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Introduction: The current treaments for Obstructive Sleep Apnea Hypopnea
(OSAHS) are Continuous Positive Airway Pressure (CPAP) and lifestyle
modifications, which is not suitable for all patients. Traditional Chinese
medicine (TCM) has increasingly demonstrated its efficacy and benefits in
treating OSAHS. Zhihan Anshen Tang (ZHAST), has been demonstrated its
efficacy and clinical metrics for treating OSAHS patients. However, its key
ingredients and mechanisms of action are still unknown.

Methods: Using network pharmacology, we investigated the potential
mechanisms of ZHAST through which OSAHS.

Results: In addition, the key targets, including TNF, IL6, GAPDH, STAT3, HIF1A,
and JUN, are revealed by the topological analysis. According to the findings of the
GO enrichment analysis, genes were enriched in inflammatory responses,
hypoxia responses, positive regulation of angiogenesis, protein
phosphorylation, and regulation of cell proliferation. KEGG pathway
enrichment analysis suggests that the signaling pathway of ZHAST in OSAHS
are MAPK and AGE-RAGE signaling pathway, especially in diabetic complications.
In addition, it is demonstrated that the enoxolone in ZHASTs have high affinity
with the relevant targets by molecular docking and molecular dynamics
simulations.

Disscussion: To my knowledge, this is the first network pharmacological
molecular docking study about a Chinese medicine effective against OSA. This
investigation integratesmolecular docking and network pharmacology to identify
the effective compounds, related targets, and potential mechanism of ZHASTs in
the treatment of OSAHS, providing the prospect of traditional Chinese medicines
with modern medical research.
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1 Introduction

Obstructive Sleep Apnea Hypopnea Syndrome (OSAHS) is a
common clinical sleep disorder, categorized in traditional Chinese
medicine under the terms “hypersomnia” and “snoring” (Zhou
et al., 2023). It is primarily characterized by snoring, apneas, and
hypopnea during sleep, along with disrupted sleep architecture and
recurrent hypoxemia (Zhou et al., 2023; Lv et al., 2023). These
conditions frequently result in fragmented sleep, arousals caused by
snoring, daytime somnolence, and dizziness. They can predispose
patients to cardiovascular, cerebrovascular, pulmonary diseases, and
multi-organ damage severely impacting their quality of life and lifespan
(Chen et al., 2021; Di Bello et al., 2023; Lebkuchen et al., 2021).

In recent years, traditional Chinese medicine (TCM) has
increasingly demonstrated its efficacy and benefits in treating
OSAHS. TCM can effectively alleviate symptoms, control
disease progression, and enhance sleep functionality and quality
of life. Zhihan Anshen Tang (ZHAST), a classic traditional Chinese
medicinal formula, comprises the following ingredients: Ban Xia,
Chen Pi, Zhi Shi, Zhu Ru, Shi Chang Pu, Yuan Zhi, Huo Xiang, Yu
Jin, Dan Shen, Niu Bang Zi, Fu Shen, Ye Jiao Teng, Chao Zao Ren,
Bai Zhi, Hong Jing Tian, Hai Fu Shi, Qing Meng Shi, Dan Nan
Xing, and Zhi Gan Cao. Clinical studies have demonstrated that
ZHAST significantly improves therapeutic outcomes and clinical
metrics in patients with OSAHS. Previous research has confirmed
that Ban Xia (Song et al., 2022), as one of the traditional Chinese
medicines, has shown potential therapeutic effects in recent
studies. In the treatment of patients with OSAHS accompanied
by insomnia, Zhihan Anshen Tang has demonstrated unique
therapeutic efficacy.

Network pharmacology, as an emerging interdisciplinary field, is
increasingly becoming an essential tool for unraveling the complexities
of mechanisms in traditional Chinese medicine (Wang y. et al., 2024).
This discipline utilizes modern techniques such as database filtering,
computer simulation, and data mining to effectively identify key
therapeutic targets and predict associated signaling pathways and
mechanisms of action. Not only does this aid in a deeper
understanding of the biological nature of complex diseases and the
molecular actions of drugs, but it also accelerates the discovery of new
biomarkers and the development and clinical application of new drugs.
Through these methods, network pharmacology offers an efficient
approach to optimizing drug research and therapeutic strategies. For
example, A. Bisht and colleagues integrated network pharmacology,
molecular docking, and molecular dynamics simulation to elucidate
the anti-aging mechanism of Tinospora cordifolia (Bisht et al., 2024).
Their research not only identified key active compounds but also
confirmed their stability through molecular dynamics simulations,
offering new perspectives for the development of anti-aging drugs.
Similarly, Gu et al. (2024) and colleagues employed network
pharmacology and multi-omics analysis to explore the active
components and mechanisms of Si Ni Tang in treating sepsis. They
discovered that by modulating signaling pathways related to oxidative
stress and lipid metabolism, Si Ni Tang could improve the prognosis
for sepsis patients. Furthermore, Li et al. (2024) and others utilized
network pharmacology to analyze the potential mechanisms of Jian Gu
Granules in treating postmenopausal osteoporosis. These studies
demonstrate that network pharmacology not only aids in
understanding the complex mechanisms of traditional Chinese

medicine but also guides the development and clinical application
of new drugs. With ongoing advancements in technology, it is
reasonable to believe that network pharmacology will play an
increasingly significant role in future research on traditional
Chinese medicine.

Despite numerous fundamental studies being conducted, the
specific targets and precise mechanisms involved in treating OSAHS
with ZHAST still remain unclear. In this study, we utilized
bioinformatics methods to examine the primary chemical
components of ZHAST along with their potential targets and
mechanisms for addressing OSAHS. This research establishes a
theoretical foundation for further investigating the
pharmacodynamics, material composition, and modes of action
associated with using ZHAST to treat OSAHS. The research
flowchart is depicted in Figure 1.

2 Materials and methods

2.1 data collection

2.1.1 Selection of active compounds and
therapeutic targets for ZHAST

The active ingredients in ZHAST were identified and selected
from both the TCMSP database (RU et al., 2014) (https://old.tcmsp-
e.com/tcmsp.php) and the BATMAN database (Kong et al., 2024)
(http://bionet.ncpsb.org.cn/batman-tcm/#/home), using criteria of
OB ≥ 30 and DL ≥ 0.18 (Van Der Graaf and Benson, 2011).
Subsequently, these identified active compounds were queried in
the PubChem database (Wang et al., 2012a) (https://pubchem.ncbi.
nlm.nih.gov/) to obtain their SMILES notation, which was then
entered into the SwissTargetPrediction database(http://www.
swisstargetprediction.ch/) for target prediction.

2.1.2 Establishment of a database for
OSAHS targets

Using the GEO database (https://www.ncbi.nlm.nih.gov/gds)
with ‘Obstructive sleep apnea hypopnea’ as the search term, we
selected dataset GSE38792. Batch effects were eliminated using the
limma package, and differentially expressed genes were identified
based on selection criteria of |logFC| > 1 and P < 0.05. Heatmaps
were generated utilizing the ggplot2 package. Furthermore, disease
targets associated with obstructive sleep apnea were queried through
Genecards (https://www.genecards.org) (Safran et al., 2002), OMIM
(https://www.omim.org) (Landrum et al., 2016), and DisGenet
(https://www.disgenet.org) databases (Piñero et al., 2020), thus
establishing a comprehensive database of targets relevant to OSAHS.

