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Introduction: Plate culturing and visual inspection are the gold standardmethods
for bacterial identification. Despite the growing attention on molecular biology
techniques, colony identification using agar plates remains manual,
interpretative, and heavily reliant on human experience, making it prone to
errors. Advanced imaging techniques, like hyperspectral imaging, offer
potential alternatives. However, the use of hyperspectral imaging in the VIS-
NIR region has been hindered by sensitivity to various components and culture
medium changes, leading to inaccurate results. The application of hyperspectral
imaging in the ultraviolet (UV) region has not been explored, despite the presence
of specific absorption and emission peaks in bacterial components.

Methods: To address this gap, we developed a predictive model for bacterial
colony detection and identification using UV hyperspectral imaging. The model
utilizes hyperspectral images acquired in the UV wavelength range of
225–400 nm, processed with principal component analysis (PCA) and
discriminant analysis (DA). The measurement setup includes a hyperspectral
imager, a PC for automated data analysis, and a conveyor belt system to
transport agar plates for automated analysis. Four bacterial species
(Escherichia coli, Staphylococcus, Pseudomonas, and Shewanella) were
cultured on two different media, Luria Bertani and Tryptic Soy, to train and
validate the model.

Results: The PCA-DA-based model demonstrated high accuracy (90%) in
differentiating bacterial species based on the first three principal components,
highlighting the potential of UV hyperspectral imaging for bacterial identification.

Discussion: This study shows that UV hyperspectral imaging, coupled with
advanced data analysis techniques, offers a robust and automated alternative
to traditional methods for bacterial identification. The model’s high accuracy
emphasizes the untapped potential of UV hyperspectral imaging in
microbiological analysis, reducing human error and improving reliability in
bacterial species differentiation.
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1 Introduction

Pathogenic bacteria are responsible for many healthcare and
safety problems, including infectious diseases (He et al., 2023), food
poisoning (Hussain, 2016), and water pollution (Some et al., 2021).
Due to their infectivity and rapid proliferation, fast and accurate
methods for bacterial detection and identification are necessary to
reduce the time lapse for decision-making and, thus, minimize
healthcare risks, ecosystem impact, and economic losses
associated with microbial pathogens. Different methods already
exist for pathogen detection and identification based on bacterial
cell culture on agar plates (van Belkum and Dunne, 2013),
immunological detection (e.g., enzyme-linked immunosorbent
assay) (Wyatt et al., 1993), molecular biology techniques like the
polymerase-chain reaction (Maurin, 2012; Yamamoto, 2002), DNA
microarrays (Call et al., 2003), biosensors (Boehm et al., 2007;
Ahmed et al., 2014), or the use of specific reagents sensitive, for
example, to bacterial metabolism (Ghatole et al., 2020; Hsieh et al.,
2018) or the presence of Adenosine triphosphate (ATP) (Liu et al.,
2023), among others (Chen et al., 2018; Dietvorst et al., 2020).
However, the traditional plate culturing method is still the gold
standard in pathogen detection and identification due to its
simplicity, low cost, robustness, and reliability (Rohde et al.,
2017), being the one included in the regulations for bacterial
pollution assessment (Word Health Organization, 2017).

In practice, plate culturing involves bacterial growth in agar
plates until the formation of monoclonal colonies is visually
observable. Colonies from different bacterial species differ in
morphology, color, shine, and opacity, among others, being
distinguishable by experts after careful observation, sometimes
under the microscope. Thus, plate culturing is, to some extent,
susceptible to human errors. Apart from that, the technique’s main
limitation is its long duration. Typically, bacterial proliferation until
colony formation takes more than 18 h, being necessary more than
3–4 days in the case of slow proliferating bacteria (Franco-Duarte
et al., 2023; Rajapaksha et al., 2019; Lee et al., 2020). One extreme
situation is Legionella, which requires non-standard treatments and
a second plate culturing for a proper diagnosis, thus delaying
bacterial identification up to some weeks (Tronel and
Hartemann, 2009; McDade, 2009).

