative to a reference structure during MD
simulation. Low RMSD values ligand-protein complex indicate
stability and limited structural changes (Arnittali et al., 2019).
The RMSD plot (Figure 13) indicates that Hit 1 complex
displayed relatively high fluctuation in the initial frames when
compared to the co-crystallized ligand and the unbound protein.
This could be attributed to the initial structural adjustments of Hit 1
complex to adopt the real binding mode. Following 10 ns of the MD
simulation start, Hit 1 complex stabilization was attained and steady
profile was displayed throughout the rest of simulation run.
Generally, Hit 1 complex displayed great stability with minimal
fluctuations (averaging RMSD 2.73 ± 0.37 Å) (Table 5) when
compared to those of the co-crystallized ligand (averaging RMSD
3.03 ± 0.45 Å) and the unbound protein (averaging RMSD 3.52 ±
0.65 Å). This indicates that Hit 1 formed stable complex with PknG
binding pocket and it remained tightly bound there for the whole of
the simulation course.

The RMSF analysis presented in Table 6 provided insights into
the dynamic flexibility of the PknG protein under different
conditions. In its unbound state (2PZI), the protein exhibited the
highest flexibility, with a maximum RMSF of 8.4 Å, a minimum of
0.68 Å, and an average of 1.61 Å, indicating significant motion
within the structure. Binding with the co-crystallized ligand notably
reduced the flexibility, reflected by a lower maximumRMSF of 5.4 Å,
a minimum of 0.74 Å, and an average of 1.50 Å, suggesting enhanced
stabilization of the protein. When bound to Hit 1, the flexibility of
PknG was intermediate, with a maximum RMSF of 6.1 Å, a
minimum of 0.72 Å, and an average of 1.60 Å. This implied that
Hit 1 provided some level of stabilization to the protein but was less
effective compared to the co-crystallized ligand. Overall, the data
indicated that while Hit 1 binding reduced the protein’s flexibility

relative to its unbound state, it did not achieve the same level of
stabilization as the co-crystallized ligand, highlighting its potential as
a stabilizing agent but with scope for further optimization.

Moreover, an analysis of the flexibility of the binding site
residues was performed. The RMSF analysis of the PknG binding
site residues, revealed that flexibility was similar across the different
conditions. In the unbound state (2PZI), the binding site exhibited a
maximum RMSF of 1.6 Å, a minimum of 0.68 Å, and an average of
1.04 Å, indicating moderate motion. Binding with the co-crystallized
ligand slightly increased the maximum RMSF to 1.67 Å and the
minimum to 0.75 Å, while maintaining an average of 1.04 Å,
suggesting minimal impact on the stabilization of the binding site

FIGURE 13
RMSD plot generated through MD trajectories of the C-α atoms
of the unbound PknG (PDB: 2PZI) and its complexes with co-
crystallized ligand, along with Hit 1.

FIGURE 14
MD simulation trajectory analysis of RMSF of theC-α atoms of the
unbound PknG (PDB: 2PZI) and its complexes with the co-crystallized
ligand and Hit 1.

FIGURE 15
Binding modes of co-crystallized ligand (A), Hit 1 (B) with PknG
(PDB: 2PZI) during the simulation run. H-bonds are shown in green,
hydrophobic interaction in grey, ionic bonds in deep pink and water
bridges in blue.
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residues. Binding with Hit 1 resulted in a maximum RMSF of 1.64 Å,
a minimum of 0.80 Å, and a slightly higher average of 1.10 Å. These
results suggested that both the co-crystallized ligand and Hit 1
influenced the dynamics of the binding site residues to a similar
extent, with Hit 1 inducing slightly higher average flexibility. This
indicated that Hit 1’s binding effect was comparable to that of the
co-crystallized ligand but required further optimization to achieve
greater stabilization.