2.2 Establishment of PPI network

The Venny 2.1.0 tool (https://bioinfo.cnb.csic.es/tools/venny/index.
html) was used to analyze the overlaps between the predicted ZHAST
targets and OSAHS-associated targets. To obtain PPI data, common
targets between the drug and disease were inputted into the STRING
database (Szklarczyk et al., 2023) (https://string-db.org/cgi/input.pl) for
constructing the PPI network, with species set as “Homo sapiens” and a
minimum required interaction score of 0.40. The resulting network was
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visualized using Cytoscape (Otasek et al., 2019), where key targets were
identified based on topological parameters such as Degree Centrality
(DC), Betweenness Centrality (BC), and Closeness Centrality (CC). The
selection criteria for these key targets were values greater than twice the
median value. Additionally, to identify central targets, we utilized the
Cytohubba plugin in Cytoscape which calculates Maximum Clique
Centrality (MCC). Furthermore, module filtering within the PPI
network was performed using the MCODE plugin in Cytoscape for
cluster analysis (Xie et al., 2022).

2.3 Selection and analysis of key targets

Core genes were identified through topological analysis of the PPI
network and the MCC algorithm in the Cytohubba plugin. Gene and
protein expressions in adipose tissue were obtained from the Human
Protein Atlas (HPA, https://www.proteinatlas.org/) (Zhou et al., 2022).
This approach enables a systematic analysis, facilitating a deeper
understanding of gene expressions relevant to the study’s focus on
adipose tissues.

2.4 GO and KEGG enrichment analyses

Shared drug-disease targets were uploaded to DAVID
Bioinformatics Resources 6.8 (https://david.ncifcrf.gov/home.jsp)
for GO enrichment analysis, encompassing biological processes
(BP), cellular components (CC), and molecular functions (MF).
Enrichment thresholds were set at PvalueCutoff = 0.05 and
QvalueCutoff = 0.05, with default settings used otherwise (Ding
and Liu, 2023). Additionally, KEGG pathway enrichment analysis
was conducted on these targets by selecting entries with an adjusted
P-value <0.05. The top 10 GO terms and top 20 KEGG pathways
were visually represented based on the significance of enrichment,
providing valuable insights into the molecular interactions and
pathways involved.

2.5 Network construction

The herbal-compound-target (H-C-T) network was
constructed using Cytoscape 3.7.2, with traditional Chinese

FIGURE 1
Workflow of the network pharmacological investigation strategy of ZHAST in the treatment of OSAHS.
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FIGURE 2
Screening of common targets between ZHAST and OSAHS. (A) The volcano plot illustrates the gene distribution in disease samples. Green and red
indicate upregulated and downregulated genes, respectively, while grey denotes no significant difference. (B) The heatmap depicts the expression
patterns of these 60 differentially expressed genes (DEGs). Columns correspond to samples, and rows correspond to genes. (C) The Venn diagram shows
the 457 common targets between ZHAST active compound targets and OSAHS disease targets.

FIGURE 3
Herb-compound-target network. Green arrows represent the herbs in ZHAST, circular nodes represent compounds, and red squares represent
common targets. Edges denote the interactions between compounds and targets.
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medicine serving as the foundation for identifying active
compounds and shared targets. Topological analysis was also
conducted utilizing the same software. The formation of the
H-C-T network is based on the inclusion of active compounds
found in ZHAST and their corresponding shared targets. To
enhance our understanding of pathway relationships,
compounds, and targets, we prioritized the top 20 pathways
along with their associated targets and compounds to construct a
Compound-Target-Pathway (C-T-P) network.

2.6 ADME and toxicity predictions

The ADMET properties, encompassing absorption,
distribution, metabolism, excretion, and toxicity evaluation of
ten selected drugs were assessed utilizing SwissADME (https://
www.swissadme.ch/) and ADMETlab (https://admet.scbdd.com/)
(Xiong et al., 2021).

2.7 Molecular docking verification

The compound names, molecular weights, and 3D structures of
active ingredients were identified from the PubChem database (https://
pubchem.ncbi.nlm.nih.gov/), while their corresponding 3D structures
were downloaded from the RCSB PDB database (http://www.rcsb.org/
) (Berman et al., 2000). Subsequently, ligands and proteins required for
molecular docking were prepared using AutoDock software. For target
proteins, crystal structures underwent water molecule removal,
hydrogen addition, amino acid modification, energy optimization,
and force field parameter adjustment to achieve a low-energy
conformation for the ligands. Molecular docking was then
performed on core targets and compounds with affinity values (in
kcal/mol) indicating binding efficiency; lower binding energy indicates
more stable ligand-receptor interaction. Finally, Discovery Studio
software was utilized to analyze and visualize the docking results by
selecting configurations with the best binding energy for each target
protein to facilitate further visual analysis.

FIGURE 4
Identification of candidate targets through protein-protein interaction (PPI) analysis. (A) Topological filtering process of the PPI network. (B) The PPI
network based on clustering analysis using the MCODE plugin. (C) One hundred core targets selected through degree centrality (DC), betweenness
centrality (BC), and closeness centrality (CC), where node size is proportional to the degree of the target in the network. (D)Hub genes selected from the
PPI network using the CytoHubba plugin. Node colors transition from light yellow to red, corresponding to an increasing degree.
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AutoDock-1.5.6 software (http://vina.scripps.edu/) and
Pymol-2.1.0 software were used to prepare ligands and proteins
required for molecular docking. For target proteins, The crystal
structure obtained in the PDB database (https://www.rcsb.org/)
requires pretreatment, including removal of hydrogenation,
modification of amino acids, optimization of energy and
adjustment of force field parameters. The proteins were
hydrogenated and charged with AutoDock Tools-1.5.6 (http://
vina.scripps.edu/) and saved as pdbqt format. In the Pubchem
database (https://pubchem.ncbi.nlm.nih.gov/) to download ligand
structure. Finally will dock target structure and the molecular
structure of active ingredients, using pyrx software (https://pyrx.
sourceforge.io/) within the docking vina, its Affinity (kcal/mol)
value represents the combination of the combination of ability, the
lower the combining ability, The more stable the ligand binds to
the receptor. Visual analysis of the docking results using Discovery
Studio 2019.

2.8 Molecular dynamics simulation

Molecular dynamics (MD) simulations are extensively employed in
computational studies to investigate the motions of atoms and
molecules, playing a pivotal role in assessing protein stability and
interactions with docked molecules. The Desmond software was
utilized for conducting MD simulations on protein-small molecule
complexes (Overton et al., 2021). During the simulation, the
OPLS2005 force field was applied to parameterize protein-small
molecule interactions, while the TIP3P model was used for
simulating water molecules (Li et al., 2021). The protein-small
molecule complexes were placed within a cubic water box, and
appropriate amounts of chloride and sodium ions were added to
neutralize the system’s charge. Prior to simulation, an energy
minimization step using the steepest descent method over
50,000 steps ensured a stable initial state. Following equilibration
phases, an unrestrained 100 ns simulation was performed to observe

FIGURE 5
Analysis and summary of the protein expression (A) and gene expression (B) of key targets in human adipose tissue from the HPA database.

