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Therapeutic strategies for Alzheimer’s disease (AD) often involve inhibiting
acetylcholinesterase (AChE), underscoring the need for novel inhibitors with
high selectivity and minimal side effects. A detailed analysis of the protein-
ligand pharmacophore dynamics can facilitate this. In this study, we
developed and employed dyphAI, an innovative approach integrating machine
learning models, ligand-based pharmacophore models, and complex-based
pharmacophore models into a pharmacophore model ensemble. This
ensemble captures key protein-ligand interactions, including π-cation
interactions with Trp-86 and several π-π interactions with residues Tyr-341,
Tyr-337, Tyr-124, and Tyr-72. The protocol identified 18 novel molecules from
the ZINC database with binding energy values ranging from −62 to −115 kJ/mol,
suggesting their strong potential as AChE inhibitors. To further validate the
predictions, nine molecules were acquired and tested for their inhibitory
activity against human AChE. Experimental results revealed that molecules, 4
(P-1894047), with its complexmulti-ring structure and numerous hydrogen bond
acceptors, and 7 (P-2652815), characterized by a flexible, polar framework with
ten hydrogen bond donors and acceptors, exhibited IC₅₀ values lower than or
equal to that of the control (galantamine), indicating potent inhibitory activity.
Similarly, molecules 5 (P-1205609), 6 (P-1206762), 8 (P-2026435), and 9 (P-
533735) also demonstrated strong inhibition. In contrast, molecule 3 (P-
617769798) showed a higher IC50 value, and molecules 1 (P-14421887) and 2
(P-25746649) yielded inconsistent results, likely due to solubility issues in the
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experimental setup. These findings underscore the value of integrating
computational predictions with experimental validation, enhancing the reliability
of virtual screening in the discovery of potent enzyme inhibitors.
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1 Introduction

The global average life expectancy reached 73.4 years in 2019,
with healthy life expectancy increasing by 8% due to reduced
mortality rates (Mortality and global health estimates; Li et al.,
2023). However, the length of time spent on health issues
remained constant. This raises challenges to global health
systems due to the prevalence of age-related diseases like
Alzheimer’s disease, which is the seventh leading cause of
death globally and impacts over 416 million individuals
(Prince et al., 2016; Anonymous, 2021a; Anonymous, 2021b;
Gustavsson et al., 2023). Factors such as environmental
conditions, genetics, age (Silva et al., 2019; Stępkowski et al.,
2020), and others contribute to Alzheimer’s disease (Breijyeh and
Karaman, 2020; Scheltens et al., 2021), necessitating thorough
research and efficient management to improve the wellbeing of
the elderly population (Crestini et al., 2022; Whitfield et al., 2023;
Delacourte, 2006; Jomova et al., 2023; Tolar et al., 2024;
Vojtechova et al., 2022; Korczyn and Grinberg, 2024).
Researchers have proposed three fundamental hypotheses to
explain the origins of Alzheimer’s disease (Leng and Edison,
2020; Wang et al., 2023), including the amyloid hypothesis,
copper toxicity (Ejaz et al., 2020), and cholinergic dysfunction
(Wilkinson et al., 2004; Camps and Munoz-Torrero, 2005;
Giacobini et al., 2022). The final hypothesis suggests reduced
levels of the neurotransmitter acetylcholine in brain areas linked
to cognition contribute to Alzheimer’s disease progression
(Amenta et al., 2001; Carotenuto et al., 2022). Consequently,
pharmacological interventions aimed at elevating acetylcholine
(ACh) concentration represent a promising avenue for potential
palliative treatment.

Acetylcholinesterase (AChE) is a hydrolase enzyme that breaks
down ACh (Walczak-Nowicka and Herbet, 2021) through
hydrolysis. Figure 1C illustrates this process (Komersová et al.,
2005; Aroniadou-Anderjaska et al., 2023). Inhibiting AChE can
maintain elevated levels of ACh by obstructing its degradation.
Several compounds have demonstrated the ability to elevate ACh
levels through AChE inhibition (Carotenuto et al., 2022; Akhoon
et al., 2020; Marucci et al., 2021), indicating a potential avenue for
enhancing Alzheimer’s disease treatment. However, these
compounds often cause side effects (Akhoon et al., 2020).
Finding more selective and powerful inhibitors is crucial to
reduce these side effects, which are likely caused by their non-
specific interactions with other enzymes.

The human acetylcholinesterase (huAChE) protein consists of
five domains: S1, S2, S3, S4, and the Ω-loop (Cheng et al., 2017;
Cheung et al., 2012; Dvir et al., 2010). The active site of huAChE
exhibits a gorge-like structure (Figure 1A), with approximate
dimensions of 20 Å in height, 5 Å in width, and 5 Å in length
(Moghadam et al., 2021). The active site has two subsites: the

peripheral anionic site (PAS) and the catalytic anionic site (CAS)
(Figure 1B). The CAS has four areas: the acyl pocket, the catalytic
triad, the oxyanion hole, and the anionic site (Wlodek et al., 1997).
The PAS acts as a bridge for ligands to enter and leave the CAS.
These areas are crucial for the acetylcholine hydrolysis reaction
(Figures 1C, D) (Silman and Sussman, 2017).

Research on the steric and electronic properties of AChE
inhibitors has been extensive (Wu et al., 2020; Zhou et al., 2017;
Jang et al., 2018), but there is a lack (Sanson et al., 2011) of
comprehensive study across all AChE inhibitor families (Akhoon
et al., 2020; Gao et al., 2022; Pérez-Sánchez et al., 2021). While some
studies have examined the conformational plasticity of protein-
ligand interactions using advanced simulation methods (Lazim
et al., 2020; Heilmann et al., 2020; Kaynak et al., 2022; Yasuda
et al., 2020; Célerse et al., 2024), it is not common to use energetically
unfavorable conformations to find protein inhibitors.
Pharmacophore models (Langer et al., 2006) are widely used in
drug discovery techniques (Qing et al., 2014; van Drie, 2012;
Khedkar et al., 2007), but ensemble pharmacophore modeling
can further harness their potential by combining multiple
complex-based models. Artificial intelligence and machine
learning models have gained significance in drug discovery
(Carracedo-Reboredo et al., 2021; Dara et al., 2022; Li et al.,
2024; Geng et al., 2024; Gupta et al., 2021), potentially playing a
crucial role in virtual screening procedures.

Here, we proposed a workflow to find new acetylcholinesterase
inhibitors by identifying key molecular features needed to target the
huAChE enzyme specifically. This approach involved an extensive
in silico protocol (illustrated in Figures 2A, B, Supplementary
Figures S1–S6), that included database management, ligand
clustering, RMSD calculations, induced-fit docking, molecular
dynamics simulations, TRAPP physicochemical analyses (Kokh
et al., 2013), ensemble docking, pharmacophore modeling, and
machine learning techniques. The method involved looking for
different structures in new inhibitors, exploring the space of
receptor conformations, combining computer and lab results,
using machine learning models to find new inhibitors, and
choosing which inhibitors to test in experiments.

We identified nine distinct inhibitor families, each associated
with a predictive machine learning model, a ligand-based
pharmacophore model, and an ensemble pharmacophore model
derived from ligand-receptor complexes. The models enabled virtual
screening of the ZINC22 database (Tingle et al., 2023), leading to the
identification of 18 molecules with significant inhibitory potential
against AChE.

The developed methodology and models, along with the
insights gained, provide valuable contributions to the field and
serve as a robust foundation for future research aimed at
designing novel therapeutics for Alzheimer’s disease and
related conditions.
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2 Materials and methods

2.1 Yasser number one (YN1) affinity ranking

The affinity ranking of YN1 relies on the dynamic characteristics
of the biological system, requiring the integration of computational
and experimental data. A comprehensive workflow diagram
illustrating this process is provided in Supplementary Figure S3.

2.1.1 Similarity clustering of inhibitor structures
Inhibitors with an IC50 1 ≤ 99,000 nM against the huAChE

were extracted from the Binding Database (BD) (https://www.
bindingdb.org/) in isomeric SMILES format. These inhibitors
were entered into the LigPrep tool of the Schrodinger 2023.
1 suite (Schrodinger, LCC) to generate 3D structures using a
pH of 7.4 ± 0.2 (Wessler et al., 2015).

We conducted structural similarity clustering of the molecules
from the BD using the Canvas module within the Schrödinger
2023.1 suite (Schrödinger, LCC), employing specific settings
including 64-bit precision, radial fingerprint type, Tanimoto
similarity criterion, and the average linkage method.
Subsequently, utilizing the Canvas results and the Kelley penalty
value, we determined the optimal number of clusters, crucially

balancing between over-clustering and under-clustering to ensure
the resulting clusters meaningfulness.