Near the conserved ATP-binding site, PknG possessed an
additional hydrophobic pocket, distinct from most protein
kinases due to its low sequence homology (Scherr et al., 2007;
Caballero et al., 2018). This distinctiveness was attributed to the
presence of a unique N-terminal segment spanning residues 5–60,
which contributed significantly to the structural and functional
divergence of PknG. The dynamic nature of this N-terminal
segment was evident in the RMSF analysis, which revealed
marked differences between the bound and unbound states. In
the unbound state (2PZI), residues 5–60 exhibited the highest
flexibility, with an RMSF range of 1.26–6.9 Å and an average of
3.03 Å, reflecting considerable motion within this region. Binding
with the co-crystallized ligand markedly reduced flexibility, with an
RMSF range of 1.28–2.5 Å and an average of 1.68 Å, indicating
strong stabilization of these residues. In comparison, binding with
Hit 1 resulted in intermediate flexibility, with an RMSF range of
1.21–4.8 Å and an average of 2.4 Å. While Hit 1 reduced the
flexibility of residues 5–60 compared to the unbound state, it did
not provide the same degree of stabilization as the co-crystallized
ligand. These findings highlighted the potential of Hit 1 as a
stabilizing agent for this region, though further optimization may
be required to enhance its effectiveness. The significant reduction in
RMSF values upon binding to the co-crystallized ligand or Hit 1
demonstrated that the hydrophobic pocket stabilized through
ligand-induced structural adjustments. This stabilization not only

enhanced binding affinity but also underscored the critical role of
the N-terminal segment in regulating access to the hydrophobic
pocket and optimizing ligand interactions. Notably, 90% of the
inhibitors interacted with the unique N-terminal segment of PknG
via hydrophobic interactions, further reinforcing the functional
importance of this region (Caballero et al., 2018).

Plots for RMSF of amino acid residues are shown at a time
function of 100 ns in Figure 14. It is clear that the key residues
involved in protein-ligand interactions were of minimal flexibility
(<1.5 Å) during the entire trajectory run. These low RMSF values for
the interacting residues significantly impacted the stability and the
firm binding of Hit 1 to the enzyme catalytic site. Further, relatively
high variations were observed for residues Pro99 to Ser133, Arg222,
Asn346 and Ala490 to Gly495 for both, the unbound protein and Hit
1 complex. Fortunately, these residues did not play a direct role in
interacting with Hit 1, so their flexibility did not impact the overall
stability of Hit 1 complex.

Next, different types of protein-ligand interactions occurring in
the simulation time were investigated. Four different types of
protein-ligand contacts were identified, specifically: H-bonds,
water bridges, ionic interactions, and hydrophobic interactions.
As illustrated in Figure 15, the co-crystallized ligand maintained
the same interactions with the key residues encountered for XP
docking conformer. These interactions included three H-bonds with
the hinge region residues, two with Val235 and the other with
Glu233. These H-Bonds retained for the entire simulation time
frame. Further, hydrophobic interactions were also observed with
critical residues Ile86, Ala91, Ile157, Ile165, Val179, Met232, Tyr234,
Met283, and Ile292. The hinge region of PknG, comprising Glu233,
Tyr234, and Val235, plays a pivotal role in ligand stabilization
(Arica-Sosa et al., 2022). In this context, the hydrogen bond
formed by Hit 1 with the key residue Val235 in this region
remained stable for the majority of the simulation time (93%),
compared to 99% stability observed in the co-crystallized ligand
complex (Supplementary Figure S3). However, the H-Bond with the
crucial residue Glu233 detected for the docked complex lost and was
replaced with stable H-Bond with the adjacent residue Tyr234 in the
same region. The later bond was also maintained for most of the
simulation time (92%). This loss of interaction with Glu233 may
impact the overall binding affinity, as Glu233 plays a significant role
in stabilizing ligands within the ATP-binding site. However, Hit 1
compensated for this loss by forming a stable interaction with the
hinge region residue Tyr234 and the catalytic residue Lys181 (Arica-
Sosa et al., 2022), which were present for nearly 92% and 60% of the
simulation, respectively. These interactions, which were not
observed for the co-crystallized ligand, may contribute to
maintaining binding stability and potentially offset the impact of
the missing Glu233 interaction. Given that Lys181 is critical for
catalytic activity, the interaction with this residue could enhance the
functional efficacy of Hit 1, despite the reduced affinity caused by the
absence of Glu233 engagement. Thus, Future optimization of Hit 1
could focus on re-establishing interactions with Glu233 to improve
its binding affinity without compromising its interaction with
Lys181. In addition, Hit 1 created multiple H-Bonds and Water
Bridges with different residues including Lys181, Ile157, Ser239, and
Arg242. Some of these bonds lasted for >55% of the timeline, further
contributed to stabilization of Hit 1 complex. These additional
connections could be attributed to the presence of the sugar