FIGURE 6
Results of the GO enrichment analysis. (A) Bubble chart of the top 10 biological processes (BP), cellular components (CC), and molecular functions
(MF). (B) The bar chart illustrates the top 10 biological processes (BP), cellular components (CC), and molecular functions (MF), with green, orange, and
purple bars representing different categories respectively.
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TABLE 1 KEGG enrichment results of key genes.

Pathway ID Pathway name Count Genes P-value

hsa05200 Pathways in cancer 99 FGF1, FGF2, IGF1R, EDNRA, RPS6KA5, EDNRB, CCND2, AKT1, EP300,
PRKACA, PDGFRB, PRKCG, PDGFRA, MAP2K1, MAP2K2, DAPK1, F2R, PGF,
AR, SMO, AGTR1, RAF1, IL6ST, CSF1R, HIF1A, KNG1, TERT, ABL1, HMOX1,
PLCG1, STAT5B, CREBBP, JUN, TGFB1, WNT3A, BRAF, ESR1, PTK2, NFKB1,
IL2, NFKBIA, IL6, CDK2, BCL2, FGFR3, FGFR2, NFE2L2, FGFR1, RET, ITGB1,
ALK, CXCL8, SLC2A1, PIK3CB, GLI1, SHH, CASP8, CASP3, BDKRB1, ITGAV,
JAK2, JAK3, HRAS, JAK1, MMP1, MMP2, F2, MMP9, TGFBR1, TGFBR2,
CCNA2, PIK3CA, PPARG, CAMK2B, HDAC2, HDAC1, GSTP1, CXCR4, PTGS2,
RELA, EGFR, LRP6, MAPK9, NRAS, MAPK8, MAPK1, STAT6, MAPK3, NTRK1,
NQO1, NOS2, STAT1, STAT3, MTOR, VEGFA, MAPK10, RAD51, GSTA1, BAX

2.01E-34

hsa05161 Hepatitis B 48 DDX3X, PCNA, CXCL8, SRC, PIK3CB, TNF, RELA, MAPK9, NRAS, MAPK8,
CASP8, IRAK1, CASP3, AKT1, MAPK1, EP300, STAT6, JAK2, HRAS, JAK3,
JAK1, MAPK3, MAP2K6, PRKCG, STAT5B, JUN, MAP2K1, CREBBP, TGFB1,
MAP2K2, STAT1, STAT3, BRAF, MAPK14, MMP9, TGFBR1, NFKB1, TGFBR2,
MAPK10, NFKBIA, CCNA2, IL6, PIK3CA, CDK2, BCL2, BAX, RAF1, TLR4

3.12E-25

hsa04010 MAPK signaling pathway 63 RET, FLT1, HSPB1, FGF1, FGF2, TNF, IGF1R, RPS6KA3, RPS6KA5, RPS6KA2,
CASP3, KDR, AKT1, PRKACA, HRAS, PDGFRB, PRKCG, PDGFRA, MAP2K1,
MAP2K2, DUSP1, CACNA2D1, TGFBR1, PGF, TGFBR2, TNFRSF1A, PPM1B,
IL1B, MAPKAPK2, MAPT, RAF1, CSF1R, CACNA1B, CACNA1C, EGFR,
CACNA1H, RELA, CACNA1G, MAPK9, NRAS, MAPK8, MAPK7, IRAK1,
MAPK1, MAPK3, MAP4K4, MAP2K6, NTRK1, NTRK2, JUN, TGFB1, INSR,
BRAF, MAPK14, NFKB1, VEGFA, MAPK10, TEK, FGFR3, FGFR2, FGFR1,
HSPA1A, MAP3K12

2.03E-24

hsa04933 AGE-RAGE signaling pathway in diabetic
complications

38 CXCL8, SERPINE1, PIK3CB, TNF, RELA, ICAM1, MAPK9, NRAS, MAPK8,
CASP3, AKT1, MAPK1, PLCG1, JAK2, HRAS, MAPK3, STAT5B, JUN, TGFB1,
VCAM1, NOS3, STAT1, MMP2, STAT3, MAPK14, SELE, F3, TGFBR1, NFKB1,
TGFBR2, VEGFA, MAPK10, IL6, PIK3CA, IL1B, BCL2, AGTR1, BAX

3.62E-24

hsa04020 Calcium signaling pathway 56 RET, CHRM2, OXTR, FLT1, ATP2A1, HTR2A, ADRA1B, FGF1, ADRA1A,
FGF2, MYLK, HTR6, CYSLTR1, EDNRA, CYSLTR2, EDNRB, KDR, CD38,
BDKRB1, NOS1, PRKACA, PDGFRB, PRKCG, PDGFRA, F2R, TACR2, TACR1,
ADORA2A, AGTR1, CAMK2B, PDE1C, CHRNA7, CACNA1B, CXCR4, ADRB1,
CACNA1C, ADRB2, EGFR, CACNA1H, CACNA1G, HRH1, GRIN2A, TBXA2R,
DRD1, PLCG1, NTRK1, NTRK2, NOS2, NOS3, GRIN2B, GRIN1, VEGFA,
P2RX3, FGFR3, FGFR2, FGFR1

9.77E-23

hsa05417 Lipid and atherosclerosis 51 CXCL8, PIK3CB, TNF, ICAM1, CASP8, CASP3, AKT1, JAK2, HRAS, MMP1,
MMP3, MMP9, TNFRSF1A, ERN1, PIK3CA, IL1B, PPARG, TLR4, CAMK2B,
SRC, RELA, MAPK9, NRAS, MAPK8, IRAK1, MAPK1, NLRP3, PLCG1, APOB,
MAPK3, MAP2K6, JUN, VCAM1, HSPA5, NOS3, STAT3, EIF2AK3,
TNFRSF10A, MAPK14, SELE, NFKB1, PTK2, SELP, NFKBIA, MAPK10,
CYP2C9, IL6, BCL2, BAX, NFE2L2, HSPA1A

4.35E-22

hsa04722 Neurotrophin signaling pathway 36 CAMK2B, PSEN2, PSEN1, PIK3CB, RELA, MAPK9, RPS6KA3, NRAS, MAPK8,
MAPK7, RPS6KA5, IRAK1, RPS6KA2, ABL1, AKT1, MAPK1, PLCG1, HRAS,
MAPK3, NTRK1, NTRK2, JUN, MAP2K1, MAP2K2, SORT1, PTPN11, BRAF,
MAPK14, NFKB1, MAPK10, NFKBIA, PIK3CA, MAPKAPK2, BCL2, BAX, RAF1

3.29E-19

hsa01521 EGFR tyrosine kinase inhibitor resistance 30 SRC, PIK3CB, FGF2, EGFR, IGF1R, NRAS, KDR, AKT1, MAPK1, PLCG1, JAK2,
HRAS, JAK1, MAPK3, PRKCG, PDGFRB, PDGFRA, MAP2K1, MAP2K2,
STAT3, BRAF, MTOR, VEGFA, IL6, PIK3CA, BCL2, BAX, RAF1, FGFR3, FGFR2

