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Breast cancer, being among the most frequent and fatal cancers in women, is an
enormous issue globally. The critical requirement for novel treatment methods is
underscored by its high mortality rate and relentless advancement. Even though
breast cancer is one of the world’s most common causes of death, the
therapeutic avenue is still limited. The aim of this work is to investigate the
potential inhibitory effects of specific compounds present in leaf extract from
Mangifera indica on the growth of drug-resistant breast cancer protease PDB ID
3w32. The chemical compounds present inMangifera indica leaves were used to
analyze using molecular modeling techniques, such as molecular docking,
molecular dynamics (MD) simulations, quantum mechanics (QM) calculations,
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and the Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET)
method, in order to examine three key chemical constituents: quercetin (08),
catechin (09), and elagic acid (10). The ligands undergo extensive testing to figure
out how effective they are against the 3w32-overexpressing breast cancer protein.
Quantum calculations retaining HOMO-LUMO analysis might identify important
characteristics of molecules, such as chemical potential, electronegativity,
hardness, softness, and orbital energy gaps. According to the molecular docking
inquiry, ligands 08, 09, and 10 are strong candidates with strong binding affinity for
the breast cancer protein that overexpresses 3w32. The protein binding site stability
of the chosen natural ligands was verified byMD simulation. These three ligands not
only surpass the efficacy of the FDA-approved treatment, but also fulfill the
requirements for a possible new inhibitor of breast cancer.

KEYWORDS

breast cancer, ADMET, frontier molecular orbitals, DFT, molecular dynamic simulation,
3w32 protein. −5.668

Introduction

Breast cancer is a life-threatening problem around the world
particularly women. It is common and ranks as the second-most
deadly cancer among all cancers (Sun et al., 2017; Kolak et al., 2017)
as well as widely viewed as a disease that affects older women and is
thought to be relatively uncommon in younger women (Azim and
Partridge, 2014). The risk factors of Breast cancer include sex, age,
family history, reproductive variables (late menopause, early
menarche, low parity, first pregnancy at a late age, nursing,
abortion, number of live births, and so on), estrogen, and
lifestyle (Rojas and Stuckey, 2016). Benign breast tumors began
as ductal hyperproliferation and were later transformed into
malignant or metastatic breast tumors using mutagens. Some
genes, such as BRCA1, BRCA2, HER2, Epidermal Growth Factor
Receptor (EGFR), c-Myc, Ras, and others, are also linked to breast
cancer (Sun et al., 2017).

Treatment for breast cancer is determined by its stage,
biomarkers, and histology. Chemotherapy, radiation therapy,
surgery, endocrine therapy, and neoadjuvant or adjuvant
chemotherapy are some of the treatments available (Hortobagyi,
1998; Fisusi and Akala, 2019). Somemedicines, such as capecitabine,
gemcitabine, vinorelbine, taxane, anthracycline, methotrexate,
mitomycin C, docetaxel, and cisplatin, are used in various
combinations to treat breast cancer and are administered by
nanoparticles due to their diverse properties as drug delivery
vehicles (Fisusi and Akala, 2019; Tran et al., 2020). However,
these treatments are costly, can lead to further post-treatment
problems, and cancer recurrence is common. Keeping these
dangers in mind, researchers are currently working to produce
novel medications from natural sources that will cure breast
cancer more effectively while also assuring patient safety.

Mangifera indica is a popular fruit plant in the Anacardiaceae
family, and extensive research has been conducted on its leaves due
to its numerous health advantages. Mangifera indica L. leaves
contain a variety of phytochemicals, including gallic acid,
protocatechuic acid, shikimic acid, mangiferin, homomangiferin,
and quercetin. These leaves are also high in proteins, vitamins, and
minerals, and they have antimicrobial, antioxidant, anti-diabetic,
anti-cancer, lipid-lowering, hepatoprotective, anti-obesity, and anti-

diarrheal effects (Kumar et al., 2021; Mirza et al., 2021). It is already
being researched as a potential treatment for breast cancer.
Researchers discovered that the phytochemicals in this plant
extract can effectively suppress breast cancer cell growth,
proliferation, invasion, and migration while also initiating cell
cycle arrest and death (Rasul et al., 2021; Yap et al., 2021a).

We applied Computer-aided drug design (CADD) to investigate
the anticancer properties of the phytochemical presents in this plant.
This in silico approaches provide dynamics in overall drug design
and development by reducing costs, time, and laboratory equipment
(Macalino et al., 2015; Yu and MacKerell, 2017). The major goal of
this work is to identify prospective therapeutic candidates from
phytochemicals found in Mangifera indica L. leaves against
particularly sensitive breast cancer proteins.

Materials and methods

Ligand’s profiling and optimization

Only ligands that meet particular criteria, such as being in the
correct tautomer and ionization states and having the correct bond
ordering, can be used in virtual screening (Madhavi Sastry et al.,
2013). The Gaussian version 09 approach and realistic density
functional theory (DFT) methodologies were employed to
accomplish substantial atomic enlargement (Hosen et al., 2021).
We employed a modified version of the Gaussian code with
modifications to its polarization capability premise set (DNP),
B3LYP, and Gaussian version 09 capabilities to obtain the
highest achievable accuracy (Mohapatra et al., 2021). The files
that represent electron negativity, electron partiality, energy gap,
synthetic potential, hardness, delicate quality, and electrophilicity
were solved using the criteria listed in the order (Equations 1–8).
Subatomic limit orbital charts (HOMO and LUMO) were then
calculate using mathematical procedures of given equations. The
modified particle was then stored in a PDB file.

Egap � ELUMO − EHOMO( ) (1)
I � −ELUMO (2)
A � −EHOMO (3)
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χ( ) � I + A
2

(4)

ω( ) � μ2

2η (5)

µ( ) � −I + A
2

(6)

η( ) � I − A
2

(7)

S( ) � 1
η

(8)

Prediction of activity spectra (PASS)
assessment

The PASS Online resource is freely available on the internet
(http://www.way2drug.com/passonline). This tool seeks to predict
the biological activity spectra of organic compounds for over
4000 different types of biological activity using their structural
formulae (Poroikov et al., 2019). Over 95% of the time, it
properly predicts the outcome. Researchers examined the
structure-activity relationships in the training set to create the
forecast. This set contains information on the structures and
biological functions of approximately 300,000 chemical
molecules. We examine the advantages and disadvantages of this
strategy. There is information available on how to interpret the
forecast’s findings (Druzhilovskiy et al., 2016). The PASS Online
website has real-world applications that prioritize chemical
synthesis and biological testing based on prediction findings.
New pharmacological medications are being created, and PASS
Online is expected to play a growing role as a multidisciplinary
academic research center in this area (Siddikey et al., 2022).

Pharmacokinetics properties assessment

Pharmacokinetics refers to the mathematical study of the
ADME characteristics of a drug in relation to its dose and
duration. The computational drug design and development
process helps optimize a molecular candidate into a viable
treatment by assessing pharmacokinetic features early on (Zhou
et al., 2016). Therefore, the pharmacokinetic parameters of the
selected drugs were determined using the Swiss-ADME server
(http://www.swissadme.ch/index.php) (Daina et al., 2017). By
utilizing the server, one can observe and anticipate the drug’s
various pharmacokinetic and pharmacodynamics features.

Protein retrieved and preparation

A number of different proteins contribute to the development of
breast cancer in females. Proteins with PDB IDs 3W32 were chosen
as breast cancer susceptibility proteins after careful consideration of
literature, methodologies, resolution, and organisms utilized for
protein isolation. The choosing factors of the protein PBD ID
3w32 is depicted in the Supplementary Table S1. Crystal
structures of these proteins were sourced from the Protein Data

Bank (PDB) maintained by the RCSB (https://www.rcsb.org)
(Burley et al., 2023). In order to remove water molecules and
protein ligands, proteins were purified using the PYMOL
software (version 2.4.1) before protein production. The website
CASTp (http://sts.bioe.uic.edu/castp/index.html?2was) was
utilized to gather the active site residues of the target proteins.
Information on the proteins that were produced is shown in Table 1.