A total of 70 ligands clusters were obtained from the BD. For
each cluster, we computed statistical metrics including the average
IC50, standard deviation of IC50, variation coefficient of IC50, and
cluster size. These statistical parameters, alongside other selection
criteria, were used to select 9 representative clusters for
further analysis.

2.1.2 Induced-fit docking of representative
molecules from inhibitor clusters

To generate the Glide grid for induced-fit docking box, RMSD
paired calculations were employed (for more information, refer to the
Supplementary Material on RMSD paired calculations). The PDB
files corresponding to the UNIPROT code P22303 of huAChE were
downloaded, resulting in a total of 61 structures. Structures that were
not wild-type, lacked protein-ligand complexes with covalent
ligands, or had a resolution higher than 3.2 Å were excluded.
This filtering process left a total of 18 structures with the
following PDB codes: 4BDT, 4EY5, 4EY6, 4EY7, 4M0E, 4M0F,
5FOQ, 6CQU, 6F25, 6NEA, 6O4W, 6O4X, 6O5R, 6O5V, 6O50,
6O52, 6U3P, and 6U34. Employing RMSD pocket residues, paired
calculations facilitated the identification of the key residues

FIGURE 1
Human acetylcholinesterase’s active site: (A) structure and surface (B) active site residues with subsites highlighted. (PDB entry: 4EY6) (C)
Acetylcholine hydrolysis reaction (D) Catalytic cycle of the acetylcholinesterase enzyme.
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comprising the active site (key pocket), including Tyr-72, Asp-74,
Trp-86, Gly-120, Gly-121, Tyr-124, Tyr-133, Glu-202, Ser-203, Trp-
286, Phe-295, Phe-297, Tyr-337, Phe-338, Tyr-341, His-447, and
Gly-448. The box was manually positioned at the center of the active
site using a centroid formed by these residues.

Induced-fit docking validation was carried out using
calculations for the huAChE protein-ligand system involving
acetylcholine and galantamine molecules. We utilized the protein

crystal structure with PDB code 4EY6 and addressed any missing
residues using the Primemodule within the Schrödinger 2023.1 suite
(Schrödinger, LCC). Protonation states were assigned using
PROPKA at a pH of 7.4 (Wessler et al., 2015). Energetic
minimization of the crystal structures was carried out, restricting
the maximum RMSD of heavy atoms to 0.18 Å. Standard protocols
were applied with specific settings: redocking within 30 kcal/mol and
20 structures overall, employing XP precision, utilizing the OPLS3e

FIGURE 2
(A) Simplified representation of the methodology with illustrations. 4,643 known acetylcholinesterase (AChE) inhibitors were downloaded and
categorized into 70 clusters or families based on theirmolecular structure. From these families, nine were selected for further analysis. The representative
ligands from each of the nine families were docked into the AChE receptor employing induced-fit docking. Nine 50 ns MD simulations were performed
based on the docked poses, along with an additional simulation of the AChE-galantamine complex. From these simulations, the protein’s
conformations were taken out and used in an ensemble dockingmethod, where compounds from each of the nine families were docked separately. The
docking scores and experimental IC50 values were used to make an affinity ranking that showed which compounds from each family were the most
active. These active compounds were used to generate machine learning models and ligand-based pharmacophore models. For the receptor-based
method, the most active compound from each family was used to get the active site’s conformations from 500 ns of MD simulations. These active site
conformations were used to generate complex-based pharmacophore models, and the pharmacophore models were combined to create a
pharmacophoremodel ensemble. (B) Simplified representation of the virtual screeningmethodologywith illustrations. A commercial molecule database,
ZINC22 (Tingle et al., 2023) was utilized, and it was filtered sequentially using machine learning models, ligand-based pharmacophore models, and
ensemble pharmacophore models based on ligand-receptor complexes. Obtained molecules are candidates to be inhibitors.
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force field, setting receptor van der Waals scaling to 0.5, ligand van
derWaals scaling to 0.5, refining residues within 5 Å of ligand poses,
enabling optimization of side chains, setting the maximum number
of poses to 20, and sampling ring conformations within an energy
window of 2.5 kcal/mol.

Following selection of representative molecules, based on
molecular structure (cluster centroid), from the nine cluster
families (refer to Section 2.1.1) were extracted. Subsequent
induced-fit docking calculations were conducted on these
molecules, employing the huAChE key pocket residues and
adhering to the previously outlined docking settings.

2.1.3 50 ns MD simulation of protein-ligand
complexes of representative molecules from
clusters of human acetylcholinesterase inhibitors
and conformational sampling

The poses corresponding to the 9 representative molecular
structures associated with families C31, C4, C19, C50, C35, C20,
C36, C42, and C23 were extracted from the induced-fit calculations.
In addition, the experimental pose of the galantamine ligand from
crystal 4EY6 was also extracted. These 10 poses were used to carry
out MD simulations with a production phase duration of 50 ns. The
complete molecular dynamics procedure is reported in
Supplementary Material.

The 10 trajectories obtained from the 50 ns molecular dynamics
simulations were used to extract poses of the active site. The
backbone RMSD value was monitored for the key pocket (refer
to Section 2.1.2), and Trp-236, Glu-334, Ala-204, Gly-122
throughout the entire trajectory.

The RMSD values of: average �xRMSD, average plus, and minus
twice the standard deviation �xRMSD ± 2δ were computed.
Additionally, both the two smallest lRMSD, l + 1RMSD and the two
largest hRMSD, h − 1RMSD values were found. This process yielded a
total of 7 conformations per trajectory.

The seven conformations were analyzed using paired RMSD (for
more information, refer to the Supplementary Material on RMSD
paired calculations). Based on the RMSD, five conformations were
selected from the original seven conformations for each trajectory.

2.1.4 Ensemble docking and affinity ranking
The 50 key conformations were used as input for an ensemble

docking procedure, where all compounds belonging to the key
clusters 31, 4, 19, 50, 35, 20, 36, 42, and 23 were docked. The
box was located manually in the active site center using a centroid
composed of key pocket (refer to Section 2.1.2). Sequential docking
of Glide HTVS, Glide SP, and Glide XP was applied. for docking the
Epik module to state penalties was utilized.

The XP GScore values obtained from ensemble docking and the
experimental inhibition values (IC50) of the compounds in key
clusters were used to design an affinity score to rank the compounds
in each cluster according to their experimental and computer-
predicted inhibition capacities. Hence, the following affinity
score, called Yasser’s number one (YN1), was employed:

LEi � −XPGScorei
MWi

i � 1, 2, . . . ., N

YN1i � LEi − LEmin

LEmax − LEmin
+ 1 − log10 IC50i − log10 IC50min

log10 IC50max − log10 IC50min
( )

where LEi is ligand efficiency,MWi is molecular weight, log10 IC50i
is the log base 10 of IC50, max is the maximum value inside the
cluster, min is the minimum value inside the cluster, and N is the
number of molecules of the cluster.

2.2 Machine learning modeling to first
accurate and fast screening

A schematic of this procedure is presented in
Supplementary Figure S4.

2.2.1 Data splitting for training and testing
All molecules with an XP GScore value from ensemble docking

were considered active molecules in this stage. Thus, active
molecules were extracted from clusters 31, 4, 19, 50, 35, 20, 36,
42, and 23. These active molecules were randomly divided into two
groups: 20% for testing and 80% for training. The training and
testing sets of active molecules were used separately for decoy
calculation, using the DUDE (Database of Useful Decoys:
Enhanced) package, generating approximately 50 decoys per
active molecule (Mysinger et al., 2012). Consequently, two
libraries were obtained, one for testing and another for training,
each containing actives and approximately 50 decoys for every
active molecule.

2.2.2 Clustering of molecular descriptors for
decoys from the training library

A calculation of molecular descriptors was performed using
RDKit for the decoys from the training library (RDKit: Open-source
cheminformatics) (Landrum, 1997). A correlation analysis of the
molecular descriptors was conducted, in which the correlation
matrix was calculated, and the absolute value of each Pearson
correlation coefficient was computed. Next, a feature scaling of
the molecular descriptors was carried out, and variances of the
scaled variables were calculated. It was considered that two variables
are correlated if they have an absolute value of Pearson correlation
coefficient greater than or equal to 0.9. To address correlated
variables, the variable with the highest variance was chosen, and
the rest were discarded. As a result, molecular descriptors that are
not correlated were obtained.