4.98E-19

hsa05205 Proteoglycans in cancer 45 ITGB1, CAMK2B, SRC, ITGB3, PIK3CB, FGF2, HIF1A, TNF, EGFR, SLC9A1,
IGF1R, SHH, NRAS, CTSL, CASP3, KDR, AKT1, MAPK1, ITGAV, PLCG1,
PRKACA, HRAS, MAPK3, PRKCG, MAP2K1, TGFB1, MAP2K2, WNT3A,
MMP2, STAT3, PLAUR, PTPN11, BRAF, MAPK14, MMP9, ESR1, MTOR, PTK2,
VEGFA, SMO, PIK3CA, EZR, RAF1, TLR4, FGFR1

2.82E-18

hsa04210 Apoptosis 37 PIK3CB, TNF, RELA, CTSS, MAPK9, NRAS, MAPK8, CASP8, CTSL, CASP3,
CTSK, CAPN2, AKT1, MAPK1, CTSH, HRAS, CTSD, MCL1, MAPK3, CTSB,
NTRK1, JUN, MAP2K1, MAP2K2, EIF2AK3, GZMB, TNFRSF10A, PTPN13,
NFKB1, TNFRSF1A, ERN1, MAPK10, NFKBIA, PIK3CA, BCL2, BAX, RAF1

3.37E-18

hsa05167 Kaposi sarcoma-associated herpesvirus
infection

44 CXCL8, SRC, PIK3CB, PTGS2, FGF2, HIF1A, RELA, ICAM1, MAPK9, NRAS,
MAPK8, CASP8, CASP3, AKT1, MAPK1, EP300, PLCG1, JAK2, CCR5, HRAS,
CCR3, JAK1, MAPK3, MAP2K6, CCR1, JUN, MAP2K1, CREBBP, MAP2K2,
STAT1, STAT3, MAPK14, MTOR, NFKB1, TNFRSF1A, VEGFA, MAPK10,
NFKBIA, IL6, PIK3CA, MAPKAPK2, BAX, RAF1, IL6ST

3.55E-18

(Continued on following page)
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dynamic behavior of the protein-small molecule complexes in their free
state. To comprehensively document the simulation process, trajectory
energy and coordinate data were saved every 10 ps. Throughout the
simulation, physiological conditions were emulated by maintaining a
temperature of 300 K and pressure at 1 bar.

After conducting molecular dynamics (MD) simulations, the
trajectories of the last 10 nanoseconds (ns) were extracted, with a
total of 1,000 frames. Then, these frames were used for the calculation of
binding free energy using Desmond. Firstly, the MD simulation lasted
for a sufficient period of time to ensure that the system reached
equilibrium, and the trajectories of the last 10 nanoseconds after
equilibrium were extracted. The calculation of each frame was
analyzed using the MM-GBSA (Molecular Mechanics Generalized
Born Surface Area) module to calculate the binding free energy of
the protein-ligand complex. Meanwhile, to gain an in-depth
understanding of the contribution of individual amino acids to the
binding free energy, energy term decomposition was carried out. The

energy terms include: binding free energy (MMGBSA_Bind), Coulomb
energy (MMGBSA_Bind_Coulomb), covalent binding energy
(MMGBSA_Bind_Covalent), hydrogen bond energy (MMGBSA_
Bind_Hbond), hydrophobic energy (MMGBSA_Bind_Lipo), Pi
stacking energy (MMGBSA_Bind_Packing), self-contact energy
(MMGBSA_Bind_SelfCont), generalized Born solvent effect energy
(MMGBSA_Bind_Solv_GB), and van der Waals force energy
(MMGBSA_Bind_vdW). In addition, amino acid binding energy
decomposition was also performed to analyze the specific
contribution of each amino acid to the small molecule binding
energy. Through the decomposition of these energy terms, it is
possible to have a clearer understanding of each energy term and
the influence of each amino acid residue on the overall binding free
energy, providing an important basis for further drug design and
experimental verification.

The datasets used in this study are sourced from the
GEO database (https://www.ncbi.nlm.nih.gov/geo/), with

TABLE 1 (Continued) KEGG enrichment results of key genes.

Pathway ID Pathway name Count Genes P-value

hsa04024 cAMP signaling pathway 47 CHRM2, CAMK2B, GLP1R, OXTR, ADRB1, ATP2A1, CACNA1C, ADRB2,
ATP1A1, PIK3CB, GLI1, RELA, SLC9A1, MAPK9, GRIN2A, MAPK8, HTR6,
EDNRA, ADORA1, AKT1, PDE4A, MAPK1, EP300, DRD1, DRD2, PRKACA,
MAPK3, GHSR, JUN, MAP2K1, CREBBP, GABBR1, MAP2K2, PDE4D, F2R,
HTR1A, HTR1B, BRAF, GRIN2B, NFKB1, GRIN1, MAPK10, NFKBIA,
ADORA2A, PIK3CA, RAF1, CFTR

5.23E-18

hsa04066 HIF-1 signaling pathway 33 CAMK2B, FLT1, SERPINE1, SLC2A1, PIK3CB, HIF1A, RELA, EGFR, IGF1R,
HK1, AKT1, HMOX1, MAPK1, EP300, PLCG1, MAPK3, PRKCG, MAP2K1,
CREBBP, MAP2K2, NOS2, NOS3, INSR, STAT3, MTOR, NFKB1, VEGFA, IL6,
PIK3CA, BCL2, TEK, GAPDH, TLR4

9.42E-18

hsa05418 Fluid shear stress and atherosclerosis 37 SRC, GSTP1, ITGB3, PIK3CB, TNF, RELA, ICAM1, MAPK9, MAPK8, MAPK7,
CTSL, KDR, AKT1, HMOX1, ITGAV, MAP2K6, NQO1, JUN, VCAM1, NOS3,
DUSP1, MMP2, MAPK14, SELE, MMP9, PTK2, NFKB1, TNFRSF1A, VEGFA,
MAPK10, PIK3CA, TRPV4, IL1B, GSTA1, BCL2, BMPR1A, NFE2L2

1.21E-17

hsa04080 Neuroactive ligand-receptor interaction 60 GABRB3, GLP1R, CHRM2, OXTR, HTR2A, GRIK2, ADRA1B, NR3C1,
ADRA1A, RXFP1, LTB4R, MC4R, HTR6, CYSLTR1, EDNRA, CYSLTR2,
EDNRB, ADORA3, ADORA1, GNRHR, TSPO, BDKRB1, CTSG, GHSR, AVPR2,
F2R, TACR2, TACR1, OPRM1, F2, ADRA2A, SSTR4, ADORA2A, AGTR1,
CHRNA1, CHRNA4, CHRNA7, C5AR1, FPR1, ADRB1, PLG, ADRB2, FPR2,
KNG1, HRH1, GRIN2A, TBXA2R, CNR1, DRD1, DRD2, GABRA1, GABBR1,
GABRA5, HTR1A, HTR1B, TRPV1, GRIN2B, HCRTR2, GRIN1, P2RX3