Binding site identification and receptor grid
generation

In protein-ligand interactions, binding sites can be found by
looking for well-known pockets. The protein’s binding site was
examined using BIOVIA Discovery Studio Visualizer v19.1
(BIOVIA) following a PDB search for the known and
experimentally verified protein structure in complex with the
ligand (PDB ID: 3w32). As shown in Figure 1, the binding site
obtained from the complex structure was used in the receptor grid
construction during the molecular docking using the PyRx virtual
screening tool.

Molecular docking simulation

To find the best hit candidates against the needed protein, a
molecular docking simulation was performed using the PyRx
program (Dallakyan and Olson, 2015). PyRx is a free, free and
open-source virtual screening implementation that also includes the
docking wizards AutoDock 4 and Vina. It may search a big database
of molecules for a specific macromolecule with a medical
application. We used the AutoDock Vina wizard with Pyrex’s
default settings to simulate molecular docking. To begin, we used
Pyrex’s conjugate gradient approach to reduce the energy of the
chosen ligands in the Merc molecular force field (mmff94 force
field). The final phase of docking was to convert these energy to
PDBQT format. Autodocking was performed with grid box
dimensions of 58.5633 X, 53.9165 Y, and 66.1292 Z, with center
X, Y, and Z values of 18.8128, 25.7483, and 14.2748, respectively. All
of the ligands and proteins had their surfaces covered with
a grid box.

Quantum mechanics (QM) calculation

The conformation of the ligand to the protein binding site is the
most important factor in determining a potential active
conformation, binding affinity, and strain discipline related to the
binding mechanism. Structure optimization and least energy
conformation methods based on the solution phase and the same
gas-phase energy can be used to accomplish this kind of binding.
Because of the metal ions, the ligand-protein combination does not
conform to the expectations of classical molecular mechanics (MM)
(Bronowska, 2011). The development of scoring functions that may
describe electronic structure, electronic transitions, and system-
specific charges in a molecular system reaction has recently been
greatly aided by QM-based calculations. Eighty to ninety percent of
modern quantum mechanics (QM) calculations employ DFT. For
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this study, DFT quantum mechanical computations on a subset of
molecules were required. We started by finding compounds with the
best possible bond lengths, angles, and dihedral angles. The DFT of
the compounds was then calculated using Gaussian version 09
(Abdelrhman et al., 2021). The B3LYP functional set was utilized by.

DFT. The DFT needed the 6311G basis set to describe the
molecule’s electronic wave functions.

Molecular dynamics simulation

The degree of stability of the chosen candidate compounds when
bound to the active site cavity of the target protein was assessed by
applying molecular dynamics (MD) simulations on the complex
structure for a duration of 100 nanoseconds. This technique was
done in order to assess whether the binding was secure. A molecular
dynamics (MD) simulation of the complicated structure was
performed in the Schrodinger research edition using the
‘Desmond v3.6 Program’ (Bharadwaj et al., 2021). The Linux

operating system was used to conduct this simulation. This
process has to be followed in order to ascertain whether
thermodynamic stability is present in the receptor-ligand pair.
Using a pre-set TIP3P water model and making sure the volume
didn’t change during the procedure solved the issue. By positioning
an orthorhombic periodic box shape at a distance of 10 s on either
side of the border, this was possible. It was found that the right ions,
such as Na+ and Cl-, were selected and then randomly distributed
throughout the solvated system in order to electrically neutralize it.
The concentration of salt was 0.15 M. The Desmondmodule defined
a procedure for reducing and relaxing the ligand and protein after
they had come together to form the solvated system. The
characteristics of the OPLS-2005 force field were used in this
technique. The NPT ensemble was kept at a temperature of
300 K and an atmospheric pressure of one (1.01325 bar) by
using the Nose-Hoover temperature coupling and isotropic
scaling technique after fifty PS recording intervals with an energy
of 1.2 were completed. The goal of doing this was to provide precise
temperature coupling.

Simulation trajectory analysis

Schrodinger’s Maestro interface version 9.5 was utilized in order
to render each and every image that was captured during the
computational modelling simulation. The MD simulation was
deemed to be of sufficient quality, and the Simulation Interaction
Diagram (SID), which is a component of the Desmond module of
the Schrodinger package, was utilized in order to conduct an analysis
of the simulation event. According to this evaluation, the MD
simulation is capable of meeting the requirements that are
considered acceptable. On the basis of the trajectory output, the
root mean square deviation (RMSD), root-mean-square fluctuation
(RMSF), protein-ligand contacts (P-L contacts), and hydrogen-bond

TABLE 1 Information of protein’s selected for breast cancer.

Properties 3W32

Method X-ray diffraction

Resolution 1.80 Å

Organism Homo sapiens

Active Site
Residues

LEU718, GLY719, SER720, GLY721, ALA722, PHE723,
GLY724, VAL726, ALA743, LYS745, MET766, VAL769,
ASP770, ASN771, VAL774, CYS775, ARG776, LEU777,
LEU778, THR790, GLN791, LEU792, MET793, GLY796,
CYS797, LEU799, ASP800, ASP837, ARG841, ASN842,
LEU844, LYS852, THR854, ASP855, PHE856, LEU858,
PRO877, PHE997, LEU1001, ALA1013, ASP1014, LEU1017

FIGURE 1
The binding site position of breast cancer identified from the protein–ligand complex (PDB ID: 3w32) structure. Ball shape 3D representation of the
binding site with the grid box shown on the left side in the figure, where 2D binding site position has also been represented on the right side of the figure.
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interactions were utilized in order to assess the stability of the
complex structure. This investigation was conducted with the
purpose of determining whether or not the intricate construction
was capable of withstanding a variety of stresses without
deteriorating in its shape.

Root mean square deviation (RMSD) analysis

The RMSD is a statistic used in molecular dynamics (MD)
modelling to calculate the average distance an atom moves in
comparison to a standard over a given time period (Fukutani
et al., 2021). Distance is relative when compared to a starting
point in time. Following the alignment of the relative mean
square deviation (RMSD) of the protein-fit ligand atoms from
each time frame, a comparison to the reference time, in this case
100 nanoseconds is performed. This comparison is based on the
RMSD of the protein’s structural atoms, which include the Ca,
backbone, sidechain, and heavy atoms. It would be evident whether
or not the alignment was satisfactory as soon as the reference time
arrived. The RMSD required for an MD simulation of length x time
steps can be determined using the equation shown below
(Equation 9).

RMSDx �
���
1
N

√ ∑N
i�1

r′i tx( )( ) − ri tref( ))2 (9)

here, N specifies the total number of selected atoms, tref denotes the
reference time, and r’ denotes the position of the selected ref atom in
frame x. After superimposing the reference frame, Tx defines the
recording intervals.

Root mean square fluctuation
(RMSF) analysis

In order to characterize and keep track of the local
conformational shift that takes place within a protein structure,
the RMSF is primarily applied (Ding and Peng, 2019). An MD
simulation of a protein can be constructed by using the equation
(Equation 10), which asks for the number of residues and the
RMSF value.

RMSFi �
��
1
T

√ ∑T
t�1

< r′i t( )( ) − ri tref( ))2 > (10)

In this case, T mainly denotes the trajectory time, r’ denotes the
chosen atoms’ position in the reference frame as overlaid on frame i,
tref denotes the reference or given time, and (<>) denotes the
average of the square distance over residue b.

Toxicity assessment

The amount of toxicity of a chemical substance can be measured
by determining the extent to which it poses a risk to humans or
animals, or by determining if it has the power to destroy an organ.
Toxicity evaluation refers to both of these procedures. Prior to the
initiation of a drug study, an investigation of the potential

detrimental effects of chemical substances must be conducted.
The conduct of a toxicity test is commonly recognized as one of
the most important and critical components of the pharmaceutical
production process. As a result, the web-based pkCSM server (Pires
et al., 2015) was used to successfully complete the evaluation of the
toxicity of the compounds chosen.