The uncorrelated molecular descriptors were used to perform
a k-means clustering, where the desired number of clusters was
set equal to the number of actives in the training library. Later,
the decoy corresponding to the centroid of each cluster was
extracted, so that the centroids were used to generate a
balanced training dataset.

2.2.3 Training machine learning models
The actives and decoys from the balanced training dataset were

taken, molecular descriptors were calculated using RDKit (RDKit:
Open-source cheminformatics), and a correlation analysis was
conducted. Then, a 5-fold cross-validation was performed for
hyperparameter optimization using the following binary
classification algorithms: logistic regression, support vector
machine, decision trees, and random forests. Optuna was
employed for optimization, aiming to find hyperparameter
configurations that maximize the ROC-AUC. Once the optimal
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hyperparameters were determined, the four algorithms were trained
using the complete balanced dataset.

2.2.4 Testing machine learning models
The actives and decoys from the unbalanced test dataset were

taken, and molecular descriptors were calculated using RDKit.
Correlated variables found during training were eliminated. The
four classification algorithms were then tested with the
test molecules.

2.3 Ligand-based pharmacophore modeling

In the generation of a ligand-based pharmacophore model, both
active molecules and decoys are essential components. Active
molecules, identified by a YN1 score equal to or exceeding 1,
were selected. Decoys corresponding to the identified active
molecules were generated using the DUDE approach, resulting in
the production of 50 decoys per active compound (Mysinger
et al., 2012).

Ligand-based pharmacophore modeling was configured to
identify the best alignment and the most common features. A
target of 50 conformers was set, while the number of features in
the hypothesis ranged from 3 to 6. The threshold percentage of
actives required to match a hypothesis was established at 50%. The
scoring function employed was the Phase Hypo Score. All
calculations were conducted using the Phase module within the
Schrödinger 2023.1 suite.

A schematic of this procedure is presented in
Supplementary Figure S5.

2.4 Ensemble complex-based
pharmacophore modeling

For each of the nine molecular dynamics (MD) trajectories,
encompassing 500 nanoseconds each, both stable and unstable
conformations of the active site were identified. These
conformations were subsequently utilized to construct complex-
based pharmacophore models by employing the ‘Develop
Pharmacophore Model’ tool within the Schrodinger Phase
module. Whilst default settings were initially applied, adjustments
were made to the maximum number of features and mandatory
features to refine and optimize the receiver operating characteristic-
area under the curve (ROC-AUC) values.

A schematic of this procedure is presented in
Supplementary Figure S6.

2.4.1 Conformational clustering of ligand poses
from ensemble docking

The compounds with the highest YN1 score were selected for
each family, totaling 9 compounds. The poses of these selected
compounds, acquired through ensemble docking, were employed in
conformational clustering using Schrödinger 2023.1’s Conformer
Cluster tool. The clustering used the average linkage method, atomic
RMSD, and specified comparison regions involving Heavy atoms +
OH, SH.We identified the most frequently observed pose among the
various poses obtained from ensemble docking for each of the

9 ligands. These 9 poses were used to carry out MD simulations
with a production phase duration of 500 ns, using the simulation
procedure reported in Supplementary Material.

2.4.2 TRAPP calculations and extraction of active
site conformations from 500 ns MD simulations

The RMSF values for heavy atoms (backbone and side chain)
were calculated for active site residues, key pocket (refer to Section
2.1.2). These RMSF values were sorted from highest to lowest. From
each simulation, the 6 residues with highest RMSF values were
selected for analysis.

The heavy atoms RMSD for the individual 6 active site residues,
backbone RMSD for the whole protein, backbone RMSD for the
active site residues, and RMSD for ligand heavy atoms were
calculated for all MD simulations. An exponential moving
average (EMA) with a period of 5,000 was computed for the
9 RMSD data sets, each consisting of 50,000 frames. A 5000-
period was chosen for the EMA to maintain a 1:10 ratio with the
total number of frames. To normalize the EMA values to a range
between 0 and 1, the following process was applied: the smallest
value in the dataset was identified and subtracted from each value,
shifting the range so that the minimum became zero. Then, each
adjusted value was divided by the range of the dataset, calculated as
the difference between the maximum and minimum values. The
normalized moving average was used to compute the numerical
derivative. This was done by estimating the absolute value of the
derivative at a given point as the difference between the function
values at that point and at a slightly larger point, divided by the
distance between the two points. Heatmaps were then generated
using both the normalized moving average and the numerical
derivative.

Moreover, graphs were generated utilizing the RMSD
normalized moving average and numerical derivative to
emphasize regions exhibiting a moving average and numerical
derivative exceeding 0.6. The concurrent utilization of the
moving average and numerical derivative facilitated the
identification of time intervals where both stable and unstable
conformations were observed. These graphs were crafted using
MATLAB software, and the accompanying scripts are detailed in
Supplementary Data 2.

The TRAPP-Analysis clustering tool was used to extract
frames from time ranges of stable conformations (Yuan et al.,
2020). On the other hand, the TRAPP-Pocket tool was used to
extract frames from unstable conformations (Kokh et al., 2013).
For TRAPP-Analysis the parameter “cluster” was set to 3 Å,
“kmeans” was set to 3 Å, “zmax” was set to 8 Å, and “bb” was set
of “on”. For TRAPP-Pocket the parameter “radius” was set to 5 Å,
the active site residues were entered manually using the
17 residues previously identified, and the other settings were
retained the same as the AR-TRAPP example found in the
TRAPP example folders. The TRAPP-pocket python scripts
were edited to enable the computing of 50,000 frames.

The frames obtained from clustering with TRAPP-Analysis of
stable time ranges were called stable conformations. On the other
hand, graphs of the descriptors of the physicochemical properties of
the active site were made from the results of TRAPP-pocket, and
frames showing atypical descriptor values were extracted. These
frames were called unstable conformations.
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2.4.3 Complex-based pharmacophore modeling
2.4.3.1 TRAPP calculations and extraction of active site
conformations from 500 ns MD simulations

For each of the 9 molecular dynamics (MD) trajectories of
500 ns, the frames of stable and unstable conformations from the
active site were employed to construct complex-based
pharmacophore models using the Develop Pharmacophore Model
tool in the Schrodinger 2023.1 suite Phase module. Default settings
were utilized, and variations were made to the maximum number of
features and mandatory features within the ranges of 6 to 5 and 3 to
2, respectively. The pharmacophoric hypotheses were combined,
forming what we refer to as a hypothesis ensemble or
pharmacophore model ensemble.

2.4.3.2 Validation of hypothesis ensembles without YN2
A molecule is considered active if it can match at least one

pharmacophore model from the ensemble. Conversely, a molecule is
deemed inactive if it cannot match any pharmacophore model from
the ensemble. We define the term “ensemble phase score” as the
highest phase score obtained by a molecule among all the phase
scores obtained for each pharmacophore model in the ensemble.
Naturally, if a molecule does not match any model, it will have a
score of zero. The accompanying scripts are detailed in
Supplementary Data 2.

To validate the 9 ensembles, actives and decoys from each cluster
were extracted. Compounds with a YN1 score greater than or equal
to 1 were considered active for this stage. Decoys were obtained from
the DUDE package (Mysinger et al., 2012), generating 50 decoys per
active. ROC curves, BACC, recall, and specificity values were
generated for each validation using the ensemble phase score and
the enrichment calculator tool of Schrodinger 2023.1 suite. We
selected the configuration of maximum number of features and
mandatory features that exhibited the highest ROC-AUC value for
the ensemble.

2.4.3.3 Validation of hypothesis ensembles with YN2
To further refine the results and behavior of the ensembles, we

introduced a metric called Yasser’s number two (YN2), which
combines the values of ensemble phase score, the number of
matching stable conformations, and the number of matching
unstable conformations. This way, molecules with few matches to
the pharmacophore models are penalized.

Ĉunstablei �
Cunstablei

Cunstable total
Ĉstablei �

Cstablei

Cstable total
i � 1, 2, . . . ., N

if Phscore i ≥Phscoremin then P̂hscore � Phscorei − Phscoremin

Phscoremax − Phscoremin
and

YN2i �
Ĉunstable( ) + Ĉstable( ) + P̂hscore( )

3

if Phscore i < Phscoremin then P̂hscore � 0 and YN2i � 0

where N is the number of molecules in the validation or virtual
screening procedure, Cunstablei is the number of pharmacophore
models derived from unstable conformations that fit with
molecule i, Cunstable total is the total number of pharmacophore
models from unstable conformations, Cstablei is the number of
pharmacophore models derived from stable conformations that
fit with molecule i, Cstable total is the total number of

pharmacophore models from stable conformations, Phscore i is
the ensemble phase score value for molecule i, Phscoremin is the
minimum ensemble phase score value among known active
molecules, and Phscoremax is the maximum ensemble phase score
value among known active molecules.