One possibility to reduce the measurement time and speed up
decision-making is to implement advanced imaging systems that
are able to detect the colonies and identify them at an early stage
of formation (Wang et al., 2020). In this sense, hyperspectral
imaging is advantageous since it provides high-resolution images
in a 3D data matrix or hypercube format, where two dimensions
correspond to the spatial information (x, y coordinate) and the
third one to spectroscopic data from each individual pixel (λ
coordinate) (Gowen et al., 2015; Arrigoni et al., 2017). This large
amount of information is generally processed using
chemometrics to identify patterns in the data sets, which are
not noticeable with the bare eye, and to create predictive models
able to classify new data (Huang, 2022). Principal component
analysis (PCA) has been commonly used in combination with
hyperspectral imaging to reduce the spectral image data sets into
representative variables called principal components (PCs)
(Abdi and Williams, 2010). These PCs can then be used to
perform PCA-based discriminant analysis (PCA-DA) (Uddin

et al., 2021) with statistical techniques like quadratic
discriminant analysis (QDA), which is used for data
classification. Once selected and trained with samples of
known nature and composition, the algorithm determines the
probability of a new data point belonging to each class based on
its features and assigns it to the class with the highest probability
(Ghosh et al., 2021).

The combination of hyperspectral imaging and data analytics
has already been used for microbial identification since each
bacterium presents a unique pattern of absorption/emission,
which can be utilized as a distinctive identifier or fingerprint.
Hence, Turra et al. (2015) demonstrated the capability of VIS-NIR
hyperspectral imaging in the wavelength range between 400 and
1,000 nm to distinguish the colonies corresponding to five
pathogenic bacteria commonly related to urinary tract
infections (UTI) (Turra et al., 2015). As a step forward,
Guillemont et al. (2016) reduced the visible–near infrared
(VIS-NIR) spectral resolution to 14 channels, each one
corresponding to a single wavelength, to classify UTI-related
bacterial colonies grown on chromogenic agar media
(Guillemot et al., 2016). On the other hand, Kammies et al.
(2016) employed NIR hyperspectral imaging between 900 and
2,500 nm to differentiate between Gram-positive and Gram-
negative bacterial colonies (Kammies et al., 2016). Additionally,
Gu et al. (2020) investigated the capacity of hyperspectral imaging
to classify bacterial colonies regardless of the agar media used for
their cultivation (Gu et al., 2020). Hence, these hyperspectral
imaging studies for bacterial colonies identification on agar plates
only considered the VIS-NIR regions, while UV radiation was not
explored, even when many bacterial molecular components,
including amino acids, pigments, and proteins, e.g.,
cytochromes (Ghosh et al., 2015; Orlandi et al., 2022; Gao and
Garcia-Pichel, 2011), absorb in this region.

Here, UV hyperspectral imaging is used to develop a predictive
chemometric model based on PCA-DA to distinguish colonies
from bacterial species commonly present in water or clinical
samples. Four different bacterial strains commonly related to
clinics, food processing, or water distribution were used as
model microorganisms to create and validate the predictive
model. Staphylococcus and Pseudomonas were selected due to
their clinical relevance since they are common pathogens
implicated in nosocomial clinical infections (Hassan et al.,
2021). Escherichia coli is one of the most common pathogens in
water, commonly employed as a standard fecal contamination
indicator. It has also been related to gastrointestinal tract, urinary
tract, bloodstream, and central nervous system-related disease
(Word Health Organization, 2017; Croxen et al., 2013; Mead
and Griffin, 1998; Ishii and Sadowsky, 2008). Finally, some
Shewanella species have been postulated as opportunistic
pathogens. This microorganism can be found in either water or
soil samples, although also isolated from food (milk, butter, eggs,
poultry, raw fish, and beef products) (Vignier et al., 2013; Gruyter
and Paździor, 2016; Ng et al., 2022). Additionally, this
microorganism produces shiny and reddish/brown color
colonies due to the presence of hemo groups in their large
variety of cytochromes c (Gruyter and Paździor, 2016), which
makes it a very attractive candidate for UV-hyperspectral detection
(Mead and Griffin, 1998).
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2 Materials and methods

2.1 Bacterial agar plate sample preparation

In this study, four different bacterial strains were cultivated:
Escherichia coli (ATTC 10536), Pseudomonas putida (DMSZ 291),
Staphylococcus arlettae (CVD059), Shewanella oneidensis (ATCC
700550). All bacteria were cultivated in Luria Bertani (LB) broth
except Shewanella oneidensis, cultivated in Tryptic Soy (TS) media.