1.34E-17

hsa05230 Central carbon metabolism in cancer 27 RET, SLC2A1, PIK3CB, HIF1A, EGFR, HK1, NRAS, AKT1, MAPK1, HRAS,
MAPK3, PDGFRB, NTRK1, PDGFRA, MAP2K1, G6PD, MAP2K2, IDH1, GCK,
MTOR, SIRT3, PKM, PIK3CA, RAF1, FGFR3, FGFR2, FGFR1

2.60E-17

hsa04015 Rap1 signaling pathway 44 ITGB1, CSF1R, FLT1, SRC, ITGB3, FPR1, PIK3CB, FGF1, ITGAL, FGF2, EGFR,
IGF1R, GRIN2A, NRAS, CNR1, KDR, AKT1, MAPK1, PLCG1, DRD2, HRAS,
MAPK3, MAP2K6, PRKCG, PDGFRB, PDGFRA, MAP2K1, MAP2K2, INSR,
F2R, BRAF, MAPK14, GRIN2B, PGF, GRIN1, VEGFA, ADORA2A, PIK3CA,
PRKD1, TEK, RAF1, FGFR3, FGFR2, FGFR1

7.74E-17

hsa05235 PD-L1 expression and PD-1 checkpoint
pathway in cancer

29 ALK, PIK3CB, HIF1A, RELA, EGFR, NRAS, AKT1, MAPK1, PLCG1, JAK2,
HRAS, JAK1, MAPK3, MAP2K6, JUN, MAP2K1, MAP2K2, STAT1, STAT3,
PTPN11, MAPK14, MTOR, NFKB1, NFKBIA, PIK3CA, CSNK2B, TLR9, RAF1,
TLR4

2.06E-16

hsa04926 Relaxin signaling pathway 34 SRC, PIK3CB, RXFP1, RELA, EGFR, MAPK9, NRAS, MAPK8, EDNRB, AKT1,
MAPK1, NOS1, PRKACA, HRAS, MAPK3, JUN, MAP2K1, TGFB1, MAP2K2,
NOS2, MMP1, NOS3, MMP2, MAPK14, MMP9, TGFBR1, NFKB1, TGFBR2,
VEGFA, MAPK10, NFKBIA, MMP13, PIK3CA, RAF1

3.45E-16

hsa05142 Chagas disease 30 CXCL8, SERPINE1, PIK3CB, TNF, RELA, KNG1, MAPK9, MAPK8, CASP8,
IRAK1, AKT1, MAPK1, MAPK3, JUN, TGFB1, ACE, NOS2, MAPK14, TGFBR1,
IL2, NFKB1, TGFBR2, TNFRSF1A, MAPK10, NFKBIA, IL6, PIK3CA, IL1B,
TLR9, TLR4

1.26E-15
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FIGURE 7
Results of KEGG enrichment analysis and key pathway network construction. (A) Bubble chart of the top 20 pathways based on KEGG enrichment
analysis. (B) Sankey diagram of KEGG pathway analysis for therapeutic targets in the treatment of SONFH with YGPs. In the Sankey diagram, the left
rectangular nodes represent therapeutic targets, the right rectangular nodes represent KEGG pathways, and the lines indicate associations between
targets and pathways. (C) Categories of the top 20 pathways based on KEGG enrichment analysis. (D) Composite Target Pathway (C-T-P) network
related to the mechanism of action of ZHAST in the treatment of OSAHS. Purple nodes represent targets; pink nodes represent pathways, and green
nodes represent compounds.
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the downloaded data in MINiML format. The detailed
processing procedure can be found in the method
description on the dataset selection page. Statistical analysis

was conducted using R software, version v4.0.3. Results were
considered statistically significant when the p-value was less
than 0.05.

FIGURE 8
Distribution of key targets in the most relevant pathways. (A)Distribution of key targets in the MAPK signaling pathway. (B)Distribution of key targets
in the AGE-RAGE signaling pathway in diabetic complications. Red rectangles represent key targets, and presumed targets and genes associated with the
pathway are indicated in red.
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3 Results

3.1 Screening the active compounds and
putative targets of ZHAST and construction
of the “H-C-T” network

1. A total of 315 active compounds were isolated from
19 traditional Chinese medicines in the TCMSP database, and
after deduplication, 1,252 targets were predicted for these
compounds in ZHAST. Integration and deduplication of
differentially expressed genes from the GEO database with
predicted genes resulted in a total of 3,593 targets analyzed in
dataset GSE38792. The differential gene expression is illustrated
using a volcano plot (Figure 2A), while Figure 2B shows the heat
map of the top 30 differentially expressed genes (DEGs) with color
intensities varying according to their log fold changes. Furthermore,
OSAHS-related targets were retrieved from the database resulting in
identification of 3,135 disease targets after removing redundancies.
Cross-analysis between compound targets (796) obtained from
ZHAST and disease targets (3,135) identified a total of
457 common targets (Figure 2C).

The H-C-T network is illustrated in Figure 3. Network
analysis revealed that HARMINE exhibited the highest degree
of connectivity with targets, reaching a value of 91. It was
followed by cryptotanshinone with a degree of 70, Thiocyanic
Acid with a degree of 65, and both Liquiritigenin and (2R)-7-
Hydroxy-2-(4-Hydroxyphenyl)-2,3-Dihydrochromen-4-One
with degrees of 63. Additionally, stigmasterol and sesamin
displayed equal degrees of connectivity at a value of 23, while
Enoxolone had a connectivity degree equal to 58. These results
indicate that each protein target is influenced by multiple
compounds; conversely, every compound can act on multiple
protein targets. Therefore, it is hypothesized that ZHAST may
exert its anti-snoring effects in OSAHS through a multi-
component and multi-target approach.

3.2 PPI network of common targets

The 457 drug-disease targets were inputted into the STRING
database to construct the protein-protein interaction (PPI) network,
initially comprising of 454 nodes and 9,693 edges with an average
degree of 42.5. To precisely identify central targets, we employed the
Cytohubba plugin for Maximum Clique Centrality (MCC) within
Cytoscape. Subsequent clustering analysis using the MCODE plugin
inCytoscape revealed the presence of 12moduleswithin the PPI network.
From a pool of one hundred key network targets, ten central targets were
further selected as depicted in Figure 4. Based on their degree values,
betweenness centrality (BC), and closeness centrality (CC), we
determined one hundred core targets (Figures 4A, C). As shown in
Figure 4B, clustering analysis using MCODE facilitated the construction
of a highly interconnected subnetwork that divided these targets into
twelve distinct groups. Utilizing the CytoHubba plugin, we identified the
top ten hub genes using MCC method as illustrated in Figure 4D.

3.3 Selection and analysis of key targets

The key targets identified with the highest MCC scores and
degree values include TNF, IL6, GAPDH, STAT3, HIF1A, and JUN.
To investigate the differential expression of these targets during
obstructive sleep apnea progression, we conducted an analysis of
protein and gene expression levels in human adipose tissue using the
HPA database. Our findings revealed that GAPDH exhibited the
highest gene expression levels while TNF displayed the lowest levels.
Specifically, JUN had a gene expression level of 320.5 nTPM,
STAT3 had 102.2 nTPM, and HIF1A had 62.7 nTPM (Figure
5A). Regarding protein expression patterns in adipose tissue
samples, STAT3 and HIF1A demonstrated higher scores
compared to IL6, GAPDH, TNF, and JUN which all scored zero
(Figure 5B). This suggests that STAT3 and HIF1A may play
significant roles in obstructive sleep apnea development with no

TABLE 2 Presents the pharmacokinetic parameters.