We utilized YN2 for another round of validation. Initially,
YN2 calculation was performed for all molecules. For a molecule
to be considered active, it must have a value greater than or equal to a
YN2 threshold; conversely, for a molecule to be considered inactive,
it must have a value lower than a YN2 threshold. To determine the
YN2 threshold, we generated an objective function that is the sum of
recall and specificity.We optimized the objective function, obtaining
the YN2 value that yielded the maximum value for the
objective function.

Thus, from each ensemble validation, we extract the YN2 threshold,
the value of Phscoremax, and Phscoremin. These three values, along with
the number of stable and unstable conformations, serve as parameters
for a subsequent virtual screening run. The accompanying scripts are
detailed in Supplementary Data 2.

2.5 Database virtual screening

From the ZINC database, molecules with a molecular weight
equal to or less than 500 Da and were in stock were downloaded,
resulting in the retrieval of 11,012,710 molecules. The molecules
underwent a virtual screening protocol consisting of three stages:
machine learning models, ligand-based pharmacophore models, and
ensemble of complex-based pharmacophore models. Initially, the
ZINC molecules underwent screening using 9 machine learning
models, each designed for families 31, 4, 19, 50, 35, 20, 36, 42, and
23. Subsequently, the identified actives from each model were
combined, and duplicates were removed. The resulting library then
underwent screening using ligand-based pharmacophore models
designed for key clusters (refer to Section 2.3). The identified
actives then proceeded to filtering with the ensemble models of
pharmacophores corresponding to their respective families. Finally,
we selected the top 500 ligands with the highest YN2 values from each
cluster and subjected them to an ensemble docking procedure,
incorporating HTVS, SP, XP, and MMGBSA filters. A schematic
of this procedure is presented in Supplementary Figure S2.

2.6 Human acetylcholinesterase activity
inhibition assay

The enzymatic activity of human acetylcholinesterase (hAChE)
was quantified using a modified version of Ellman’s method. The
assay was carried out in a 96-well plate format, with all fresh
prepared components prior to use. The assay buffers included
Buffer A (BA): 50 mM Tris-HCl, pH 8.0; Buffer B (BB): 50 mM
Tris-HCl, pH 8.0, with 0.1% bovine serum albumin (BSA); Buffer C
(BC): 50 mM Tris-HCl, pH 8.0, 0.1 M NaCl, and 20 mM
MgCl₂·6H₂O; Acetylthiocholine (ATCI): 15 mM; Ellman’s reagent
(DTNB): 3 mM in BC and Acetylcholinesterase (AChE): 0.22 U/
mL in BA.

The assay was performed by first preparing a stock solution of
each test compound at a concentration of 500 μg/mL. These
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compounds were then serially diluted from 1.4 μg/mL to 450 μg/mL
in 50% DMSO. Galantamine hydrobromide, prepared at 306 μg/mL,
served as the positive control. A total of nine test molecules derived
from each cluster were included in the assay, and their
concentrations in nM are summarized in Table 1.

Each assay well contained a final volume of 250 μL, consisting of:
25 μL of ATCI, 125 μL of DTNB and 50 μL of BB for all plates.

For the blank control, 50 μL of 50% DMSO in BA was added.
The negative control consisted of 25 μL of AChE and 25 μL of BA.
Each test molecule was added as 25 μL of a 1:1 serial dilution in BA,
combined with 25 μL of AChE.

The assay plates were prepared using an OpenTron OT-2 liquid
handler, ensuring precise and reproducible liquid handling. The
reactions were monitored kinetically at 407 nm using a Biotek
Synergy H1 Multi-mode reader, set to 37°C. Absorbance was
recorded every 45 s over a 15-min period.

The initial velocity of each reaction was determined from the
early linear portion of the absorbance curve, and the percentage
of inhibition was calculated using the following formula:

%Inhibition � 1 − V0 Sample( )
V0 Control( )p10

where V0 (Sample) corresponds to the initial velocity of the
reaction with the test sample, and V0 (Control) is the initial
velocity in the absence of the test sample (control). IC₅₀ values
were determined by plotting inhibitor concentration against
percentage inhibition and calculating the point at which 50%
inhibition was observed.

3 Results and discussion

3.1 Affinity ranking based on the dynamism
of the biological system and
experimental data

Here, we retrieved 4,643 huAChE inhibitors from the BD. To
scrutinize the chemical composition of these inhibitors and uncover

possible molecular patterns, we conducted a clustering analysis of
their molecular structures. This analysis enabled us to categorize the
inhibitors into separate clusters based on their molecular structure.
The cluster analysis indicated that the optimal number of clusters
was 383, accompanied by a Kelley penalty of 1,372 (as illustrated in
Supplementary Figure S9). We also computed Kelley penalty values
for cluster sizes of 50, 70, and 100, yielding 1,780, 1,570, and
1,540 Kelley penalty, respectively. Striking a balance between
computational efficiency and reliability, we chose to proceed with
70 clusters. Consequently, the 4,643 inhibitors were grouped into
70 distinct clusters, synonymous of 70 compound families, based on
their molecular structure.

Then, we decreased the number of clusters from 70 to reduce the
computational workload in subsequent stages of the research, and to
focus on families with a higher concentration of molecules. We
leveraged the availability of IC50 values for each molecule in the BD,
which reflect their respective inhibitory capacities by evaluating the
average, standard deviation and coefficient of variation of IC50 and
cluster size for each family. Additionally, we assigned a cluster ID to
facilitate identification for each family.

Subsequently, we identify clusters from the initial set of 70 that
demonstrated the following characteristics: the lowest average
IC50 values (indicating high inhibitory potential), minimal
IC50 standard deviation (reflecting low variability within the
cluster), a moderate coefficient of variation (indicating consistent
and uniform data), and a large population size (providing a broader
pool of compounds for analysis). To achieve this goal, we established
a threshold based on the mean values of IC50 average, IC50 standard
deviation, variation coefficient, and population calculated across all
families. The determined cutoff values were IC50 average of
16,268 nM, an average IC50 deviation of 14,901 nM, an average
variation coefficient of 1.05, and an average population of
66 compounds.

Then, we employed these thresholds as a basis for creating
cluster filters, refining themmanually to maximize the population of
clusters. The established criteria were: (i) average IC50 below
10,000 nM, (ii) IC50 standard deviation under 14,900 nM, (iii)
population exceeding 58molecules, and (iv) variation coefficient less
than 1.7. A total of 17 clusters (Supplementary Table S2) satisfied at

TABLE 1 Identification of the molecules used in the inhibition assay against hAChE.

Molecule ID Concentration (nM)a MW (g/mol) URL

1: P-14421887/ZINC10274013 1,070,400 420,42 https://mcule.com/P-14421887/

2: P-25746649/ZINC17245175 1,197,000 375,93 https://mcule.com/P-25746649/

3: P-617769798/ZINC16363937 903,700 497,97 https://mcule.com/P-617769798/

4: P-1894047/ZINC2256546 936,500 480,52 https://mcule.com/P-1894047/

5: P-1205609/ZINC18196844 1,295,000 347,41 https://mcule.com/P-1205609/

6: P-1206762/ZINC18197226 1,238,000 363,45 https://mcule.com/P-1206762/

7: P-2652815/ZINC100759000 942,400 477,51 https://mcule.com/P-2652815/

8: P-2026435/ZINC13691092 981,400 458,51 https://mcule.com/P-2026435/

9: P-533735/ZINC852356 1,129,400 398,45 https://mcule.com/P-533735/

Control: Galantamine hydrobromide 829,180 368,3 https://pubchem.ncbi.nlm.nih.gov/compound/Galantamine-Hydrobromide

aThe concentrations expressed in nM correspond to the initial concentration of 450 μg/mL.
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least 3 conditions (e.g., clusters 41, 1, 25, 51, 22, 56, 60, 46, 36, 31, 4,
19, 50, 35, 20, 42, 23), and among them, 3 clusters fulfilled all
conditions (clusters 4, 19, 50). We opted to retain these 3 clusters
that met all 4 conditions, along with the 6 clusters that satisfied
3 conditions and had the largest populations. The resultant clusters,
namely, 31, 4, 19, 50, 35, 20, 36, 42, and 23, were utilized in
subsequent stages. Moreover, we retrieved the compounds
associated with the centroid of each cluster (Supplementary Table
S3), which theoretically should represent an average molecular
structure for each respective family.