Results and analysis

Chemistry of extracted phytochemicals

The diversity of natural phytochemicals, along with their
intriguing biological roles, sets them apart from synthetic
phytochemicals. It is difficult to draw clear functional and
structure-activity relationships regarding the effects of
phytochemicals on biological systems’ activity (Efferth and Koch,
2011). This is mostly due to the complex interactions that take place
inside physiological systems as well as the high concentration of
phytochemicals that have structural similarities. In addition, a
significantly larger number of phytochemicals likely exist in
nature, given the vast number already discovered. Technological
advancements in synthesis, along with the development of more
effective methods for isolation and analysis, have increased and help
to identify the novel phytochemicals as lead compounds for the
treatments of various diseases (Avidon et al., 1982). Figure 2 was
generated with ChemDraw Ultra 12.0 and shows the chemical
formulas and two-dimensional structures of top two ligands or
phytochemicals and one FDA-approved medication (D1:
Abemaciclib). The supplemental ST-2 contains an abundance of
ligand-related information, and the 2D chemical structures of the
selected ligands is depicted in Supplementary Figure S1.

Geometry optimized structures of ligands

In the discipline of computational chemistry, it is common
practice to employ quantum mechanical methods to determine
the thermodynamic, molecular orbital, and electrostatic
properties of molecules. Each calculated derivative was
strengthened and geometrically changed using the Gaussian
09 program to produce better results. Using DFT, we were able
to boost the molecular orbital and thermal properties, allowing us to
make predictions. This theory is compatible with both the hybrid
model of B3LYP (Becke, 3-parameter, Lee-Yang-Parr) and the
Gaussian version 09 polarization function basis set 6-311G (split-
valence basis set) (Singh and Singh, 2017). Each chemical
compound’s electrical energy, dipole moment, enthalpy, and free
energy were calculated. Figure 3 depicts the optimal geometry and
structure of the top most phytochemicals, and the all-optimized
structure are shown in Supplementary Figure S2.

Optimized chemical structures of ligands are crucial in drug
discovery, molecular docking, and computational chemistry, as they
represent the most stable, energy-minimized conformations. By
optimizing ligand structures, researchers ensure accurate
interaction predictions with target biomolecules, enhancing
binding affinity and specificity. This process helps in rational
drug design, reducing experimental costs and time. Furthermore,
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optimized ligands improve the accuracy of pharmacokinetic and
pharmacodynamic modeling, leading to more effective and safer
therapeutic agents.

Frontier molecular orbitals (FMOs)
evaluations

Chemical descriptors (HOMO and LUMO) and FMOs control
the kinetic stability and chemical reactivity of molecules,
respectively. Molecular orbitals that are least occupied are called
LUMOs, and those that are most populated are called HOMOs. The
electronic absorption of molecules releases one electron, which is
caused by the HOMO state. The LUMO state accepts the electron
simultaneously, and an energy gap forms as a result. These
properties—kinetic stability, chemical reactivity, and atomic
electrical transmission—are built upon this energy gap. The
larger the energy difference, the more stable the molecule is
when its HOMO and LUMO are far apart. The reason behind
this is that the DFT method is used to calculate the energy
gap. However, chemical stability is negatively affected by a small
energy gap when the distance between a molecule’s HOMO and
LUMO is small (Ahamed et al., 2023) (Kobir et al., 2023) (Yu et al.,
2022). The small energy gap is the root cause of the chemical
instability. In Figure 4, the color radish brown is used to

represent the molecules’ positive node in both HOMO and
LUMO situations, whereas the color deep green is used to
represent the molecules’ negative node.

Quantum mechanics (QM) and chemical
reactivity analysis

The table below covers several medications and phytochemicals,
as well as information regarding their reactivity and frontier
molecular orbitals (HOMO-LUMO). The sign A denotes HOMO
energy, the letter I denotes LUMO energy, the letter μ represents
chemical potential, the letter η denotes hardness, the letter σ denotes
softness, the letter X denotes electronegativity, and the letter ω
denotes electrophilicity. When we examine the energy gap between
each of the fifteen molecules, we can find that Ligand No. 07 has the
highest chemical stability at 11.3746 eV and the lowest at
7.49021 eV. This information can be found in Table 2. The
Supplemental ST-3 has an extremely comprehensive computation.

The HOMO energy varies between −10.4799 eV (Ligand 7)
and −8.54465 eV (Ligand 8), while the LUMO energy ranges from
0.89471 eV (Ligand 7) to −1.92793 eV (Ligand 10). The energy gap
(E_gap) spans from 7.49021 eV (Ligand 10) to 11.3746 eV (Ligand
7), indicating significant variations in electronic stability and
reactivity among the ligands. The chemical potential (μ) ranges

FIGURE 2
2D chemical structure of top selected ligands.

FIGURE 3
Geometry optimized chemical structures of top ligands.
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FIGURE 4
Diagram of HOMO-LUMO for selected compounds.

TABLE 2 Frontier molecular orbitals and reactivity descriptor analysis.

Ligand
no.

A =
HOMO
(eV)

I =
LUMO(eV)

E gap =
(I-A)eV

Chemical
potential
(μ) = - (I +

A)/2

Hardness
(η) =
(I-A)/2

Softness
(σ) = 1/μ

Electronegativity
(Χ) = (I + A)/2

Electrophilicity
(ω) = μ2/2η

1 −9.14657 −1.08410 8.06247 5.11534 4.03123 0.19549 −5.11534 3.24549

2 −10.4680 −1.08927 9.37868 5.77861 4.68934 0.17305 −5.77861 3.56045

3 −9.20290 −0.93226 8.27063 5.06758 4.13532 0.19733 −5.06758 3.10501

4 −9.76780 0.378240 10.1460 4.69478 5.07302 0.21300 −4.69478 2.17237

5 −8.92997 −0.85934 8.07063 4.89465 4.03531 0.20430 −4.89465 2.96849

6 −9.05350 −0.93036 8.12315 4.99193 4.06157 0.20032 −4.99193 3.06770

7 −10.4799 0.89471 11.3746 4.79261 5.68732 0.20865 −4.79261 2.01933

8 −8.54465 −1.04982 7.49484 4.79723 3.74742 0.20845 −4.79723 3.07057

9 −8.60016 −0.02449 8.57567 4.31233 4.28784 0.23189 −4.31233 2.16848

10 −9.41814 −1.92793 7.49021 5.67303 3.74510 0.17627 −5.67303 4.29672

11 −8.86466 −1.11757 7.74709 4.99111 3.87354 0.20036 −4.99111 3.21556

12 −9.22358 −1.27132 7.95226 5.24745 3.97613 0.19057 −5.24745 3.46263

13 −9.14793 −1.18669 7.96124 5.16731 3.98062 0.19352 −5.16731 3.35388

14 −8.88371 −1.14995 7.73375 5.01683 3.86688 0.19933 −5.01683 3.25438

15 −9.27120 −1.36084 7.91035 5.31602 3.95518 0.18811 −5.31602 3.57254

D-1 −9.69200 0.21000 9.90140 4.74100 4.95100 0.21100 −4.74100 2.27000
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from −5.77861 eV (Ligand 2) to −4.31233 eV (Ligand 9), with
electronegativity (Χ) following the same trend. Hardness (η) varies
from 3.74510 eV (Ligand 10) to 5.68732 eV (Ligand 7), while
softness (σ) exhibits an inverse trend, emphasizing the ligands’
adaptability to electronic perturbations. Electrophilicity index (ω)
values range from 2.01933 eV (Ligand 7) to 4.29672 eV (Ligand 10),
indicating differences in their propensity to accept electrons.
Notably, D-1 exhibits moderate values across all parameters,
serving as a reference for comparative evaluation. These quantum
chemical descriptors provide insights into the ligands’ stability,
reactivity, and potential applications in coordination chemistry,
catalysis, and molecular design.