Cell suspensions were grown overnight (18 h) in the
corresponding liquid culture media to prepare agar plate samples
for UV hyperspectral imaging. The optical density of the overnight
culture was measured and diluted to a cell concentration of
approximately 108 CFU·mL-1 (OD 0.12). Afterward, four
individual spots were created for each bacterial culture plate,
inoculating 5 µL of cell suspension per spot. Plates corresponding
to Escherichia coli (EC) and Staphylococcus arlettae (SA) were
incubated at 37°C, while Pseudomonas putida (PP) and
Shewanella oneidensis (SO) at 30°C.

2.2 Set-up for UV-Hyperspectral imaging

The set-up used for UV hyperspectral imaging was adapted from
the system described in a previous work (Al Ktash et al., 2023).
Figure 1 illustrates the UV hyperspectral imaging system based on a
back-illuminated CCD camera (Apogee Alta F47: Compact, inno-
spec GmbH, Nürnberg, Germany) and a spectrograph (RS 50–1938,
inno-spec GmbH, Nürnberg, Germany) with a slit width of 30 μm.

The CCD camera has a resolution of 1,024 × 1,024 pixels (spatial ×
spectral) and a pixel size of 13 μm× 13 μm. The integration time was
optimized and set at 300 m to measure bacterial colonies. The set-up
also incorporates a Deuterium lamp (SL3 Deuterium Lamp,
StellarNet Inc., Tampa, Florida) as the light source. The
hyperspectral set-up contains a conveyor belt (700 mm ×
215 mm × 60 mm, Dobot Magician, Shenzhen Yue-jiang
Technology Co., Ltd., Shenzhen, China), where samples are
placed and displaced until the detection area. The conveyor belt
moves at a constant speed of 0.15 mm/s.

2.3 Data collection and preprocessing

The UV hyperspectral imaging data were acquired with the SI-
Cap-GB version V3.3.x.0 software (inno-spec GmbH, Nürnberg,
Germany), which automatically calculated the values of the
reflectance measurements. In order to correct the illumination
variations during the scanning line and the scattering produced
by the different topographies of the bacterial colonies, raw spectra
corresponding to each pixel were converted to reflectance spectra
after radiometric calibration using the following Equation 1
(Boldrini et al., 2012).

Ref lectance � R

R0
� Isample−Idark
Ireference−Idark

(1)

where R is the intensity reflected from the sample, and R0 is the
intensity reflected from a specific reference material with high
reflectivity, in this case, Polytetrafluoroethylene (PTFE) or

FIGURE 1
(A) Set-up for push-broom UV-hyperspectral imaging. (B) Representation of the push-broom image scanning principle. (C) Average UV spectrum
extracted from pixels of a particular area of interest.
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Teflon). Isample corresponds to the spectral intensity of the sample,
Idark is the intensity of the dark, and Ireference is the intensity of the
reference sample, in this case PTFE. Absorption is calculated as the
negative logarithm of reflectance (Abs = -log (R/R0)). All the data
presented in the graphs of this research article are represented using
absorbance, calculated as the logarithm of the reflectance.

The acquired hyperspectral data were analyzed using the
HydraPCA software, a custom-made program in Matlab
(MATLAB 9.2.0, Mathworks, MA, United states), which was
designed to extract spectra from individual pixels. Considering
the sensor size (1,024 pixels × 1,024 pixels), the program
analyzed 1,024 pixels in the x-direction (lateral resolution in x),
and 1,024 pixels in the wavelength λ direction ranging from 225 nm
to 410 nm (variables/columns in the PCA matrix). By moving the
conveyor belt line by line, a lateral resolution in y is realized.

2.4 Multivariate data analysis and
model building

Multivariate data analysis was carried out with Aspen
Unscrambler™ version 10.5.1″(Aspen Technology Inc., Bedford,
MA, United states). First, UV spectra were preprocessed to calculate
PCA. Linear baseline correction and Savitzky–Golay smoothing
(5 points, symmetric, 3rd polynomial order) were carried out.
PCA models were then calculated with mean centering, cross-
validation, and the NIPALS algorithm. QDA was used with mean
centering and segmented cross-validation for model building
according to the sample type and the Kernel algorithm.

The prediction performance was analyzed by calculating the
accuracy (Equation 2), specificity (Equation 3), and sensitivity
(Equation 4) of the model (Dankers et al., 2019).