We required the initial poses of the 9 centroid molecules on the
AChE active site employing induced-fit docking. To validate the
efficacy of the induced-fit docking, we performed induced-fit
docking calculations for the huAChE protein-ligand system (PDB
4EY6) using acetylcholine and galantamine molecules. The induced-
fit docking successfully reproduced the authentic pose of
galantamine (Supplementary Figure S10), yielding an RMSD
value of 0.93 between the predicted and actual poses. In the case
of acetylcholine, induced-fit docking accurately replicated the
documented pose from the literature (Supplementary Figure S11)
(Raves et al., 1997). After validation, the centroid structures were
successfully subjected to induced-fit docking, and the resulting
ligand poses were used to perform 9 MD simulations of 50 ns. In
addition, a 50 nsMD simulation was performed for the 4EY6 crystal,
which contains the co-crystallized galantamine ligand. Energy,
volume, temperature, and pressure were obtained during the MD
production phase to confirm proper functioning of the 10 simulated
systems. The kinetic and total energy demonstrated fluctuation
around a stable value, while the volume graphs exhibited
constant values. The temperature and pressure oscillated near
310 K and 1 bar, respectively (Supplementary Data S1).

The overall backbone RMSD value was monitored for 21 active
site residues throughout the entire trajectory (Supplementary Figure
S12). These included 17 residues (key pocket) identified in the
RMSD paired calculations and 4 residues chosen for their crucial
role in the subsite behavior based on literature (Trp-236, Glu-334,
Ala-204, and Gly-122) (Wlodek et al., 1997) and these values were
utilized to extract various conformations of the active site of the
AChE (Supplementary Figure S12).

An statistical analysis of the RMSD data was conducted by
calculating �xRMSD, �xRMSD ± 2δ, lRMSD, l + 1RMSD, hRMSD, and
h − 1RMSD. This process yielded a total of 7 conformations
extracted from each MD simulation, which was then repeated for
all 10 MD, resulting in a total of 70 conformations (Supplementary
Table S6). The 7 conformations obtained were treated as if they were
different protein crystals and were subjected to the RMSD paired
calculations (for further details, refer to the Supplementary Material
on RMSD paired calculations). RMSD paired calculations were
carried out using the all-atoms of 21 residues.

Five out of the 21 residues that showed the highest average
RMSD from paired RMSD (Supplementary Table S4) were selected
(Supplementary Table S5). RMSD heatmaps for these 5 residues
were used to extract 5 conformations from the initial
7 conformations to achieve the highest conformational diversity.
(All heatmaps can be found in Supplementary Data S1). Upon
comparing the results from Supplementary Table S4, it was observed
that the residues Asp-74, Glu-334, Tyr-341, His-447, Phe-295, and
Phe-338 (as shown in Supplementary Figure S13) displayed

significant movement in common among the 7 conformations,
revealing changes in both the backbone and the side chain.
Finally, 50 conformations were obtained and implemented in the
ensemble docking procedure (Supplementary Data S1).

The ensemble docking process utilized 50 active site
conformations obtained from 50 ns MD simulations as input,
along with all compounds from families (key clusters). The
outcome was an affinity ranking based on Glide XP GScore
docking scores, encompassing all conformations that matched
each ligand and identifying the conformation that best suited
each ligand. Subsequently, a metric named Yasser’s Number 1
(YN1) was developed to rank compounds based on both their
docking scores and experimental inhibition capacity (IC50).
YN1 is comprised of two terms: the first term represents the
normalized value of ligand efficiency, while the second term
involves the inverted normalized logIC50. The inverted
logIC50 value is calculated by subtracting the normalized value
from 1 to reverse the scale. YN1 score spans from 0 to 2, where a
score nearing 2 signifies greater computational and experimental
inhibitory potential.

All ligands from each family were ranked using YN1 as an
affinity score, obaitning one ranking for each family. Additionally,
we evaluated the correlation of logIC50 and YN1; and XP Gscore
and YN1 (Supplementary Figures S14, 15).

Table 2 shows the Recovery percentage of recovered
molecules from ensemble docking (%), which represents the
percentage of molecules that were selected from the ensemble
docking procedure calculated over the number of molecules that
entered, due to the fact that some molecules have had a poor XP
Gscore so the ensemble docking was not reported by Glide, as
they may or may not even have been able to fit into the active site
of the receptors.

The ensemble docking process and subsequent YN1 scoring
enabled us to identify the most promising huAChE inhibitors. We
set a YN1 score threshold above 1 to ensure a balanced analysis so it
allows us to identify compounds that either demonstrated average
performance in both experimental and computational assessments,
exhibited poor experimental performance but strong computational
performance, or showed strong experimental performance but weak
computational.

In our research, the use of IC50 values is particularly valuable as
it complements molecular docking rankings with empirical
evidence. IC50 values are derived from in vitro biological assays
(Cer et al., 2009), mimicking the protein’s physiological
environment, hence directly measuring a compound’s ability to
inhibit the protein. This direct measure offers a stronger
correlation with in vivo biological activity. Molecular docking,
however, is an in silico technique predicting compound-protein
binding through computational simulations, providing insights into
molecular interactions and potential binding sites but not
guaranteeing biological activity.

Finally, the ligand with the highest YN1 was obtained from each
ranking, resulting in 9 ligands presenting the best equilibrium
between docking score and IC50 values (Supplementary Table
S7). Among the selected compounds, inhibitors with IC50 values
lower than 420 nM and XP GScore lower than −9.4 kcal/mol were
obtained, demonstrating the interesting inhibitory capacity of the
selected ligands.
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3.2 Machine learning modeling

For this stage, we took themolecules obtained from the output of
each of the 9 ensemble dockings to generate 9 ML models capable of
classifying molecules as inactive or active with respect to each
identified family of inhibitors.

The molecules recovered from ensemble docking were divided
into libraries with a 20% portion allocated for testing and an 80%
portion for training. In addition, approximately 50 decoys were
generated for each active compound, providing both positive and
negative instances for training and testing (Table 3). Consequently,
two unbalanced libraries were formed, comprising positive and
negative instances, and allocated for training and testing
purposes separately. To ensure balanced training, we
implemented a protocol involving clustering based solely on the
molecular descriptors of the negative instances. This protocol
enabled the extraction of the most diverse decoys, resulting in

negative instances with a wide range of molecular descriptor
values, thereby facilitating optimal model training. Then, we
proceeded to train four classification algorithms: logistic
regression, support vector machine, decision trees, and random
forests. Cross-validation and hyperparameter optimization
techniques were carried out to maximize the performance of each
algorithm using the available data. Subsequently, average values for
accuracy, recall, specificity, and ROC AUC were evaluated over
multiple iterations of cross-validation.

Performance evaluation included assessing the models’
capacity to identify decoys excluded during the generation of
the balanced training library as inactive, the models’ ability to
classify the initial 4,643 molecules from the binding database as
active or inactive, the capacity to classify all molecules belonging
to the cluster/family, and the ability to classify molecules from
the binding database that do not belong to the cluster/family. The
outcomes of both training and testing the models for the nine

TABLE 2 Results of ensemble docking and YN1 implementation.

Cluster
ID

Cluster
initial size

Recovered
molecules from

ensemble docking

Recovery percentage of
recovered molecules from

ensemble docking (%)

Molecules
with YN1 ≥1

Recovery percentage
of molecules with

YN1 (%)

4 59 58 98 25 43

19 64 59 92 30 51

20 261 156 60 66 42

23 1,455 291 20 95 33

31 48 41 85 11 27

35 68 62 91 44 71

36 47 47 100 20 43

42 1,038 241 23 139 58

50 68 46 68 16 35

Cluster initial size: The number of molecules belonging to the family before ensemble docking. Recoveredmolecules from ensemble docking: The number of molecules that Glide reports with an

XP Gscore value. Recovery percentage of recovered molecules from ensemble docking (%): The percentage of molecules reported by Glide with an XP Gscore value relative to the initial number

of molecules. Molecules with YN1 ≥ 1: The number of molecules with a YN1 value greater than or equal to 1. Recovery percentage of molecules with YN1 (%): The percentage of molecules with a

YN1 value greater than or equal to 1 over the number of recovered molecules from ensemble docking.

TABLE 3 Data splitting for training and testing.

Training Testing

Family Number of actives Number of decoys Number of actives Number of decoys

C4 47 2,450 11 637

C19 48 2,351 11 539

C20 125 6135 31 1,519

C23 233 13,261 58 3,649

C31 33 1,617 8 392

C35 50 3,220 12 931

C36 38 3,234 9 833

C42 193 11,502 48 2,695

C50 37 1813 9 441
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families of inhibitors are detailed in Supplementary
Tables S8–16.