5-[(2S,3S)-7-methoxy-3-
methyl-5-[(E)-prop-1-

enyl]-2,3-
dihydrobenzofuran-2-
yl]-1,3-benzodioxole

meso-1,4-Bis-(4-
hydroxy-3-

methoxyphenyl)-
2,3-dimethylbutane

threo-
austrobailignan-

5

Isoguaiacin Kudos Galbacin

GI absorption High High High High High High

BBB permeant Yes Yes No Yes Yes No

P-gp substrate No Yes No Yes Yes Yes

CYP1A2 inhibitor Yes Yes No Yes Yes No

CYP2C19 inhibitor No Yes No No No No

CYP2C9 inhibitor No Yes No No No No

CYP2D6 inhibitor Yes No No No No No

CYP3A4 inhibitor Yes Yes No No No No

Log Kp (skin
permeation)

−4.94 cm/s −5.41 cm/s −6.26 cm/s −6.23 cm/s −6.23 cm/
s

−5.27 cm/s
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detectable protein expressions observed for other targets in
adipose tissue.

3.4 GO enrichment analysis

Gene Ontology (GO) enrichment analysis for Biological
Processes (BP), Cellular Components (CC), and Molecular
Functions (MF) was conducted on 457 potential targets to
further explore the mechanisms of ZHAST in treating OSAHS,
enriching a total of 1731 GO terms. Among these, 174 were related
to CC, 1,261 to BP, and 296 to MF, with the top 10 enriched terms

for BP, MF, and CC displayed in Figure 6A. The bar chart in
Figure 6B illustrates the terms with the highest gene counts in each
category. The analysis reveals that BP terms are primarily associated
with cytokine-mediated signaling pathways, inflammatory
responses, hypoxia responses, positive regulation of angiogenesis,
protein phosphorylation, and regulation of cell proliferation. CC
analysis indicates that the relevant components are primarily located
on the cell surface, extracellular space, and plasma membrane,
including plasma membranes, receptor complexes, and
presynaptic membranes. According to MF analysis, several
targets are involved in protein binding, protein kinase activity,
and protein homodimerization activity.

TABLE 3 Displays the toxicological parameters.

5-[(2S,3S)-7-methoxy-3-
methyl-5-[(E)-prop-1-

enyl]-2,3-
dihydrobenzofuran-2-
yl]-1,3-benzodioxole

meso-1,4-Bis-(4-
hydroxy-3-

methoxyphenyl)-
2,3-dimethylbutane

threo-
austrobailignan-

5

Isoguaiacin Kudos Galbacin

hERG Blockers 0.396 0.058 0.001 0.248 0.248 0.045

hERG Blockers
(10um)

0.566 0.418 0.175 0.624 0.624 0.241

DILI 0.918 0.896 0.993 0.277 0.277 0.079

AMES Toxicity 0.853 0.889 0.195 0.615 0.615 0.052

Rat Oral Acute
Toxicity

0.723 0.576 0.989 0.487 0.487 0.247

FDAMDD 0.705 0.846 0.028 0.636 0.636 0.787

Skin Sensitization 0.273 0.992 1 0.619 0.619 0.211

Carcinogenicity 0.87 0.968 0.163 0.719 0.719 0.21

Eye Corrosion 0.002 0.003 1 0.066 0.066 0.004

Eye Irritation 0.944 0.682 1 0.991 0.991 0.242

Respiratory 0.937 0.497 1 0.499 0.499 0.841

Human
Hepatotoxicity

0.681 0.865 0.964 0.691 0.691 0.437

Drug-induced
Nephrotoxicity

0.874 0.963 0.991 0.271 0.271 0.078

Drug-induced
Neurotoxicity

0.85 0.754 0.318 0.611 0.611 0.271

Ototoxicity 0.61 0.616 0.029 0.271 0.271 0.896

Hematotoxicity 0.606 0.918 0.83 0.137 0.137 0.153

Genotoxicity 0.494 0.975 0.996 0.779 0.779 0.029

RPMI-8226
Immunitoxicity

0.149 0.202 0.02 0.044 0.044 0.025

A549 Cytotoxicity 0.313 0.195 0 0.222 0.222 0.089

Hek293 Cytotoxicity 0.456 0.761 0.002 0.8 0.8 0.17

BCF 1.122 2.104 0.893 1.246 1.246 1.187

IGC50 3.558 5.307 3.169 3.644 3.644 4.248

LC50DM 4.434 6.898 5.744 4.331 4.331 5.868

LC50FM 4.062 6.614 3.955 4.024 4.024 4.897
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3.5 KEGG analysis

Common drug-disease targets were subjected to KEGG pathway
enrichment analysis using DAVID. After filtering for corrected
p-values less than 0.05, a total of 203 signaling pathways were
identified (Table 1). The top 20 pathways were selected on
KEGG enrichment analysis (Figures 7A, C) and were selected to
construct the C-T-P network (Figure 7D). A Sankey diagram was
created using a free online platform (https://www.bioinformatics.
com.cn) to visualize the relationships between enriched pathways
and targets (Figure 7B). KEGG pathway enrichment analysis
suggests that ZHAST’s pharmacological mechanisms in OSAHS

treatment may primarily involve pathways related to cancer,
hepatitis B, the MAPK signaling pathway, AGE-RAGE signaling
in diabetic complications, calcium signaling, and lipid and
atherosclerosis pathways. Furthermore, we visualized the most
closely related pathways (MAPK and AGE-RAGE signaling
pathway in diabetic complications), with results presented in
Figure 8; Table 1.

3.6 ADME and toxicity analysis

The absorption, distribution, metabolism, excretion, and
toxicity (ADMET) properties of ten selected drugs were
assessed using SwissADME (https://www.swissadme.ch/) and
ADMETlab (https://admet.scbdd.com/). The results are
presented in Tables 2, 3.

3.7 Molecular docking

Molecular docking was performed between six core targets and six
core compounds, where the Affinity (kcal/mol) values represent the
binding strength. Lower values indicate more stable ligand-receptor
interactions, as shown in Figure 10. Finally, the Discovery Studio
software was used to analyze and visualize the docking results. The
binding energies with the best scores for each target protein were
plotted, as illustrated in Figures 9, 10. Observed binding energies from
the docking ranged between −1.2 and −9.4 kcal/mol. Results indicated
that among the six key targets, GAPDH exhibited the lowest binding
energy with the compounds. Of the five ligands docked with GAPDH,
Enoxolone demonstrated the lowest energy, at −9.4 kcal/mol.
Enoxolone was able to form a hydrogen bond with the active pocket
amino acid residue ARG13, as shown in Figures 9A1, 9A2. In studies
involving HIF1A, Enoxolone’s binding energy was notably low
at −4.4 kcal/mol, primarily interacting through hydrogen bonds with
residues LYSB753 and LYSB756, as illustrated in Figures 9B1,
9B2.Additionally, the binding site of IL6 demonstrated affinity for
cryptotanshinone, with a binding energy of −7.7 kcal/mol,
predominantly achieved through hydrogen bonding with the
PHEA74 residue, as depicted in Figures 9C1, 9C2. In molecular
docking analyses, the interaction between JUN and cryptotanshinone
showed substantial affinity, with the lowest energy recorded
at −5.8 kcal/mol, facilitated by a hydrogen bond at ARGJ286, as
illustrated in Figures 9D1, 9D2.The interaction between STAT3 and
cryptotanshinone exhibited a minimal binding energy of −8.6 kcal/mol,
primarily supported by hydrogen bonding at the VALA490 residue
(Figures 9E1, 9E2). Similarly, the binding affinity between TNF and
Thiocyanic Acid was notably high, at −9.1 kcal/mol, largely due to a
hydrogen bond involving the ALAB18 residue (Figures 9F1, 9F2).
Notably, cryptotanshinone and Enoxolone demonstrated significant
binding affinity with target proteins, suggesting that these compounds
could play a critical role in the therapeutic effects of ZHAST.