Accuracy � TN + TP( )
TN + TP + FP + FN( ) (2)

Specif ity � TN

TN + FP( ) (3)

Sensitivity � TP

TP + FN( ) (4)

where TP is true positive, FP is false positive, TN is true negative, and
FN is false negative prediction.

3 Results

3.1 UV absorption spectra of bacterial agar
plate colonies

The four bacterial species selected for this research—Escherichia
coli, Pseudomonas, Staphylococcus, and Shewanella—exhibit distinct
characteristics while sharing traits that make them suitable for UV-
based detection (details in Table 2). Both Escherichia coli and
Pseudomonas are gram-negative bacteria. E. coli is a significant
pathogen in the healthcare field and a widely used model
organism in research, while Pseudomonas is notable for its
environmental importance and its role as an opportunistic
pathogen, particularly in immunocompromised individuals.

Pseudomonas, produces pigments like pyocyanin which offer
unique spectral features under UV light, whereas E. coli lacks
pigments but absorbs UV light through its structural
components, such as proteins and nucleic acids. Staphylococcus, a
gram-positive bacterium, is medically significant due to its
involvement in various infections and produces pigments like
staphyloxanthin. Shewanella, another gram-negative bacterium,
has also been reported as an opportunistic pathogen which
contains a wide variety of light absorbing c-cytochromes. Despite
differences in morphology, pigmentation, and ecological roles, all
four species demonstrate potential for differentiation using UV
hyperspectral imaging.

Bacterial agar plate colonies were produced for the four bacterial
strains [Escherichia coli (ATTC 10536), Pseudomonas putida
(DMSZ 291), Staphylococcus arlettae (CVD059), Shewanella
oneidensis (ATCC 700550)]. The four colonies were grown until
reaching a minimum size of 13 µm in diameter, corresponding to the
hyperspectral imager resolution (13 μm × 13 µm). Then, the plates
were analyzed using UV hyperspectral imaging in the wavelength
range between 225 and 400 nm. Control agar plates with LB and
TSA without bacteria were also prepared and used as
control samples.

Figure 2 shows images of the different steps carried out for the
UV-hyperspectral image analysis of the colonies on agar plates.
First, agar plates under analysis were located on the conveyor belt.
Once reaching the detection area (i.e., below the lamp, Figure 2A),
the camera took hyperspectral images in reflectance mode
(Figure 2B). As shown in Figure 2B, the bacterial colonies could
be distinguished from the surrounding medium, being able to
count the number of colonies in the sample, i.e., in this case four.
The area corresponding to each colony contained multiple pixels
(between 220 and 250 pixels in the case of overnight cultures of
Escherichia coli), which could be easily selected for bacterial
identification through spectral analysis. Even when each pixel
provided an independent UV-spectrum, the average spectrum
of the 220–250 individual pixels was considered representative
of the specific bacterial colony and used to compare colonies
between them (Figure 2C).

Representative agar plates of each sample type are presented in
Figures 3A1–6. In addition to an agar plate containing four colonies
for each bacterial strain (Shewanella oneidensis, Escherichia coli,
Pseudomonas putida and Staphylococcus arlettae), a control agar
plate was analyzed for each agar type (LB and TSA)—six plates in
total. As shown, the colonies corresponding to each bacterial strain
differed in morphology, topography, and color. This resulted in
species-specific absorbance spectra for each bacterial type,
i.e., bacterial fingerprints, which should permit the differentiation
and identification of each bacterial strain (Figure 3B). It can be
observed that the spectra from LB and TSA agar (Figures 3B1, 3B3)
clearly differed from plates containing bacterial colonies. LB and
TSA agar presented a small peak near 230 nm (peak 1), which was
not observed in bacterial colonies. In contrast, the samples
containing bacteria colonies show peaks between 260 and
280 nm (Figures 3B2–B6; peak 2) and a shoulder in the range
between 290 nm and 320 nm (Figures 3B2–B6; peak 4). Variances
from 300 nm to higher wavelengths are probably related to the
different biochemical composition of bacteria, e.g., the presence of
specific pigments.
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3.2 Principal component analysis and
model building

In each agar plate, four discrete colonies were grown and used to
acquire hyperspectral images. Three of the colonies were used to
create a model and the fourth one was employed for future sample
prediction.