In order to select the appropriate model, we employed an
objective function comprised of specificity values, the proportion
of true negatives identified within decoys excluded from training, the
percentage of active compounds identified from the family, and the
percentage of compounds from the binding database not associated
with the family, then we established anMLmodel for each family, as
delineated in Table 4. These ML models are to be applied in the
subsequent sections to execute a virtual screening procedure. The
scripts utilized for training the ML models and the .pkl files of the
models are provided in Supplementary Data S2.

3.3 Ligand-based pharmacophore modeling

Pharmacophore models were generated using the Phase module
of Schrodinger 2023.1 from the molecules derived from the
9 ensemble dockings. We employed the DUDE package
(Mysinger et al., 2012) to generate decoys at a ratio of
approximately 50 decoys per active compound to validate the
pharmacophore models. Thus, we generated 9 libraries
comprising molecules with a YN1 score greater than or equal to
1 along with their respective decoys. The Phase calculation resulted
in the creation of multiple ligand-based pharmacophore models for
each of the nine clusters. However, only models with the highest area
under the ROC curve (ROC AUC) were utilized.

Performance metrics, particularly the ROC AUC values,
indicates that most models exhibit high predictive power
(Figure 3, Supplementary Figure S16). For example, models such
as C-31 (AHHR-1) and C-4 (ARR-3) achieve ROC AUC values of
0.90 and 0.92, respectively, which are indicative of strong
discrimination capabilities. These high AUC values are
complemented by other performance metrics like recall (RC) and
specificity (SP), with some models achieving perfect recall (e.g., C-4
with an RC of 1), highlighting their ability to correctly identify all
active compounds. However, the specificity values vary widely,
suggesting that while some models are excellent at identifying
actives, they might struggle with negatives, as seen in models

with lower SP values. Models like C-4 and C-50 (APR-2)
demonstrate high BACC values, underscoring their balanced
approach in handling both true positives and true negatives
effectively.

Overall, the ligand-based pharmacophore models present strength
in terms of high recall and ROC AUC values, suggesting their potential
utility in identifying novel active compounds. However, the variability
in specificity and balanced accuracy across different models also points
to areas for further refinement, particularly in reducing false positive
rates to improve the models’ practical applicability in diverse drug
discovery scenarios.

3.4 Ensemble complex-based
pharmacophore modeling

The nine ligands with the highest YN1 from the nine families
were employed to perform nine 500 ns MD simulations
(Supplementary Table S7). To accomplish this, the poses of the
ligands were extracted from the ensemble docking. A ligand
geometry clustering was performed, where the poses associated
with the 50 receptor conformations were clustered to extract the
most frequently occurring pose (Supplementary Figure S17). The
optimal number of clusters was determined by finding the global
minimum in the Kelley penalty graphs (Supplementary Figures S18,
19). The pose with the highest frequency was defined as the centroid
of the most populated cluster and was extracted as the initial pose for
MD simulations.

The root-mean-square-deviation (RMSD) over backbone atoms
of whole protein, active site, and ligand heavy atoms are reported in
Supplementary Figures S20–22. Per-residue-root-mean-square-
fluctuation (RMSF) over backbone atoms for the MD production
stage of all systems and all heavy atoms (backbone and chain) were
evaluated (Supplementary Figures S23–26). MD simulations showed
kinetic and total energy fluctuation around a stable value, while the
volume remainded constant. Temperature and pressure oscillated
near 310 K and 1 bar, respectively (Supplementary Data S1).

Regarding protein flexibility (Supplementary Figures S27, 28)
RMSF backbone values for the 9 MD simulations of the

TABLE 4 Metrics of the best machine learning algorithms for each of the families. Random forest, RF; Support vector, SV.

Family ML algorithm Average metrics cross validation Test metrics

Accuracy Recall Specificity ROC AUC Accuracy Recall Specificity ROC AUC

C4 RF 0.990 0.980 1.000 0.990 0.995 1.000 0.995 0.998

C19 RF 1.000 1.000 1.000 1.000 0.998 1.000 0.998 0.999

C20 RF 0.988 0.976 1.000 0.988 0.992 0.871 0.994 0.933

C23 RF 0.970 0.961 0.979 0.970 0.988 0.948 0.989 0.969

C31 SV 0.969 0.967 0.967 0.967 0.995 0.875 0.997 0.936

C35 RF 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

C36 RF 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

C42 RF 0.995 0.990 1.000 0.995 0.998 0.979 0.999 0.989

C50 RF 0.946 0.918 0.975 0.946 0.982 1.000 0.982 0.991
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4EY6 complex showed the S2 domain (228–303) and S3 (331–407)
with high fluctuations, suggesting flexibility. On the other hand, the
S4 domain (435–457) and S1 domain (117–153) show lower
fluctuations, indicating regions with rigidity. The Ω-loop domain

(69–96) also shows moderate fluctuations, which could influence its
function or interaction with inhibitors, as it is located directly in the
active site. Furthermore, the RMSF for sidechain and backbone
showed elevated values due to the higher flexibility of the sidechains.

FIGURE 3
The best ligand-based pharmacophore models. H-bond acceptor (A) in red, H-bond donor (D) in light blue, positive point (P) in dark blue, aromatic
(R) in orange, and hydrophobic (H) in green. TP, true positive; TN, true negative; FP, false positive; FN, false negative; RC, recall; SP, specificity; BACC,
balanced accuracy; ROC-AUC, area under ROC curve.
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Regions with high flexibility, such as the S2 domain and Ω-loop,
stand out even more when all heavy atoms of the residue are
considered. Previous studies suggest that the omega-loop is
involved in induced fit phenomena in the active site (Cheng
et al., 2017), which is consistent with our findings of flexibility in
the omega-loop.

Concerning ligand’s behavior in terms of its interaction with the
protein we evaluated hydrogen bond occupancy (Supplementary
Figures S30, 31), protein-ligand contact for all residues
(Supplementary Figures S32–40), and protein-ligand contact for
residues that were within 5 Å of the ligand at some point during the
MD simulation (Supplementary Figures S41–49) to finally obtain
the percentage frequency of interaction occurrences (Supplementary
Figures S29).

The following residues obtained a percentage equal to or greater
than 80% in terms of hydrophobic contacts for several MD
simulations, with the number of total appearances in parentheses:
Trp-86 (9), Tyr-341 (9), Tyr-124 (8), Tyr-337 (8), Gly-121 (6), Trp-
286 (6), Tyr-72 (6), Asp-74 (4), Gly-448 (4), Hid-447 (4), Met-85 (4),
Phe-297 (4), Phe-338 (4), Thr-75 (4), Thr-83 (4), Glu-292 (3), Ser-
125 (3), Val-73 (3), Asn-87 (2), Leu-76 (2), Phe-80 (2), Ser-293 (2),
Tyr-449 (2), Tyr-77 (2), Val-294 (2), Ala-343 (1), Arg-296 (1), Gln-
71 (1), Gly-122 (1), Gly-342 (1), Gly-362 (1), Gly-366 (1), Gly-82 (1),
Ile-451 (1), Leu-339 (1), Leu-398 (1), Lys-348 (1), Phe-295 (1), Pro-
344 (1), Ser-438 (1), Trp-439 (1), Tyr-133 (1), Val-132 (1), Val-365
(1). Among these, the residues that appeared in 4 or more MD
simulations were: Trp-86, Tyr-341, Tyr-124, Tyr-337, Gly-121, Trp-
286, Tyr-72, Asp-74, Gly-448, Hid-447, Met-85, Phe-297, Phe-338,
Thr-75, and Thr-83.

Nine MD simulations were employed to extract protein
conformations for generating complex-based pharmacophore
models. To do this, RMSF calculated for heavy atoms (backbone
and side chain) were employed. The RMSF for Tyr-72, Asp-74, Trp-
86, Gly-120, Gly-121, Tyr-124, Tyr-133, Glu-202, Ser-203, Trp-286,
Phe-295, Phe-297, Tyr-337, Phe-338, Tyr-341, His-447, and Gly-448
were selected and ranked, resulting in 6 residues being chosen from
each of the 9 simulations (Supplementary Table S17). These residues
exhibited the greatest conformational variability throughout the
entire simulation.

Individual heavy atoms RMSD for the 6 active site residues,
backbone RMSD for the whole protein, backbone RMSD for the
17 active site residues, and RMSD for ligand heavy atoms were
calculated for all MD simulations. To smooth the RMSD data, a
moving average was constructed for the 9 data sets (Supplementary
Figures S50–58). The moving average data was utilized to normalize
data. Heatmaps were obtained with the normalized average to
compare the behavior of the RMSD for the 9 data sets
(Supplementary Figures S59–67).