TABLE 5 Detailed analysis of the RMSD values, including minimum,
maximum, and average for the Hit 1 complex. This also includes
comparative data for the co-crystallized ligand complex and the unbound
protein.

PknG RMSD (Å)

Protein Maximum Minimum Average

2PZI Unbound 5.46 1.41 3.52 ± 0.65

2PZI-Co-crystallized ligand 4.63 1.57 3.03 ± 0.45

2PZI-Hit 1 4.36 1.42 2.73 ± 0.37

TABLE 6 Detailed analysis of the RMSF values, including minimum,
maximum, and average for the Hit 1 complex. This also includes
comparative data for the co-crystallized ligand complex and the unbound
protein.

PknG RMSF (Å)

Protein Maximum Minimum Average

2PZI Unbound 8.4 0.68 1.61

2PZI-Co-crystallized ligand 5.4 0.74 1.50

2PZI-Hit 1 6.1 0.72 1.60
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moiety attached to C-6 of the chromone ring in Hit 1 which
amplifies its hydrophilicity as compared to the co-crystallized
ligand. Regarding hydrophobic interaction, it was observed for
Hit 1 with several residues existed in the hydrophobic region of
the enzyme binding pocket such as Ile157, Ala158, Ile165, Val179,
Met283, and Ile292.

Furthermore, to get detailed insights into the stability and
specificity of the PknG-Hit 1 interactions, the number of
H-Bonds along with hydrophobic interactions were analyzed and
the results are provided in Table 7 and Supplementary Figure S4. Hit
1 demonstrated a relatively high number of H-Bonds during the
simulation compared to those made by the co-crystallized ligand
(Supplementary Figure S4A), averaging 3.28 and 2.54, respectively.
This could justify the better stability of Hit 1 complex compared to
that of the co-crystalized ligand, as H-bonds are increasingly
regarded as facilitators of protein-ligand binding (Chen et al.,
2016). Moreover, Hit 1 established hydrophobic interactions
(Supplementary Figure S4B), comparable to those formed by the
co-crystallized ligand, with averages 1.47 and 1.61, respectively.
Thus, we can reasonably conclude that Hit 1 created a stable and
favorable interaction profile with the mycobacterial PknG catalytic
site, making it a potential PknG inhibitor for the treatment of
tuberculosis. The average water-bridge contacts for the co-
crystallized ligand were 0.41, while Hit 1 showed a significantly
higher average of 1.55. This suggested that Hit 1 formed more
frequent water-mediated interactions with the protein. The
maximum number of water-bridge contacts for Hit 1 was 7,
compared to 4 for the co-crystallized ligand, indicating that Hit 1
had the potential to establish stronger networks. Both ligands
showed a minimum of 0 water bridges, implying the absence of
such interactions in some configurations. These findings highlighted
the enhanced water-bridge interaction of Hit 1 with the protein. In
conclusion, Hit 1 demonstrated a more favorable interaction profile
with PknG, evidenced by a higher number of hydrogen bonds and
water-bridge contacts, as well as comparable hydrophobic

interactions to the co-crystallized ligand. These factors suggest
that Hit 1 formed a more stable and specific complex with the
mycobacterial PknG catalytic site. Therefore, Hit 1 presents itself as
a promising candidate for further optimization as a PknG inhibitor
for tuberculosis treatment.