Principal component analysis (PCA) was used to extract the
essential spectral characteristics of all spectroscopic data obtained
from hyperspectral imaging (Uddin et al., 2021), thus enabling
straightforward data analysis and visualization. The 3D score plot

of the PCA model created for the agar and bacterial colony samples
at each sample pixel is shown in Figure 4A. This model explains 92%
of the total variance of the spectral changes by the first three
principal components. The first principal component PC1 (87%),
captures the largest amount of data. The following components, PC2
(4%) and PC3 (1%), capture the remaining variation in descending
order. The closer the samples are in the score plot, the more similar
they are concerning the three components.

The PC1 variable influences 87% of the recorded data and, as
indicated by the loadings, it has a constant positive correlation along
the spectra without significant variations. On the other hand,

FIGURE 2
(A) Photo of a LB agar plate with 4 Escherichia coli spots placed on the belt under the UV lamp, with the hyperspectral camera ready for
measurement. (B)UV-hyperspectral image taken from the sample. Regions of interest corresponding to the four Escherichia coli spots are indicated with
different color circles. (C) Average absorption spectra extracted from one of the selected regions of interest.

FIGURE 3
(A) Photo of agar plates (B) Average absorption spectra of the analyzed samples. Numbers correspond to the following sample: 1) Tryptic soy agar
(TSA) control; 2) Shewanella oneidensis (SO); 3) Luria Bertani (LB) agar control; 4) Escherichia coli (EC); 5) Pseudomonas Putida (PP); 6) Staphylococcus
arlettae (SA).
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PC2 and PC3 havemore variations and, as can be observed in the 2D
score plot for components PC2 and PC3 (Supplementary Figure S1),
they are responsible for a better grouping of the different samples.
All bacteria except SO have a negative correlation with PC2 and
differ in the correlation to PC3, which simplifies their classification.
The difference in PC2 will make SO better identified against the
other bacterial species. On the other hand, when considering the
samples that are positive in PC2, LB agar is negatively correlated to
PC3, TSA has a close to null relation, and SO is positively related.
Hence, the samples can be distinguished and grouped only
considering three PCs. The loading plot (Figure 4B) also
indicates that the most significant variation in the PCs starts
around the 290 nm wavelength. Thus, in future experiments, the
analyzed spectral range may be reduced, making it possible to
decrease the amount of collected data.

In order to validate the quality of the PCA model, the scores of
the first three PCs were used to make a quadratic discriminant
analysis (PCA-QDA). For each sample, PCA-QDA gives a value that
correlates with a group, and thus it is possible to determine the group
to which the sample belongs to. The sample is assigned then to the
corresponding group, either a bacterial species or an agar type. The
model performance was tested with segmented cross-validation
according to sample type (Avram et al., 2020).

Figure 5 illustrates the confusion matrix (Supplementary Table
S1) for the agar media and bacterial colony samples, which evaluates
the reliability of the classification model. It summarizes the number
of correct and incorrect predictions made by the model on a data set
by comparing the predicted and actual labels. The overall accuracy
of the model was 90.3%. The high diagonal bars represent the
accordance between the predicted and actual values,
corresponding to dark-grey highlighted diagonal elements in
Supplementary Table S1. The correctly predicted pixel number
was much more significant than the incorrect predictions,
corresponding to off-diagonal elements light-highlighted in
Supplementary Table S1.

The sensitivity and specificity of the model were determined for
all samples. Spectra corresponding to the TSA and LB agar were
predicted with 96.6% and 93.8% of sensitivity and 98.9% and 98.5%
of specificity. Most of the mispredicted ones corresponded to the
other agar types. So, it could be concluded that the model can
distinguish bacterial colonies from the agar. Regarding the bacterial
colonies, SO was the best-predicted bacteria with 98.2% sensitivity
and 99.6% specificity. The bacteria identified with the lowest
sensitivity (78.2%) and specificity (95.7%) was PP.

Once the model was developed, it was used to predict the four
colonies and certify its ability to identify different bacterial colonies.
After analyzing the pixels corresponding to each colony, the
probability of belonging to one of the four bacterial strains or the
two agar types was determined with the current model (Table 1).
The model indicated that there is a 98% chance for colony 1 to
correspond to SO, 92% for colony 2 to be EC, 78% for colony 3 to be
PP, and 83% for colony 4 to pertain to SA. Thus, all colonies could be
correctly predicted after classifying them according to the highest
probability.