3.8 Molecular dynamics simulation

To ascertain the stability of the protein-ligand complex, protein-
drug molecular complex, molecular dynamics (MD) simulations were

FIGURE 9
Docking patterns of key targets with specific active compounds.
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conducted. A 100 ns MD simulation was performed on the GAPDH-
Enoxolone complex, analyzing molecular mobility, trajectories, and
conformational changes based on the docking data. Initially, the Root
Mean Square Deviation (RMSD) data for GAPDH and Enoxolone were
extracted during the simulation. As depicted in Figures 11A, 12A, the
RMSD curves indicate that following 40 ns, the RMSD values for
GAPDH and Enoxolone stabilized, suggesting that the protein-ligand
complex achieved a relatively stable state. Based on this observation, the
simulation trajectories from 40 to 100 ns were selected for further
sampling analysis.Furthermore, a conformation was saved every 1 ns
during the simulation, totaling 100 conformations, which were
subsequently superimposed. As shown in Figures 11B, 12B, these
superimposed conformations demonstrated good consistency,
indicating that the conformations of GAPDH protein and the
Enoxolone molecule maintained high stability throughout the
simulation. Concurrently, the small molecule was able to stably bind
to the protein’s active site. Upon detailed analysis of the simulation
trajectory, the RootMean Square Fluctuation (RMSF) data for GAPDH
protein and the Enoxolone molecule were extracted, and the
corresponding B-factors were calculated (as illustrated in Figures
11C, 12C). From the RMSF and B-factor graphs, it is evident that
the overall structure of the GAPDHprotein exhibits low flexibility (with
RMSF values below 2.0 Å for most regions), indicating that the protein
structure maintained high stability throughout the simulation. Notably,
the RMSF values near the binding site of the Enoxolone molecule are
also low, further corroborating the exceptional stability of the region
where themolecule binds during the simulation. Compared with RMSF
of the protein in the protein - native ligand complex, the RMSF of the
protein in the protein - drug molecule complex is lower, indicating that
the protein structure is more stable (as illustrated in Figures 13, 14).

4 Discussion

Obstructive sleep apnea-hypopnea syndrome (OSAHS) is a
prevalent sleep disorder characterized by recurrent upper airway
obstructions and apneas during sleep (Schweitzer et al., 2023).
Untreated OSAHS patients are at an elevated risk of developing
cardiovascular diseases, diabetes, and other health complications
(Chen et al., 2016). Current treatment options encompass

Continuous Positive Airway Pressure (CPAP) therapy and
lifestyle modifications; however, their suitability varies among
patients. Therefore, it is crucial to explore additional therapeutic
alternatives (Wang N. et al., 2024).

“The traditional Chinese medicine formula
ZhihanAnShenTang, developed based on the principles of
traditional Chinese medicine, holds potential for individuals
suffering from OSAHS. However, a comprehensive
understanding of its bioactive components and their mechanisms
of action is still lacking. Therefore, our study aims to employ
network pharmacology and molecular docking strategies to
investigate the potential compounds in ZHAST and elucidate
their mechanisms of action in treating OSAHS.”

Utilizing the TCMSP database, we conducted a screening of
315 active compounds in ZHAST and employed the Swiss Target
Prediction web server to predict 1,252 targets. Among these targets,
harmine, cryptotanshinone, thiocyanic acid, liquiritigenin, (2R)-7-
hydroxy-2-(4-hydroxyphenyl)-2,3-dihydrochromen-4-one, and
enoxolone were identified as active compounds associated with a
majority of targets. Previous studies have demonstrated the efficacy
of these compounds in treating OSAHS. Helenalin is a naturally
occurring sesquiterpene lactone that exhibits diverse
pharmacological activities including antitumor, antiviral, and
neuroprotective effects (Zhao et al., 2021). Recent investigations
have indicated that harmine effectively inhibits the migration and
viability of MRC-5 cells induced by TGF-β1 (Gong et al., 2024). This
inhibition is achieved through apoptosis induction in these cells and
suppression of F-actin expression which prevents phenotypic
transformation of pulmonary fibroblasts into myofibroblasts - a
crucial process for pulmonary disease progression. According to Li
et al., CPT functions by modulating gut microbiota and bile acid
metabolism, specifically inhibiting epithelial-mesenchymal
transition (EMT) and inflammatory responses, thereby reducing
the deposition of extracellular matrix during pulmonary injury (Li
et al., 2023). Liquiritigenin, a flavanone compound extracted from
licorice (Glycyrrhiza), is renowned for its diverse biological
activities, including anti-inflammatory and anti-cancer properties
(Liu et al., 2024; Wang et al., 2012b). This compound modulates
various cellular signaling pathways that impact cell proliferation,
migration, and apoptosis. Studies have demonstrated that

FIGURE 10
Binding affinities (kcal/mol) of key targets and active compounds in traditional Chinese medicine.
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liquiritigenin inhibits the migration of human lung adenocarcinoma
A549 cells by downregulating proMMP-2 expression and
suppressing the activation of the PI3K/Akt signaling pathway
(Wang et al., 2012b). Its significant anti-inflammatory and anti-
cancer properties were highlighted in Luo’s study where it exhibited
efficacy in inducing apoptosis, causing G2/M cell cycle arrest, and
inhibiting migration in A549 lung cancer cells through modulation
of various signaling pathways (Luo et al., 2021). 18β-Glycyrrhetinic
acid significantly impacts intracellular mechanisms such as
increasing levels of reactive oxygen species (ROS) and regulating
signaling pathways like MAPK, STAT3, and NF-κB which are
crucial for managing the proliferation and metastasis of lung
cancer cells (Ji et al., 2021). Therefore, ZHAST’s multiple active
compounds can effectively treat OSAHS through diverse
mechanisms.IL-6 is a multifunctional cytokine that is commonly
associated with inflammation and immune responses, produced by
various cell types, and plays a crucial role in autoimmune diseases
and chronic inflammatory conditions. IL-6 serves as a bridge
between infections, stress responses, and both acute and chronic
inflammation. In pulmonary diseases, particularly in inflammation
associated with OSAHS, IL-6 promotes inflammatory and tissue