In addition, the average was utilized to calculate the numerical
derivative (Supplementary Figures S59–67). The derivative was used
to identify regions of variation in the RMSD. Finally, we highlighted
the moments where the moving average and numerical derivative
were both greater than 0.6 (Supplementary Figures S68–76).

The parallel implementation of the moving average and
numerical derivative enables the identification of stable and
unstable conformations. If the RMSD normalized moving average
does not show large variations over a time range, it suggests that the
active site adopts stable conformations. Conversely, if the RMSD

normalized moving average displays large variations, then the active
site adopts unstable conformations. In order for the active site
geometry to transition between stable conformations, it has to
pass through an unstable conformation that enables the change.
Therefore, high values of the numerical derivative can be used to
identify time intervals where unstable conformations are more likely
to occur, as these represent transition zones between stable
conformations.

The zones of stable and unstable conformations can be identified
in heatmap (Supplementary Figures S68–76) (A stable zone is
identified when the graph remains in a green or blue color over
a large time interval while an unstable zone is identified when the
graph changes from green to blue and red squares are present in
between). For example, the MD trajectory of Cluster 4, displayed
three stable zones corresponding to 0–150, 180–430, and 460–500 ns
(Supplementary Figures S59, S68) and two unstable zones for
150–180 and 430–460 ns. These regions were used to extract
specific frames (stable or unstable conformations) for the
generation of complex-based pharmacophore models (Table 5).

The TRAPP-Analysis clustering tool was used to extract frames
from stable zones and the TRAPP-Pocket tool was utilized to extract
frames from unstable zones (Kokh et al., 2013; Yuan et al., 2020;
Kokh et al., 2016). TRAPP-Analysis uses a clustering algorithm that
serves to categorize the active site conformations into similar groups
(Kokh et al., 2013; Yuan et al., 2020; Kokh et al., 2016), in this
manner the conformations obtained correspond to the highest
populated (energetically most favorable) conformations in the
time range.

In the case of TRAPP-pocket, numerical descriptors related to
the physicochemical properties of the active site were calculated for
each frame of the trajectory (Figure 4) in order to identify
energetically high conformations, so these conformations were
assumed to be energetically unfavorable (Supplementary Figures
S77–92; Table 5) and viceversa.

Stable and unstable conformations were utilized to construct
complex-based pharmacophore models using the Schrödinger 2023-
1 phase module. These models were combined into an ensemble.
Within this framework, (Supplementary Figures S93), molecules
undergo virtual screening through all pharmacophore models
derived from both stable and unstable conformations.
Pharmacophore models are linked in the ensemble based on the
logical OR operator. This means that for a molecule to be active, it is
sufficient for just one individual model to classify it as active, and for
a molecule to be inactive, it should not be classified as active by any
model. Lastly, we define the ensemble Phase score as the highest
Phase score attained by a molecule among all Phase scores obtained
for each pharmacophore model in the ensemble.

The pharmacophore model ensembles were subjected to
validation using the same actives and decoys employed in the
ligand-based model validation. Subsequently, these validation
results were introduced into the Schrodinger Enrichment
Calculator tool, and ROC curves were generated for each
ensemble (Supplementary Figures S94). Additionally, recall,
specificity, ACC, and BACC values were obtained
(Supplementary Table S18).

To improve the performance of the ensemble, we introduced a
metric called Yasser’s number two (YN2), which combines the
values of ensemble phase score, the number of matching stable
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conformations, and the number of matching unstable
conformations. This metric averages the normalized values of
ensemble phase score, the number of matching stable
conformations, and the number of matching unstable
conformations. A high YN2 value indicates that the molecule in
question has an excellent ensemble phase score and fits with the
majority of stable and unstable conformations.

For a molecule to be considered active employing YN2, it must
have a value greater than or equal to a YN2 threshold and viceversa.
To perform virtual screening using pharmacophore model
ensembles coupled with YN2, 5 parameters were required: the
number of stable and unstable conformations, the minimum
ensemble phase score value among known active molecules
(Phscoremin), the maximum ensemble phase score value among
known active molecules (Phscoremax), and the YN2 threshold.
The number of conformations were fixed while the other
parameters were obtained in the ensemble validation process.

YN2 threshold was defined based on an objective function
summing recall and specificity. After evaluating YN2 for all

molecules (based on Supplementary Table S18) we carried out an
optimization of an objective function corresponding to the sum of
specificity and recall by varying the value of YN2. This way, we
obtained the YN2 value that yielded the maximum value for the
objective function (Supplementary Tables S19–S27;
Supplementary Table S28).

The validation of the improved ensembles with the inclusion of
YN2 was conducted (Supplementary Table S29). Furthermore, these
findings were integrated into the Schrödinger Enrichment
Calculator tool, and ROC curves were generated for each
ensemble (Supplementary Figures S95). Supplementary Table S30
presents the percentage improvements in ensemble performance
wht and without the evaluation of YN2, indicating a slight decline in
recall values and a significant increase in specificity values in some
cases, up to approximately 2000%. The ensembles displayed good
metrics, with ROC AUC values greater than 0.8 in most cases.

The most common features found among the ensembles
correspond to aromatic interactions, including those caused by
the residues Trp-86, Tyr-341, Tyr-337, Tyr-124, Tyr-72, and Trp-
286 (Figure 5). Among these, Trp-86 and Trp-286 showed a capacity
to generate π-π interactions between aromatic rings and also cation-
π interactions with positive groups of the ligands. The role of these
residues concerning the ligand entry is reported in other studies
(Branduardi et al., 2005), indicating that these residues interact with
the positive charges of the natural substrate acetylcholine and drive
it into the active site. The fact of finding this dual capacity of these
tryptophan residues in this research confirms their ability to interact
with positive charges. On the other hand, the residues Tyr-341, Tyr-
337, Tyr-124, and Tyr-72 showed the ability only to generate
aromatic π-π interactions. But in some conformations, these
tyrosine residues presented hydrogen bond interactions.

Protein dynamics are crucial for understanding how proteins
interact with other molecules. Two key models for explaining
protein dynamics are the induced-fit model and conformational
selection (Galburt and Tomko, 2017). The induced-fit model
suggests that when a ligand binds, it triggers changes in the
protein’s shape to accommodate the ligand. Conversely, the
conformational selection model proposes that the protein exists
in various conformations, and ligand binding selects a specific one.
Both models underscore the significance of protein dynamics in
ligand binding. In our research, we considered the protein’s dynamic

TABLE 5 Time intervals of stable and unstable conformations during 500 ns MD simulations. Number of extracted conformations in parentheses.

Cluster Stable Unstable

C4 (0–150(3)), (180–430(2)), (460–500(3)) (150–180(12)), (430–460(13))

C19 (0–60(3)), (100–200(1)), (220–330(3)), (350–500(2)) (60–100(8)), (200–220(12)), (330–350(8))

C20 (0–350(3)), (410–500(1)) (350–410(15))

C23 (0–110(2)), (140–410(3)), (450–500(2)) (110–140(12)), (410–450(12))

C31 (0–90(1)), (130–380(4)), (410–500(2)) (90–130(13)), (380–410(12))

C35 (0–50(3)), (60–210(1)), (250–500(4)) (50–60(15)), (210–250(15))

C36 (0–60(3)), (100–500(4)) (60–100(12))

C42 (0–60(2)), (130–500(2)) (60–130(17))

C50 (0–50(2)), (60–270(5)), (280–500(2)) (50–60(15)), (270–280(9))

FIGURE 4
TRAPP-pocket results for the unstable zone of 150–180 ns. The
plots belong to cluster 4.
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FIGURE 5
Summary of pharmacophore model ensembles for each cluster. Hydrophobic contacts are shown in green, H-bond donors in light blue, H-bond
acceptors in red, aromatic interactions in beige, and positively charged groups in dark blue. The crucial residues for each feature are displayed next to the
corresponding feature. S indicates stable conformation and U indicates unstable conformation. The percentages shown correspond to the number of
times a feature appears in the total stable and unstable conformations. TP, true positive; TN, true negative; FP, false positive; FN, false negative; PC,
precision; RC, recall; SP, specificity; BACC, balanced accuracy; ROC-AUC, area under ROC curve.
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behavior in various computational calculations. Protein dynamics,
including induced-fit and conformational selection, can significantly
impact ligand binding. For instance, a molecule might not fit into a
specific protein conformation, appearing inactive, yet it could
effectively bind to other conformations. By employing ensemble
pharmacophore models and other techniques, we gained valuable
insights into the diverse protein conformations that a ligand could
bind to, enhancing the accuracy of inhibitory activity predictions.