FIGURE 4
(A) 3D score plot of the PCA analysis results for PC1, PC2, and
PC3. (B) Loadings plot of the three PCs.

FIGURE 5
Graphical representation of the confusion matrix of PCA-DA
model and the sensitivity and selectivity values for each sample.
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4 Discussion

4.1 UV absorption spectra of bacterial agar
plate colonies

UV-Hyperspectral images of colonies containing agar plates
allowed for easy detection and selection of the areas of interest
for the spectral analysis. One of the first differences to highlight was
the peak at 230 nm, which was only present in the LB and TSA agar
controls. This peak has been related to unfolded (denaturalized)
proteins (Liu et al., 2009). The process of preparing the agar culture
plates includes a sterilization step of 20 min at 121°C of the medium
prior to plating. This high-temperature step denaturalizes the
proteins present in the medium, being responsible for the
appearance of this peak. In contrast, bacteria are seeded and
grown at physiological conditions, so proteins and nucleotides
associated with them and present on the surface of the plate after
cell culturing are not denaturalized. This aspect was confirmed by
the presence of absorption peaks between 260 and 280 nm (peak 2),
which are associated with non-denaturalized proteins and
nucleotides.

Spectral differences above 300 nm may be attributed to
variations in the biochemical composition of bacteria,
concretely to the presence of natural pigments, like

carotenoids, flavins, phenazines, quinones, monascines,
violaceins, indigoidines or melanins, able to absorb in the UV-
VIS range (Celedón and Díaz, 2021). Pseudomonas species, for
example, contain pyocyanin, pyochelin, pyoverdine, and
pyomelanine (Srivastava et al., 2022; Hoegy et al., 2014;
Hamad et al., 2020; Mould et al., 2020), Staphylococcus
produce staphyloxantin and zeaxanthin (Pelz et al., 2005; Ram
et al., 2020), and Shewallena, characterized to contain high
concentration of a wide variety of c-cytochromes as part of its
electron transport chain (Kaila and Wikström, 2021; Gennis,
1987), also presents pyomelanine as electron acceptor in the iron
reduction process (Kuttan et al., 2023) (Table 2).

4.2 Principal component analysis and colony
identification model

The multivariate data analysis used to identify patterns and
relationships between the spectra extracted from the samples
showed that 92% of the total variance can be explained by using
three PCs. PC1 has a constant positive correlation along the spectra
without significant variations. On the other hand, PC2 and PC3 are
responsible for the sample grouping, as evidenced in the 2D score
plot (Supplementary Figure S1).

TABLE 1 Prediction of the blind colony samples according to the classification of the spectra recorded from each single pixel forming their image. P (%)
indicates the probability of pertaining to bacterial species.

Colony 1 P (%) Colony 2 P (%) Colony 3 P (%) Colony 4 P (%)

TSA 2 0.3 0 0 1 0.12 0 0

LB 3 0.43 0 0 31 4.4 1 0.15

SO 693 98.3 0 0 32 4.5 1 0.15

EC 0 0 650 92 45 6.4 49 7

PP 5 0.71 28 4 551 78 68 9.7

SA 2 0.3 27 4 45 6.4 582 83

Prediction SO EC PP SA

TABLE 2 Pigments or components found in Pseudomonas spp., Staphylococcus spp., Shewanella spp., E. coli and their absorption maxims in the UV-VIS
range.

Pigment/component Absorption peaks Bacteria Ref.

Pyocyanin 255.5, 306, 525, 691 (standard in chloroform) Pseudomonas spp. Hamad et al. (2020)

225, 247, 284, 388, 555 (standard in HCl

Pyoverdine 380 (pH 5) or 400 (pH 8) Pseudomonas spp. Hoegy et al. (2014)

Pyochelin 310 Pseudomonas spp. Mould et al. (2020)

Pyomelanine 250–280 Pseudomonas spp. Bayram (2021)

Shewanella

Staphyloxantin 463, 490 Staphylococcus spp. Pelz et al. (2005)

Zeaxanthin 445, 472 (in dichloromethane) Staphylococcus spp. Murillo et al. (2019)

451 (in ethanol)

C-cytochrome 550 All bacteria Gennis (1987)
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The model for bacterial colony identification by discriminant
analysis generated based on the principal components showed an
overall accuracy of 90.26%. Moreover, sensitivity and selectivity
values for each bacterial strain and agar type were high and
confirmed by the validation test made with the colonies used for
prediction. These results suggest UV-hyperspectral can effectively
discriminate between bacterial colonies based on their unique
spectral signatures.