damage responses (Fiedorczuk et al., 2023). IL-6 intensifies the
progression of pulmonary diseases by activating immune cells in
the lungs and promoting the release of inflammatory cytokines.
Under pulmonary pathological conditions, particularly in cancer or
inflammatory diseases, GAPDH’s role extends beyond its metabolic
functions (Fu et al., 2023). Studies indicate that GAPDH may
regulate cell proliferation and apoptosis, which are key processes
in cancer development and progression. For instance, existing
research demonstrates that GAPDH exhibits apoptotic and
antiproliferative potential against lung cancer cells in both
in vitro and in vivo models (Sakthidhasan et al., 2022). Within
the context of pulmonary cells, STAT3 is implicated in responding
to environmental stressors and inflammatory signals prevalent in
respiratory diseases. Activation of STAT3 can influence the
expression of multiple genes involved in inflammatory responses,
cell proliferation, and survival—critical processes for the
pathogenesis of lung diseases (Wang et al., 2023). In OSAHS
(obstructive sleep apnea-hypopnea syndrome), intermittent
hypoxia—a hallmark of this condition—can activate pathways
including STAT3, playing a role in cellular response to hypoxic
stress. Furthermore, Bao (2020) discussed the role of

FIGURE 11
Molecular Simulation Results of protein-proligand complex. (A) RMSD; (B): Overlay of 100 conformations sampled every 1 ns during the 100 ns
molecular dynamics simulation. (C): RMSF analysis of the protein during the 40–100 ns segment of the molecular dynamics simulation, with interacting
amino acid positions marked in green. (D): B-factor distribution calculated from the MD simulation trajectory, indicating regions of high flexibility in red
and low flexibility in blue; (E) Ligand RMSF; (F, G) The connection between ligand and protein. (H, I) The three-dimensional schematic diagram of the
binding mode of small molecules and protein after molecular dynamics optimization; (J) MMGBSA.
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STAT3 mediating the effects of intermittent hypoxia on cardiac
fibrosis, highlighting variable impacts from STAT3 activation across
different tissue types. HIF-1α is a transcription factor that plays a
central role in cellular responses to hypoxic environments (Bao et al.,
2020). Comprising two subunits (HIF-1α and HIF-1β), HIF-1α is
degraded under normoxic conditions but stabilizes and activates
various gene expressions under hypoxic conditions. These genes are
involved with regulating erythropoiesis, energy metabolism, and cell
survival (Mesarwi et al., 2021). The activity of HIF-1 within
pulmonary cells is crucial for lung health—particularly regulating
oxygenation status—and for managing pulmonary diseases such as
fibrosis inflammation angiogenesis through gene activation (Lin
et al., 2020).

Functional analysis based on Gene Ontology (GO) reveals that
cytokine-mediated signaling pathways, inflammatory responses,
hypoxic responses, positive regulation of angiogenesis, protein
phosphorylation, and regulation of cell proliferation are
implicated in the therapeutic action of ZHAST in treating

OSAHS. Research indicates that hypoxic responses are a
prominent feature of OSAHS, contributing significantly to its
pathophysiology. Within the context of OSAHS, protein
phosphorylation plays a critical role in mediating cellular
responses to intermittent hypoxia, which is a hallmark of this
condition. Intermittent hypoxia can lead to oxidative stress and
inflammatory responses involving the activation of signaling
pathways dependent on the phosphorylation of key proteins (Yi
et al., 2022). For instance, Zhao (2021) discusses how TNF-α
promotes insulin resistance via the TNF-α/IKKβ/IKβ/NF-κB
signaling pathway—a process heavily reliant on the
phosphorylation state of these proteins (Zhao et al., 2021). This
pathway example illustrates how phosphorylation influences
inflammatory pathways potentially exacerbating metabolic
disturbances in OSAHS. KEGG enrichment analysis suggests that
the pharmacological mechanisms by which ZHAST treats OSAHS
may primarily involve pathways such as cancer, hepatitis B, MAPK
signaling, AGE-RAGE signaling in diabetic complications calcium

FIGURE 12
Molecular Simulation Results of protein-drugmolecular complex. (A) RMSD; (B): Overlay of 100 conformations sampled every 1 ns during the 100 ns
molecular dynamics simulation. (C): RMSF analysis of the protein during the 40–100 ns segment of the molecular dynamics simulation, with interacting
amino acid positions marked in green. (D): B-factor distribution calculated from the MD simulation trajectory, indicating regions of high flexibility in red
and low flexibility in blue; (E) Ligand RMSF; (F, G) The connection between ligand and protein. (H, I) The three-dimensional schematic diagram of the
binding mode of small molecules and protein after molecular dynamics optimization; (J) MMGBSA.

Frontiers in Chemistry frontiersin.org16

Li et al. 10.3389/fchem.2025.1524087

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2025.1524087


signaling lipid and atherosclerosis neurotrophic signaling. The
MAPK (Mitogen-Activated Protein Kinase) signaling pathway is
a crucial mechanism in cellular physiology responsible for
transmitting extracellular signals to mediate cellular responses to
stress inflammation and developmental cues. This pathway involves
activating a series of protein kinases that through phosphorylation
activate transcription factors regulating gene expression thereby
influencing cell growth differentiation and survival (Xu et al.,
2021). Within the context of OSAHS the MAPK pathway plays a
crucial role in responding to intermittent hypoxia—a hall.

5 Conclusion

In this study, we explored the therapeutic mechanisms of the
traditional Chinese medicine formula ZHAST for OSAHS using
network pharmacology and molecular docking techniques.Our
findings demonstrate that the active components in ZHAST
interact with multiple key targets, influencing the
pathophysiological processes of OSAHS. Particularly, by
modulating signaling pathways related to hypoxia response
and protein phosphorylation, it exhibits potential therapeutic

FIGURE 14
Shows the boxplot of GADPH gene expression distribution in lung tissue and normal tissue. The horizontal coordinate represents the different
sample groups, and the vertical coordinate represents the distribution of the expression of the gene. Different colors represent different groups. The
asterisk in the upper left represents the significance P-value, where * means that the P-value is less than 0.05, ** means that the P-value is less than 0.01,
*** means that the P-value is less than 0.001, and the number of asterisks represents the degree of significance.

FIGURE 13
(A)MMGBSA of protein-proligand complex. (B)MMGBSA of protein-drug molecular complex. (C) The binding free energy of the original ligand and
the protein is decomposed to the energy of each amino acid residue. (D) The binding free energy of the drug and the protein is decomposed to the energy
of each amino acid residue.
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effects. These discoveries provide a scientific basis for the use of
ZHAST in treating OSAHS and unveil its potential therapeutic
mechanisms. In summary, this research highlights the
pharmacological substances and mechanisms of action of the
traditional Chinese medicine formula ZHAST in treating
OSAHS. Future studies may further explore additional active
components and their mechanisms of action, providing a more
robust scientific foundation for subsequent research. Although
some important preliminary findings were obtained, this study
still has some limitations. To investigate the involvement of
ZHAST in the treatment of OSA, we used only advanced
bioinformatics and computational techniques. Therefore, the
reliability and accuracy of the predictions need to be further
in vivo animal experiments verified.
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