3.6 Study limitations and future perspective

Various computational approaches, including molecular
docking, free energy calculations, ADMETox studies, DFT
analysis, and MD simulations, have been employed in this study
to identify novel potential inhibitors targeting PknG of M.
tuberculosis. These inhibitors are expected to suppress the growth
and multiplication of drug-resistant M. tuberculosis that survive
within alveolar macrophages, thereby potentially addressing the
challenge of latent tuberculosis. A compound library comprising
460,000 small molecules underwent multimode virtual screening,
from which seven compounds (hits 1–7) demonstrated notable
binding affinity and robust interactions with essential residues
within the catalytic binding pocket of mycobacterial PknG. While
all seven hits exhibited acceptable drug-like properties, the
chromene glycoside (hit 1) stood out for its lower toxicity.
However, strategies to optimize its oral bioavailability are
strongly recommended. Additionally, DFT analysis indicated that
the mechanical and electronic properties of hit 1 were superior to
those of the reference ligand (AX20017). Molecular dynamics (MD)
simulations further confirmed the stability of the hit 1-PknG
complex, supporting its potential as a lead compound for anti-
tuberculosis drug development. Despite these promising
computational results, several limitations must be acknowledged.
The reliability of computational models depends heavily on the
quality of structural data and the assumptions used in the
simulations, which, although thorough, may not fully capture the
intricate complexities of biological systems in vivo. In silico models,
while powerful, have inherent limitations in accurately predicting
the behavior of compounds within living organisms. These models
often fail to account for complex in vivomolecular interactions, such
as off-target effects and biotransformation pathways, introducing
uncertainty regarding the safety and efficacy of the investigated
compounds. Molecular docking, a fundamental computational
technique, relies on assumptions about the flexibility of proteins
and ligands. It typically represents the binding site as static or semi-
flexible, potentially overlooking the dynamic nature of proteins that
can adopt multiple conformations. Consequently, docking scores,
which estimate binding potential, do not always correlate with
experimental binding affinity values. To mitigate these issues,
MM-GBSA calculations were employed to provide more accurate
binding energy estimates by incorporating molecular flexibility and
solvent effects. Additionally, MD simulations validated the stability
of PknG-inhibitor complexes, offering dynamic insights and
reinforcing the potential of the identified hit as effective PknG
inhibitors. Nonetheless, this study’s structure-based virtual
screening was limited to the NCI database, which, despite its
extensive coverage, may exclude certain chemical classes with
potential PknG inhibitory activity. Future studies should explore
additional chemical libraries to identify a broader range of
inhibitors. Furthermore, translating computational findings into

TABLE 7 Maximum, Minimum and Average number of H-Bonds,
hydrophobic interactions, and Water-Bridges observed during 100 ns MD
simulation of hit 1 and the co-crystallized ligand complexes with PknG
(PDB: 2PZ1).

2PZI-complex Co-crystallized ligand Hit 1

H-bond contacts

Average 2.54 3.28

Maximum 4 8

Minimum 1 0

Hydrophobic contacts

Average 1.61 1.41

Maximum 7 5

Minimum 0 0

Water-bridge contacts

Average 0.41 1.55

Maximum 4 7

Minimum 0 0
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actionable drug discovery requires experimental validation. Wet lab
investigations, such as enzyme inhibition assays and cell-based
activity tests, are essential to confirm the identified hit’s activity.
Additionally, in vivo studies are necessary to evaluate the ADMET
profile, therapeutic potential, and overall safety of the identified hit.
Structural modifications to the lead candidate, chromene glycoside,
or the implementation of various formulation and delivery strategies
should also be explored to address its bioavailability limitations
while preserving its inhibitory potency.These efforts are crucial to
bridging the gap between computational predictions and clinical
applications, ensuring the development of effective PknG inhibitors
for tuberculosis treatment.

4 Conclusion

In conclusion, this study employed a comprehensive array of
computational approaches to identify potential inhibitors targeting
PknG ofM.tb. Among the seven promising hits identified, chromene
glycoside (hit 1) emerged as the most potent candidate due to its
strong binding affinity, favorable interactions, and lower toxicity
profile. DFT analysis further highlighted its superior electronic
properties compared to the reference ligand. Molecular dynamics
simulations confirmed the stability of the hit 1-PknG complex,
reinforcing its potential as a lead compound. However,
optimization of its oral bioavailability remains necessary to
enhance its drug-like properties and therapeutic applicability.
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