Analysis of molecular electrostatic
potential (MEP)

An essential part of computer-aided drug design is determining the
ligands’ molecular electrostatic potential (MEP), which yields a charge
distribution map based on electron availability and scarcity.
Additionally, it shows where the protein and ligand bind and how
the charges are distributed in three-dimensional ligand structures.
When applied to ligand surface analysis, MEP analysis can further
help pinpoint where ligands are vulnerable to attack from electrophiles
and nucleophiles (Lakshminarayanan et al., 2021; Guerrab et al., 2022).
Utilizing quantum chemistry techniques, the MEP map was generated,
and Gaussian functions were assessed with the use of Gaussian
fundamental sets. In this study, blue represents positive charge, red
negative charge, and green neutral charge. A lower negative charge than
a larger positive charge is observed in all of the discovered ligands, as
shown in the MEP map of top ligands in Figure 5. In Supplementary
Figure S3 contains MEP map for all ligands.

Analysis of PASS prediction data

The PASS prediction assessment displays the details of the antiviral,
antibacterial, antifungal, antiparasitic, anticarcinogenic, anticancer
(breast cancer), and inhibitory effects of drugs and ligands on breast
cancer-resistant proteins. It is used to assess the potential biological
activity against the targeted disease. According to our investigation, the
Ligand No. 07 has low to moderate antiviral activity (Pa > 0.454),
Ligand No. 11 and 14 have moderate to high antibacterial activity (Pa>

0.599), and Ligand No. 15 has low to significantly high antifungal
activity (Pa > 0.678). To top it all off, most ligands have excellent anti-
carcinogenic activity, meaning they won’t cause cancer when taken
orally. Ligands 05 (Pa > 0.649), 08 (Pa > 0.577), 11, and 14 (Pa > 0.502),
as well as No (Pa> 0.526), exhibit strong anticancer properties,
according to additional research. After reviewing the PASS
prediction data for breast cancer-resistant protein has been selected,
and we found that Ligand No. 05 has a very good Pa value (Pa > 0.516)
as illustrate in Supplementary Table S4.

Evaluation of ligands’ drug likeliness and
pharmacokinetics properties

Pharmacokinetics (PK), an important parameter in medicine
design, explains the time it takes for the body to absorb, distribute,
metabolize, excrete, and contaminate a drug or foreign chemical
after administration. This word is commonly used by pharmacists.
As a result, PK promotes effective drug design (Lavé et al., 2016).
Table 4 displays information for certain ligands and the medicine on
drug likelihood, pharmacokinetics, Lipinski’s rule of five, and other
topics. A ligand must meet ADME standards before it may be
evaluated for drug candidate certification. The five Lipinski rules
must be followed: a molecular weight ranging from 150 to 500 g/
mol, a limited number of hydrogen bond donors, a number of
rotatable bonds, a high bioavailability score, and a topological
surface area value ranging from 20 Å2 to 130 Å2 (Singh et al.,
2022; Al Hasib et al., 2022).

The Table 3 reveals that, with the exception of Ligands 11, 12, 13,
14, and 15, all of the ligands follow Lipinski’s rule of five. In terms of
molecular weight, all of the ligands have the necessary molecular
weights (150–500 g/mol), with the exception of drug D-1 (506.59 g/
mol) and Ligand No. 15 (594.52 g/mol). As a result, with the
exception of Ligands 04, 11, 14, and 15 (which have six rotatable
bonds) and Ligand D-1 (17 rotatable bonds), no ligand can have
more than three rotatable bonds. Except for Ligands 11 (12) and 12,
the hydrogen bond acceptor can only receive a maximum of
10 hydrogen bonds from any of the ligands. Ligands are the
numbers 12, 15, and N0 13. Except for ligands 7, 8, 9, 11, 12, 13,
14, and 15, no other ligand contributes more than five hydrogen
bonds. Ligands 8, 10, 11, 12, 13, 14, and 15 do not match the drug
development criteria since their topological surface areas exceed the
range of 202 Å2 to 130 Å2. Apart from Ligands 11, 12, 13, 14, and 15,

FIGURE 5
Charge distribution in Molecular Electrostatic Potential (MEP) for top ligands.
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TABLE 3 Data of ligands’ drug likeliness, pharmacokinetics properties, and Lipinski’s rule.

Ligand
no.

Molecular
weight
(g/mol)

Number of
rotatable
bonds

Hydrogen
bond
acceptor

Hydrogen
bond
donor

Topological
polar surface
area (Å2)

Lipinski’s rule Bioavailability
score

Results Violation

01 170.12 1 5 4 97.99 Yes 00 0.56

02 174.15 1 5 4 97.99 Yes 00 0.56

03 154.12 1 4 3 77.76 Yes 00 0.56

04 213.23 4 5 3 86.63 Yes 00 0.56

05 260.20 0 6 4 111.13 Yes 00 0.55

06 184.15 2 5 3 86.99 Yes 00 0.55

07 180.16 1 6 5 110.38 Yes 00 0.55

08 302.24 1 7 5 131.36 Yes 00 0.55

09 290.27 1 6 5 110.38 Yes 00 0.55

10 302.19 0 8 4 141.34 Yes 00 0.55

11 464.38 4 12 8 210.51 No 02 0.17

12 422.34 2 11 8 201.28 No 02 0.17

13 436.37 3 11 7 190.28 No 02 0.17

14 464.38 4 12 8 210.51 No 02 0.17

15 594.52 6 15 9 249.20 No 03 0.17

D-1 235.07 4 8 6 180.93 Yes 1 0.55

TABLE 4 Data of binding energy and name of interacted ligand for breast cancer protease (3W32).

Ligand
No.

Binding affinity
(kcal/mol)

No. of H bond No. of hydrophobic bond No. of van der waal bond Total bonds

1 −6.1 05 02 Absent 07

2 −6.4 03 00 Absent 03

3 −6.3 03 04 Absent 07

4 −5.8 02 05 Absent 07

5 −7.6 02 05 Absent 07

6 −5.9 03 03 Absent 06

7 −5.7 03 00 Absent 03

8 −8.5 02 08 Absent 10

9 −8.4 04 05 Absent 09

10 −8.8 01 10 Absent 11

11 −8.6 01 03 Absent 04

12 −8.7 02 07 Absent 09

13 −8.5 04 04 Absent 08

14 −6.1 04 03 Absent 07

15 −6.4 04 08 Absent 12

D-1 −7.8 04 00 Absent 04
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all of the other ligands had acceptable bioavailability values. After
evaluating the facts offered previously, a conclusion can be reached.
Several ligands have been removed from consideration as
prospective pharmaceutical candidates; nevertheless, ligands 01,
02, 03, 05, and 06 remain on the list.

Molecular docking analysis of selected
proteins and ligands

To identify possible breast cancer medication candidates, auto-
docking was carried out with selected proteins susceptible to breast
cancer (PDB ID: 3W32). Table 4 displays the molecular docking
simulation data with binding affinities. In molecular docking, three
chosen proteins have the highest binding affinities when interacting
with Ligands Nos. 10, 11, and 12. However, Ligands 11 and 12 do not
match the ADME criteria listed in Table 4. Ligands No. 08, 09, and
10 meet all drug property criteria in this study, having binding affinities
of −8.5 kcal/mol, −8.4 kcal/mol, and −8.8 kcal/mol, respectively.

Protein-ligand interactions diagram

Protein-ligand interactions (PLIs) and protein-protein
interactions (PPIs) play critical roles in identifying possible drug
candidates for a target protein in structure-based drug design and
drug discovery (Zhao and Bourne, 2022; Fu et al., 2018). This is why

it is referred to as a critical component of the process. On the other
hand, this part of the therapeutic goal is very important in and of
itself. Because of the unique structural properties of protein
interactions with ligands, it is today regarded as one of the most
difficult areas of drug development. Bond distance research on the
principal protease of breast cancer proteins have been conducted,
with the primary focus of the studies being on the interaction of
medicinal medicines with 3w32. Figure 6 depicts the key interactions
that proteins and ligands have with amino acid residues.