As can be observed in Table 3, previous approaches using
hyperspectral imaging for colony identification in agar plates
have been realized in the VIS-NIR spectral range. To the best of
our knowledge, this study is the first to use UV-hyperspectral
imaging for purposes and reach similar accuracy yields.
Moreover, in this research, the agars used were similar, and
for generic growth, there were no chromogenic and specific
agars as in some of the research. It is well known that these
types of agars generate changes in the appearance of some
bacterial colonies, affecting their spectral properties and
making their identification easier. However, they are more
expensive than generic growth agars. The model developed in
this research was not only able to detect colony growth in both
culture media but also was able to distinguish between them,
indicating that, if necessary, prediction models could be
developed depending on the agar used for the growth.

These results demonstrate that UV hyperspectral imaging has
great potential in bacteria identification, offering a reliable
alternative to the methods based on human interpretation.
However, future approaches should be centered on increasing the
number of bacterial species used to build a prediction model and try
to cover the wide variety of bacterial species that can be found at the

different scenes where plate culturing is used for identification
purposes (i.e., environmental, clinical, food and water analysis).
Yeast and molds of interest could also be included, as well as
different agar types. Additionally, recent computer science and
programming advances could allow for the automation of all the
identification and quantification processes (Yoon et al., 2015). This
automation could enhance efficiency and ensure the scalability and
reproducibility of results.

5 Conclusion

In this study, we have successfully presented a proof of concept
foreseeing the combination of UV hyperspectral imaging and
chemometric analysis as a powerful and promising technology
for identifying and counting bacterial colonies. This first
approach employed three bacterial species of high interest in
food, water, and clinical sample analysis (E. coli, Staphylococcus,
Pseudomonas) and one control bacteria (Shewanella) to build a
prediction model based on PCA-DA. The PCA model was able to
classify all these samples with the first three PCs with a 90.3% overall
accuracy, and the correct prediction of four blind samples confirmed
the high sensitivity and selectivity of the generated model. So, the
results indicate the potential of this technique as an attractive
alternative to human-based agar colony identification, providing
automated, reliable, fast, and user-friendly machine diagnosis.While
recognizing the necessity for further research with a broad range of
bacterial strains and culture media types, the results suppose an
advancement in the application of this technology within the field of
microbiology.

TABLE 3 Comparative table of studies employing hyperspectral imaging for bacterial colony identification in agar plates.

Bacteria Agar type Wavelength
(nm)

Model Acc (%) Ref

UTI pathogens
Escherichia coli
Enterococcus faecalis
Staphylococcus aureus
Proteus mirabilis
Proteus vulgaris Candida

Chromogenic agar and Blood agar VIS-NIR (400–1,000) 1) PCA + SVM
2) ROBPCA +
RSIMCA

95 Turra et al.
(2015)

UTI pathogens
E.coli, Proteus, Enterococci,
Klebsiella, Enterobacter, Serratia,
Citrobacter

Chromogenic agar VIS-NIR (400–1,000) Lasso method 90–100 Guillemot et al.
(2016)

Bacillus cereus, Escherichia coli,
Salmonella enteritidis
Staphylococcus aureus and
Staphylococcus epidermidis

Luria-Bertani (LB) agar NIR (900–2,500) PCA + PLS-DA 82.0–99.96 (except for E.coli
ans S. enteirtis)

Kammies et al.
(2016)

Escherichia coli, Staphylococcus
aureus and Salmonella

Luria–Bertani agar (LB), plate
count agar (PA) and Tryptic soy

agar (TSA)

VIS-NIR (400–1,000) PLS-DA and
GOA-SVM

<80(PLS-DA)
99 (GOA-SVM)

Gu et al. (2020)

Escherichia coli, Listeria
monocyogenes, Listeria seeligeri, and
Staphylococcus aureus

Tryptic soy agar (TSA) VIS-NIR (400–1,000) IWO-SVM 97 Feng et al.
(2018)

Eschecirichia coli, Staphylococcus
arlettae, Pseudomonas putida, and
Shewanella oneidensis

Luria-Bertani (LB) and Tryptic soy
agar (TSA)

UV (225–400) PCA-QDA 90 This study
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