Interacted amino acids with bond distance

Data on hydrogen bonds, hydrophobic bonds, and bond
distances between amino acids are shown in Table 5. One of
the most important factors in selecting a potential drug candidate
is the bond distance, with a value between 3.1 Å to 3.55 Å
indicating a weak link and a value between 2.5 Å to 3.1 Å
indicating a strong binding, according to previous studies (da
Cunha Xavier et al., 2024). Since the ADME screening and
molecular docking did not include any other Ligands, we
looked at how proteins with PDB ID 3W32 interacted with
Ligands No. 01, to 15, and standard D1. From the, it shows
that ligand 08 forms GLN791 (2.92 Å) and MET793 (2.20 Å) two
strong hydrogen bonds, LEU718 (3.62 Å), VAL726 (4.70Å),
VAL726 (3.99 Å), VAL726 (4.95 Å), LEU844 (4.69Å), ALA743
(4.28 Å), ALA743 (4.85 Å), LYS745 (4.53 Å) other bonds with

FIGURE 6
(A) The interaction between the 3w32 protein and Ligand 08 compounds. The 3D interaction has represented left side of the figure, where 2D
interaction has depicted in right side of the figure accordingly. (B) The interaction between the3w32 protein and Ligand 09 compounds. The 3D
interaction has represented left side of the figure, where 2D interaction has depicted in right side of the figure accordingly. (C) The interaction between
the 3w32 protein and Ligand 10 compounds. The 3D interaction has represented left side of the figure, where 2D interaction has been depicted in
the right side of the figure accordingly, and (D) The interaction between the 3w32 protein and Standard D1 compounds. The 3D interaction has
represented left side of the figure, where 2D interaction has been depicted in the right side of the figure accordingly.
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protein 3W32. The ligand 09 forms ASP837 (2.55 Å), ASP855
(3.30 Å), AR841 (2.26 Å), and ARG841 (2.74 Å) strong bonds,
and VAL726 (3.97 Å), ARG841 (4.83 Å), ALA743 (4.91 Å),
LYS745 (5.20 Å), and LYS745 (4.51 Å) other bonds. On the
other hand, ligand 10 forms MET793 (2.35Å) strong bond, and

LEU718 (5.21Å), VAL726 (5.27Å), VAL726 (4.39Å), ALA743
(4.56Å), ALA743 (5.13Å), ALA743 (3.69 Å), ALA743 (4.99 Å),
LEU844 (5.05 Å), VAL726 (3.85 Å), and LEU844 (3.50 Å) other
bonds. Besides the standard D1 form ASP855 (2.65 Å), ASP855
(2.83 Å), ASP855 (2.58 Å), and THR854 (2.77 Å) strong bond

TABLE 5 Protein-ligand interactions and interacting bonds.

Protein PDB ID: 3W32

No. Hydrogen bond Hydrophobic bond No. Hydrogen bond Hydrophobic bond

Interacting
residue of
Amino acid

Distance
A°

Interacting
residue of
Amino acid

Distance
A°

Interacting
residue of
Amino acid

Distance
A°

Interacting
residue of
Amino acid

Distance
A°

01 MET 766
THR 790
THR 854
ASP 855
PHE 856

2.94
3.00
2.57
3.24
1.99

MET 766
LEU 777

5.17
4.66

09 ASP 837
ASP 855
ARG 841
ARG 841

2.55
3.30
2.26
2.74

VAL 726
ARG 841
ALA 743
LYS 745
LYS 745

3.97
4.83
4.91
5.20
4.51

02 MET 766
LEU 777
THR 790

2.73
2.65
2.70

Absent 10 MET 793 2.35 LEU 718
VAL 726
VAL 726
ALA 743
ALA 743
ALA 743
ALA 743
LEU 844
VAL 726
LEU 844

5.21
5.27
4.39
4.56
5.13
3.69
4.99
5.05
3.85
3.50

03 MET 766
LEU 777
ASP 855

2.79
2.51
2.64

MET 766
LEU 777
LEU 788
PHE 856

5.08
3.62
5.47
5.48

11 ASN 842 2.88 VAL 726
ALA 743
LYS 745

4.33
4.79
4.63

04 MET 793
MET 793

1.93
1.94

VAL726
ALA743
ALA 743
LEU 844
LYS745

4.05
3.79
4.43
4.94
4.53

12 LYS 745
ASP 855

2.49
3.65

VAL 726
ALA 743
ALA 743
LYS 745
LYS 745
LEU 844
VAL 726

4.44
4.73
4.90
5.30
4.59
5.24
3.83

05 MET 793
ASP 855

2.22
2.59

LEU 718
VAL 726
VAL 726
LEU 844
LEU 844

5.42
4.55
4.91
4.69
5.73

13 LYS 745
ASP 800
ARG 841
ASN 842

4.11
3.01
2.49
3.54

VAL 726
LYS 845
LYS 845
VAL 726

4.77
4.80
4.74
3.88

06 MET 766
ASP 855
ASP 855

2.73
3.51
3.19

LEU 777
MET 766
PHE 856

4.75
5.29
5.33

14 MET 793
ASN 842
ASP 855
GLY 721

2.70
2.69
2.20
3.23

VAL 726
ALA 743
LYS 745

4.31
4.80
4.62

07 ASN 771
VAL 774
LYS 852

2.11
2.21
2.08

Absent 15 LEU 718
LYS 745
ASP 800
ASP 855

2.93
2.69
2.14
2.47

VAL 726
VAL 726
ALA 743
ALA 743
LEU 844
LEU 844
ARG 841
LYS 745

4.63
4.60
5.35
5.25
5.00
4.93
4.11
4.95

08 GLN 791
MET 793

2.92
2.20

LEU 718
VAL726
VAL726
VAL726
LEU 844
ALA743
ALA 743
LYS745

3.62
4.70
3.99
4.95
4.69
4.28
4.85
4.53

D-1 ASP855
ASP 855
ASP 855
THR854

2.65
2.83
2.58
2.77

Absent
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with protein. For more details on the various bond classifications
and types, see supplementary SF-4 and Supplementary Table S5.

Molecular dynamic simulation

MD simulation modelling, which is employed in computer-aided
drug discovery, may study the protein-ligand complex’s stability and
intermolecular interactions in real time. In a controlled situation, it can
also detect conformational changes in complicated systems. A 100 ns
molecular dynamics simulation was used to investigate the protein’s
structural changes during its interaction with the chosen ligand.
Multimolecular activity was measured on final images acquired from
the appropriate 100 ns trajectories. It was examined the findings of a
molecular dynamics (MD) simulation, and this comprised solvent
accessible surface area (SASA), radius of gyration (Rg), root mean
square fluctuation (RMSF), and root mean square deviation.

Analysis of protein’s RMSD

The average dislocation change of a chosen group of atoms over a
certain period of time in relation to a reference time can be found using
an RMSD value. A protein-ligand complex’s optimal RMSD shift falls
between 1 Å and 3 Å, or 0.1 and 0.3 ns. When the RMSD value exceeds
the permitted limit, the protein’s structure has undergone a significant
alteration. To determine the RMSD value of the essential protein in
association with the selected molecule and ligands 08, 09, and 10, we
performed a 100 ns MD simulation. Figure 7 displays the RMSDs, or
relative standard deviations, of several complexes. The following
protein-ligand complexes are displayed: Apo-protein (red), protein-
3w32 and ligand-08 (purple), protein-3w32 and ligand-10 (green), and
protein-3w32 and ligand-D1 (standard) (blue). In Figure 7D, you can
see all of these complexes unified. Prior to making comparisons, the red
Apo protein Apo’s RMSD is shown. Figure 7A shows that the average
RMSD value ranges from 1.5 Å to 2.6 Å when comparing the protein-
ligand combination 3w32_08 (purple color) to Apo (red color).
Figure 7B shows that between 1.7 Å and 2.8 Å, the protein-ligand
combination 3w32_09 (green) compared to Apo (red). Comparing the
protein-ligand combination 3w32_10 (orange color) with Apo (red
color), Figure 7C shows the RMSD variation within 1.4 Å to 2.3 Å. The
four compounds (3w32_D1 in blue, Apo in red, 3w33_08 in purple,
3w32_09 in green, and 3w32_10 in orange) had an average RMSD value
between 1.5 Å to 2.6 Å. This means that the compound’s value
fluctuation falls within the target range, as stated in references
(Timofeev et al., 2023; Akash et al., 2023).

Ligand RMSD analysis

We analyzed the tested drugs and controls with respect to
their RMSDs to find out which one was more stable. See Figure 8
for the RMSD values for Ligand No. 08 (purple), Ligand No. 09
(green), Ligand No. 10 (orange), and conventional D1 (blue).
The compounds’ RMSD was determined after aligning the
docking complex with the Apo standard protein backbone.
To find the optimal RMSD for each chemical, complex
observation was utilized in this situation. The green RMSD

of Ligand No. 09 fluctuates, although it stays within the
permissible range of 0.5–1.4 Å (Liu et al., 2017; Sherman
et al., 2006). Because of minute differences, Ligands No. 08
(purple) and No. 10 (orange) are rather inflexible. There isn’t a
whole lot of movement in the blue control D1 here. After
looking at the RMSD values, this study revealed that all of
the ligands were stable, but that Ligand No. 09 (green) was the
most stable.

Protein Cα RMSF analysis

The root mean square fluctuation, or RMSF, can be used to
identify and define the local modifications that occur along the
protein chain when drugs interact with certain residues. So, to
see how the shape of proteins changes when certain ligands
attach to a specific remaining site, we calculated and displayed
the RMSF value of the initial protein-ligand complexes in
Figure 9. The variations of different chemical complexes with
the targeted protein 3w32 are compared in this study. Figure 9A
compares the 3w32_08 (purple) complex protein to the Apo
(red), revealing that only PRO753, HIS870, ARG889, and
SER921 were more fluctuating. That is, 98.73% of the residues
were stable. Figure 9B compares 3w32_09 (green) complex
protein to Apo (red) protein and reveals that THR751,
GLU868, GLY873, and SER921 residues are more volatile,
implying that 98.73% of residues are stable. Figure 9C
compares 3w32_10 (orange) complex proteins to Apo (red),
revealing that ALA702, PRO753, and GLY874 residues were
more variable, indicating that 99.05% of the residues were stable.
The conventional 3w32_D1 complex was compared to Apo (red)
protein in Figure 9D, and it was discovered that GLN701,
ALA722, GLY873, SER921, and GLY983 residues were more
fluctuating, implying that 98.41% of the residues were stable.
Protein stiffness is indicated by the substantially smaller
variability of residues in the complex structure compared to
the native structural components (Apo). Because the N- and
C-terminal domains are located at the beginning and end of the
protein, the majority of the changes are found there. As a result,
ligands 08, 09, and 10 are suitable candidates for a molecule in
which the possibility of a specific atom being displaced in a real-
world environment is low.

Protein-ligand contacts evaluations

The interactions between the four selected ligands (Ligand 08,
Ligand 09, Ligand 10, and Standard D1) and the breast cancer
proteins 3w32 were monitored throughout the SID. Drug
selectivity, metabolization, and adsorption seem to be
significantly influenced by hydrogen-bonding properties in
drug design, as demonstrated by the MD simulation’s
identification of hydrogen bonds, hydrophobic, ionic, and water
bridge interactions. The simulation amply demonstrated the
hydrogen bonding connection stated for both compounds up to
the very last AA residue. In all structures, the protein residue and
the ligand form a variety of interactions, including as hydrogen
bonds, hydrophobic interactions, ionic interactions, and water
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bridges, as Figure 10 shows. The complex 3w32_08 for ligand
08 produced multiple (more than two) interactions at the
residues of ASP855, MET793, GLN790, ALA743, ASP800,
ASG841, CYS797, LEU844, LEU718, LYS745, PRO794, and
ASN842 with an interaction fraction (IF) value of 1.85, 1.25,
1.00, 0.85, 0.55, 0.50, 0.48, 0.45, 0.25, 0.20, and 0.20, respectively.

This means that for 155%, 125%, 100%, 85%, 55%, 50%, 48%,
48%, 45%, 20%, and 20% of the simulation time, the specific
interaction is maintained by the multiple contacts of the same
subtype with the ligand as indicated in Figure 10A. Multiple
interactions of the 3w32_09 complex have been observed in the
case of ligand 09 at the positions of ASP800 (1.6), MET793 (1.4),

FIGURE 7
The RMSDmeasurements of the Cα atoms in the four compounds selected to form a complex with the breast cancer protein are illustrated: Herein,
showing the RMSD of breast cancer protein 3w32 as Apo (Red) in complex with the compounds (A) 3w32_08 (purple), (B) 3w32_09 (Green), and (C)
3w32_10 (Orange), where (D) 3w32_D1 standard (Blue) representing all the compounds and protein RMSD together.

FIGURE 8
Displaying the RMSD values of the four compounds that were chosen and isolated from the complex system’s Ca atoms. The four
compounds—Lagend Nos. 08, 09, 10, and D1—were shown as purple, green, orange, and blue, respectively.
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ARG841 (1.0), GLN791 (0.98), CYS797 (0.98), THR790 (0.7),
SER720 (0.6), ALA743 (0.5), LYS745 (0.45), LEU844 (0.4),
LEU718 (0.19), VAL726 (0.13), THR854 (0.10), and ASP855
(0.10) residues maintained by 160%, 140%, 100%, 98%, 98%,
70%, 60%, 50%, 45%, 40%, 19%, 13%, 10%, and 10% of the
simulation time the in particular interaction indicated in
Figure 10B. For ligand 10, it has been found that multiple
interactions of the 3w32_10 complex are maintained by 200%,
198%, 100%, 60%, 50%, 50%, 45%, 30%, 30%, 25%, 15%, and 10%
of the simulation time in the specific interaction shown in
Figure 10C. These interactions are at the positions of ASP800
(2.00), ASP855 (1.98), MET793 (1.00), ARG841 (0.60), GLN791
(0.50), ASN842 (0.50), LEU844 (0.45), LEU718 (0.30), LYS745
(0.30), THR790 (0.25), THR854 (0.25), and SER720 (0.10)
residues. Additionally, it has been discovered that, in the case
of the standard D1, multiple interactions of the 3w32_
D1 complex are maintained by 285%, 250%, 230%, 210%,
100%, 70%, 100%, and 5% of the simulation time in the
specific interaction shown in Figure 10D. These interactions
occur at the positions of ASP855 (2.85), PHE856 (2.50),
THR854 (2.3), LYS745 (2.1), THR790 (1.00), GLN791 (1.00),
ARG776 (0.70), LEU858 (0.10), and CYS775 (0.05) residues.

Ligand properties analysis

We assessed the stability of the four compounds (ligand 08,
ligand 09, ligand 10, and standard D1) in the MD simulation

using ligand characteristics. We employed the Radius of
Gyration (rGyr), Intramolecular Hydrogen Bonds (intraHB),
Molecular Surface Area (MolSA), Solvent Accessible Surface
Area (SASA), and Polar Surface Area (PSA) to examine the
characteristics of the ligands. In this analysis the molar surface
area (MolSA) as depicted in SF-5 and the Polar Surface Area
(PSA) as shown in SF-6, were used to analyze the ligand
properties, all of which were found to be favorable for
the ligands.

Radius of gyration (Rg)

One approach to think about the radius of gyration (Rg) of a
protein-ligand complex system is in terms of atomic distribution
along its axis. Rg is a useful tool and an important measure of the
structural function of a macromolecule that can be used to
predict changes in complex stiffness. Thus, we also
investigated the stability of four ligands in their interaction
with the target protein via Rg throughout the 100 ns
simulation time depicted in Figure 11: ligand No. 08 (purple
color), ligand No. 09 (green color), ligand No. 10 (orange color),
and standard D1 (blue color). The compounds Ligand No. 08,
Ligand No. 09, Ligand No. 10, and standard D1 were found to
have average Rg values of 3.75, 3.76, 3.25, and 2.4, respectively.
This implies that, upon binding the chosen compounds, the
protein’s active site did not experience any appreciable
conformational changes (Mendichi et al., 2003).

FIGURE 9
Showing the RMSF values that were taken out of the Cα atoms of the four compounds and were chosen to be in complex with the 3w32 protein.
Herein, comparison of the RMSF of 3w32 Apo (Red) in complex with the compounds (A) 3w32_08 (purple), (B) 3w32_09 (Green), and (C) 3w32_10
(Orange), where (D) 3w32_D1 standard (Blue).
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Solvent accessible surface area (SASA)

Biological macromolecules’ Solvent-Accessible Surface Area
(SASA) affects both their structure and functionality. The
residues of amino acids on the surface of proteins are usually
hydrophobic or hydrophilic molecules that interact with other
molecules and ligands to generate active sites and/or provide

information about the behavior of molecules and protein-ligand
complexes in various solvents. Thus, Figure 12 displays the
SASA value of the protein upon interaction with Ligand Nos. 08,
09, 10, and D1. The complex system’s SASA value, which was
found to be a mean between 05 and 165 Å2, demonstrated a high
level of interaction between an amino acid residue and the
selected molecule (Bogatyreva and Ivankov, 2008).

FIGURE 10
Graphs exhibiting the information about the protein–ligand interaction by 100 ns time of MD simulation. Herein, representing the compounds (A)
ligand 08, (B) ligand 09, (C) ligand 10 and (D) standard D1 with the interactions of protein ID 3w32.
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Ligand-protein contacts evaluations

One of the most crucial and significant discoveries made during
the SID monitoring for the 100 ns MD simulation is the evaluation
of the ligand and protein contract. Following simulations, the four
selected ligands (Ligand 08, Ligand 09, Ligand 10, and Standard D1)
and the 3w32 proteins identified in breast cancer are shown in their
interaction diagrams in Figure 13. At the active sides of ASP855,
MET793, GLN791, ASP800, and CYS797, the ligand 08 interacts
with protein 3w32 to form numerous (more than two) interactions
with simulation times of 99%, 99%, 98%, 45%, and 34% of specific
interactions sustained by the multiple contacts illustrated in
Figure 13A. When ligand 09 and protein 3w32 are coupled, as
Figure 13B illustrates, they interact with the active sides of MET793,
GLN791, THR790, ASP800, CYS797, and ARG841 with 88%, 67%,
58%, 42%, 39%, and 35%, respectively. The active sides of ASP800,

ASP855, MET793, ASN842, and ARG841 interact at 99%, 99%, 92%,
40%, and 35% when ligand 10 contracts with protein 3w32 in
Figure 13C. The active sides LYS745, THR854, ASP855, PHE856,
GLN791, ARG776, and THR790 interact at 99%, 99%, 99%, 94%,
57%, 67%, and 49% when the standard D1 contracts with protein
3w32, as shown in Figure 13D.

Evaluation of ADME properties

The development of new medications relies heavily on DMPK
analysis. The acronym ADME stands for “absorption, distribution,
metabolism, and elimination,” which describes the steps taken by
the body to digest and eliminate a medicine (Pellegatti, 2012).
Research like this is useful for gauging the possible effectiveness
of a drug (Li, 2001). The first is distribution, which describes the

FIGURE 11
The radius of gyration (Rg) of the protein–ligand complex was calculated from the 100 ns simulation. The Rg value of the selected four compounds
ligand (08), ligand (09) ligand (10) and standard (D1) in complex with the protein ID 3w32 represented by a purple, green, orange, and blue color,
respectively.

FIGURE 12
Showing the graph of solvent accessible surface area (SASA) of the protein–ligand complex for 100 ns simulation. The SASA value of the selected
four compounds ligand (08), ligand (09) ligand (10) and standard (D1) in complex with the breast cancer represented by a purple, green, orange, and blue
color, respectively.
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speed and extent of medication delivery to various parts of the body
following administration. The second component is absorption,
which defines the rate and amount of medication absorption into
the bloodstream following administration (Yang et al., 2017). The
term “elimination” describes how quickly and efficiently a medicine
is absorbed into the bloodstream. Metabolic rate (Zhang and Tang,
2018), action mechanism (Currie, 2018), metabolite structure
(Guengerich, 2011), and therapeutic efficacy or safety (Smith,
2011) are all aspects of a medicine’s metabolism. The negative
and side effects of drugs are commonly referred to as
“toxicology”. Table 6 displays the methodology used to acquire
data on the medicine’s ADME profile from a computational
forecasting internet resource. All possible therapeutic choices are
quickly absorbed by humans due to their intestinal absorption rate
of about 85%. For therapeutic chemicals to cross the blood-brain
barrier, all of them have been found to be subcellularly localized in
mitochondria. With values ranging from −1.381 to −6.773, all of the
ligands were quite soluble in water; however, ligand 08 had the
lowest aqua solubility value and ligand 09 had the highest. Neither a
substrate nor an inhibitor for CYP 2D6 could be located.

Toxicity analysis

The possible negative effects of a substance that resembles a drug
on living things are referred to as “toxicity” (Smith, 2011). The

toxicity of the chosen ligands in Table 7 has been assessed in both
aquatic and non-aquatic environments. Furthermore, none of the
chemicals have any negative effects on the environment and are safe
for ingestion by humans. The industrial compounds’ acute oral
toxicity varied greatly, from 1.156 kg/mol to 2.541 kg/mol. With the
exception of ligands 05 and 06, all examined ligands have been
confirmed to be carcinogen-free, indicating that the chemical
described here does not pose a danger of cancer to living things.
But it has also been shown that the ligands mentioned are non-toxic,
which means that there is no risk to the environment or human
health from them. Due to their lack of skin effects, the necessary
ligands can be handled freely in the pharmaceutical business.

Discussion

Specifically, breast cancer refers to a malignant tumour that
develops from cells within the breast. Among female-identifying
cancers, it ranks first globally. Several factors, including heredity,
lifestyle choices, and environmental exposure, increase the
likelihood of breast cancer developing. Nevertheless,
investigations into the underlying cellular and molecular
processes of breast cancer’s initiation, development, and
metastasis are continuing. However, there are currently no viable
alternatives to antiviral drugs that can combat the virus responsible
for breast cancer. The proteins linked to breast cancer (PDB ID

FIGURE 13
Ligand-Protein interactions diagram after simulations of 100ns: (A) complex of ligand 08 and protein 3w32, (B) complex of ligand 09and protein
3w32, (C) complex of ligand 10 and protein3w32, and (D) complex of standard D1 and protein 3w32.
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3w32) play a crucial role in the advancement of the disease,
according to recent discoveries. The goal of this study is to find a
new and effective antiviral medication that can target the
3W32 proteins that are found in breast cancer. The experimental
protein structure of 3w32 in the presence of many inhibitory drugs
was initially sought after by searching the protein database. The
fifteen compounds were selected from the leaf extract of Mangifera
indica during the in silico investigation.

The assessment of the anti-viral and anti-cancer capacities, among
other PASS predictive features, is shown in Supplementary Table S4.
Activities against viruses and tumours were found in ligands 08, 09, and
10 (Yap et al., 2021b). We evaluated the pharmacokinetics of the four
compounds using Lipinski’s rules five (RO5) for molecules, and we
found that they all had the desired ADME properties. Table 4 shows
that all three of the selected ligands maintained RO5 levels and had
excellent pharmacokinetic properties. Additional evaluation of the
chemical’s harmful effects on humans and animals has been
conducted using the toxicity features of the molecule with good
ADME properties. None or very little toxicity was seen with the
three ligands selected for the study (Aljahdali et al., 2021a).

A computational DFT-based quantum mechanical simulation
was used to investigate and optimize the ligand form. The DFT-
optimized geometry was recovered. The FMO-based HOMO-
LUMO energy gap was computed for a more thorough
evaluation of the ligands’ chemical activity. All of the ligands had
HOMO-LUMO gap energies that were higher than 3.50 eV. Their
low reactivity is consistent with their bioactivity, as seen in (Bouback

et al., 2021). Molecular docking simulations were used to perform
additional testing on the sixteen compounds that were selected,
including standard (D1) and ligands 01–15. The docking scores
produced by ligand 08, ligand 09, ligand 10, and standard (D1)
against protein 3w32 were −8.5 kcal/mol, −8.4 kcal/mol, −8.5 kcal/
mol, and −6.3 kcal/mol, respectively, as shown in Table 5. Not only
does this docking score surpass the norm (>-6.0 kcal/mol) (Kodical
et al., 2020), but we also found that the scores of the three selected
ligands were greater than the standard (D1).

A molecular dynamics simulation is used to confirm the stability
of a protein when it is bound to a ligand. Not only that, it can
measure the stability and rigidity of protein-ligand complexes in a
specific synthetic setting, like the human body (Alam et al., 2021)
(Aljahdali et al., 2021b). By comparing the RMSD values of different
complex systems, we can see which compounds are the most stable,
and by comparing the RMSF values of different protein-ligand
complexes, we can see how compact they are (Krupanidhi et al.,
2021). Using the Ca atoms of the protein-ligand complexes, the
RMSD of the system was calculated, validating the small protein
changes. By calculating the protein’s fluctuation using the RMSF
value, we can see that the chemicals are stable for the target protein
and that the complex system has low variation. With a smaller Rg
value indicating tremendous compactness and a bigger value
showing the disassociation of the ligands from the protein, all of
the ligands display a greater Rg value (Elebeedy et al., 2021). A smaller
SASA value indicates a less stable structure, which is indicative of amore
compressed complex of water molecules and amino acid residues

TABLE 6 Data of ADME properties.

Absorption Distribution Metabolism Excretion

S/N Water
solubility
(Log
mol/L)

Human
Intestinal
Absorption
(%)

Caco-2
Permeability
+/−

VDss
(human)
(log
L/kg)

BBB
Permeability
(log BB)

CYP
2D6
Inhibitor

CYP 2D6
Substrate

Total
Clearance
(mL/
min/kg)

Renal
OCT2
substrate

01 −5.668 96.351 1.223 −0.048 0.705 No No 0.151 No

02 −7.498 93.119 1.203 0.660 0.683 No No 0.403 No

03 −3.181 86.684 0.335 0.375 −1.272 No No 0.537 No

04 −3.040 74.29 0.032 1.274 −0.939 No No 0.477 No

05 −1.381 13.831 −0.395 −0.998 −0.788 No No 0.810 No

06 −0.660 71.748 0.603 −1.013 −0.163 No No 0.722 No

07 −6.092 85.891 1.101 −0.016 1.222 No No 2.188 No

08 −1.423 0.000 −0.240 −0.418 −1.017 No No 0.895 No

09 −6.773 94.464 1.201 0.193 0.781 No No 0.628 No

10 −6.267 95.124 1.231 0.192 0.689 No No −0.050 No

11 −2.504 95.277 1.184 0.034 −0.299 No No 0.730 No

12 −3.444 95.824 1.251 −0.956 0.095 No No 0.584 No

13 −1.377 21.510 −0.249 0.148 −0.943 No No 0.626 No

14 −2.925 47.999 0.242 1.846 −1.688 No No 0.394 No

15 −2.891 0.000 −1.668 0.310 −2.707 No No −0.418 No

D1 −3.258 100.000 0.521 1.163 −1.531 No No −0.411 No
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(Mahmud et al., 2021; Mahmoud et al., 2021). Results showed that the
three selected ligands all had optimal Rg and SASA values. Following
the evaluation of the three ligands chosen based on different qualities,
which yielded a range of outcomes, the chemical has been chosen for
additional research utilizing a number of wet lab-based experimental
approaches.

To expedite the process of discovering new medication candidates,
computational drug design enables scientists to foretell the interactions
between chemicals and biological targets. Efficiently screening large
chemical libraries, optimizing molecular structures, and lowering
experimental costs are all made possible by this. It boosts the
chances of success in subsequent experimental phases and speeds up
the discovery process by simulating interactions.

Conclusion

An increasingly important, effective, and external method for
finding inhibitory molecules against a particular target protein is
computer-aided drug design. This work reports on the rapid and
effective identification of novel natural inhibitors of cancer proteins
through the application of CADD. Ligands 10, 8, and 12 emerge as the
top-performing candidates due to their superior binding affinities and
high numbers of interactions, with hydrophobic interactions playing a
key role in enhancing their binding efficiency. Ligands 9 and 13 also
show promise, although they are slightly less effective than the top

performers. In contrast, ligands with fewer total bonds and weaker
binding affinities, such as ligands 2, 7, and 11, are less favourable for
further consideration. In addition, these compounds (Ligands 10, 8, and
12) have the potential to inhibit the activity of breast cancer cells and
prevent the replication of ASP855, MET793, GLN791, ASP800, and
CYS797 residues by ligand 08, MET793, GLN791, THR790, ASP800,
CYS797, and ARG841 residues by ligand 09, and ASP800, ASP855,
MET793, ASN842, and ARG841 residues by ligand 10 of 3w32 protease
into the human host cell. Next, Ligands 1, 2, 9, 10, 12, and D1 are top
candidates due to excellent absorption, balanced distribution, and
moderate clearance. Ligands 8 and 15 are poor performers with zero
absorption and low distribution. Ligand 7 shows potential for CNS-
targeted therapies with high BBB permeability but may require
adjustments due to rapid clearance. Further optimization is needed
for ligands with extreme values like 5, 6, 8, and 15. However, Ligands 10,
8, and 12 emerge as the top-performing candidates for breast cancer due
to investigation of their superior binding affinities, quantum descriptors
and strong interactions, making them promising options for further
development and investigation.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be directed
to the corresponding author.

TABLE 7 Aquatic and non-aquatic toxicity of selected ligands.

Ligand
No

AMES
toxicity

Hepatotoxicity Oral rat
Chronic
Toxicity
(mg/kg.bw/
day)

Oral rat acute
toxicity (LD50)
(mol/kg)

Max. Tolerated
dose
(mg/kg/day)

T. Pyriformis
toxicity
(log ug/L)

Skin
sensitisation

01 No No 3.060 2.218 0.700 0.285 No

02 No No 2.963 1.156 0.994 0.263 No

03 No No 2.021 2.423 0.814 0.273 No

04 No No 2.494 1.513 0.567 0.285 No

05 Yes No 2.461 2.164 0.496 0.367 No

06 Yes No 2.432 1.898 −0.296 0.195 No

07 No No 3.897 1.214 1.896 0.285 No

08 No No 2.612 2.471 0.499 0.288 No

09 No No 2.500 2.428 0.438 0.347 No

10 No No 2.698 2.399 0.476 0.295 No

11 No No 4.417 2.541 0.569 0.285 No

12 No No 4.277 2.396 0.58 0.285 No

13 No No 3.977 2.373 0.613 0.285 No

14 No No 4.417 2.541 0.569 0.285 No

15 No No 5.113 2.481 0.4 0.285 No

D1 No No 4.417 2.541 0.569 0.285 No
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