It was pivotal to link pharmacophore models corresponding to
various active site conformations using the logical OR and YN2 on
identified actives from each model individually. This approach
allows for active site flexibility, contrasting with the use of a
single pharmacophore model. Besides, we emphasize the
importance of exclusion volumes in complex-based models.
These volumes mimic the steric effects of the active site,
effectively preventing recognition of ligands with unfavorable
geometries as active. Exclusion volumes primarily aim to boost
specificity and selectivity of pharmacophore models by narrowing
the search space, thereby minimizing false positives resulting from
improper ligand positioning.

Regarding seeking selective drugs, we consider crucial to
individually address energetically unstable conformations. For
instance, targeting specific protein conformations can yield more
effective drugs with fewer side effects by reducing the likelihood
of interference with the normal functioning of other enzymes. In
molecular dynamics research, clustering techniques are
commonly employed to extract representative frames of
protein conformations observed during simulations.
Traditional clustering groups frames based on their similarity
in conformation, prioritizing the most frequently occurring ones
in the simulation. However, this can lead to the loss of important
information from less populated conformations, which may be
equally relevant for understanding the binding’s behavior. This is
the reason why the combined use of stable and unstable
conformations is important.

3.5 Database virtual screening

We aimed to implement the predictive models developed in this
research to identify molecules that could function as novel inhibitors
for AChE. To achieve this goal, we designed the virtual screening
scheme depicted in Supplementary Figures S2. The scheme consists
of a sequential use of machine learning models, ligand-based
pharmacophore models, and complex-based pharmacophore
model ensembles (Figure 6).

In order to find the inhibitors we extracted 11,012,710 molecules
from the ZINC database. These molecules underwent virtual
screening with the 9 ML models, and the active molecules
identified by each model were aggregated into a combined
library, resulting in a total of 1,697,608 retrieved molecules,
which represents 15.41% of the original ZINC library.
Subsequently, these molecules were subjected to screening with
9 ligand-based pharmacophore models and 9 ensembles of
complex-based pharmacophore models. 500 molecules with the
highest YN2 scores were selected from each final list, and
subjected to ensemble docking calculations and MMGBSA free
energy calculations to obtain those with the most interesting
interactions (Supplementary Figures S96, 97; Figure 7).

Supplementary Figures S98–106 display the 2D interaction
diagrams of the poses in the protein-ligand complex for these
compounds. Free energy value varies from
ZINC22983357 with −62.77 kJ/mol, which comes from the
C31 family to ZINC18206771 from the C35 family,
with −115.69 kJ/mol.

The virtual screening results underscore the effectiveness of an
integrated approach that combines computational and experimental
data through the development and application of machine learning
and pharmacophore modeling. The order of filter application
was specifically designed to progress from less to more precision
in molecule searching. Initially, the ML models were trained to
identify molecules from each family, unlike the ligand-based and

FIGURE 6
Scheme of the procedure used for virtual screening of databases and results obtained.
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complex-based pharmacophore models, which were trained with the
molecules exhibiting the highest activity by YN1 from each
family. Additionally, since the ML models were located at the
first phases, we focused on seeking models with more specificity.
This way, we filtered out inactive molecules initially, expecting the
ligand-based and complex-based pharmacophore models to identify
active molecules. TheMLmodels proved very useful as they required
lower computational resources compared to directly using
pharmacophore models. This enabled successful management of
the initial ZINC library of 11,012,710 molecules, reducing it by
up to 15%.

Afterwards, the molecules underwent ligand-based
pharmacophore modeling and complex-based pharmacophore
ensemble modeling. Pharmacophore modeling is a powerful tool

for drug discovery, but its effectiveness heavily relies on the
availability of both active molecules and the biological target
(Qing et al., 2014). However, when only the biological target is
known, this approach encounters several challenges, making it
difficult to identify promising drug candidates. It is assumed that
pharmacophoric points represent regions where favorable protein-
ligand contacts occur (Ertl et al., 2011). This holds particularly true
for complex-based pharmacophores, which utilize the receptor’s
structure in complex with the ligand for model creation. However, in
the case of ligand-based or receptor-based pharmacophore models,
the hypothesis might fail to capture locations where favorable
binding contacts occur. This is why we positioned ligand-based
models in second place, as complex-based models provide more
precise information for identifying active molecules. This is evident
when comparing the superior metrics of the complex-based
pharmacophore ensemble models with those of ligand-based
models. Additionally, another reason for prioritizing ligand-based
models before complex-based ones is computational cost, as
pharmacophore ensembles require more resources. Thus, our aim
was to minimize the number of molecules reaching the complex
models to optimize computational time and resources.

3.6 Experimental validation

After applying the virtual screening protocol (Supplementary
Figures S2), we identified 18 candidate molecules based on their
docking scores and MMGBSA free energy calculations. These
molecules were prioritized for their predicted binding affinity and
potential inhibitory activity against acetylcholinesterase (AChE).

To ensure a diverse representation across molecular families, we
aimed to include at least one molecule from each family identified in
the virtual screening results. The final selection was also constrained
by commercial availability. Following an extensive search among

FIGURE 7
Summary of results of ensemble docking calculations the molecules with the best MMGBSA value for each family.

TABLE 6 IC₅₀ values of tested molecules.

Molecule IC50 (µM)

1 2.08E-197 ± 0.022

2 3.71E+16 ± 0.021

3 58.41 ± 0.033

4 29.22 ± 0.016

5 40.59 ± 0.015

6 41.60 ± 0.017

7 26.13 ± 0.014

8 24.85 ± 0.019

9 9.98 ± 0.021

Control 41.60 ± 0.011

Data are expressed as the means ± standard deviation (SD) of at least three independent

experiments.
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several suppliers, we acquired nine molecules that were readily
available for purchase. The decision to proceed with
commercially available compounds allowed us to maintain a
balance between molecular diversity and feasibility for
experimental validation.

These nine molecules, spanning different families, were
subjected to in vitro AChE inhibition assays to experimentally
validate their predicted activity. This approach ensured that our
experimental testing covered a range of chemical scaffolds,
providing insights into structure-activity relationships and
enhancing the robustness of our validation process.

The IC₅₀ values for each tested molecule are presented in
Table 6. Molecules 4, 5, 6, 7, 8, and 9 exhibited IC₅₀ values equal
to or lower than the control, indicating potent inhibition of
acetylcholinesterase activity. In contrast, molecule 3 displayed a
higher IC₅₀ value, suggesting a weaker inhibitory effect. Molecules
1 and 2, however, did not yield consistent IC₅₀ values across
replicates, which could be attributed to several experimental
factors. Possible reasons for this inconsistency include poor
solubility of the compounds in the assay buffer, inadequate
interaction between the molecules and the enzyme, or potential
interference from DMSO in the assay environment. These
experimental variables may have impacted the reproducibility
and accuracy of the observed inhibition, leading to unreliable
IC₅₀ values for these molecules.

4 Conclusion

The intricate process of identifying potent human
acetylcholinesterase enzyme inhibitors relies on the seamless
integration of computational and experimental methodologies.
A key initial step was the clustering analysis of 4,643 inhibitors
from the binding database, which played a crucial role in
organizing and managing the extensive dataset. This analysis
categorized the inhibitors into 70 distinct clusters based on their
molecular structures, significantly reducing computational
complexity. Refining these clusters further to focus on those
with higher concentrations of molecules and lower IC₅₀ values
proved essential. This refinement, which resulted in nine
significant clusters, underscored the importance of balancing
computational efficiency with result reliability, ensuring that
the most promising inhibitors were prioritized for
further analysis.

Furthermore, combining the ensemble docking process with the
innovative YN1 metric provided a sophisticated means to rank
inhibitors by integrating both docking scores and experimental
IC₅₀ values. This approach addressed the limitations of relying
solely on computational predictions, which can sometimes
overlook critical biological nuances. The YN1 score, ranging from
0 to 2, effectively balanced ligand efficiency and IC₅₀ values, offering
a comprehensive assessment of a compound’s inhibitory potential.
The observed correlation between lower log (IC₅₀) values and higher
YN1 scores validated this metric’s utility. This dual-faceted ranking
method successfully identified compounds with both high
computational and experimental inhibitory activity,
demonstrating the enhanced reliability of integrating diverse
data sources.

Moreover, developing and validating ML models further
strengthened the screening process. These models were trained
on the refined set of active compounds and incorporated
extensive decoy generation to ensure high specificity in
distinguishing active from inactive compounds. The selection of
the best-performing algorithm for each inhibitor family based on a
comprehensive objective function ensured that the models were
robust and precise. This integration of MLmodels into the screening
pipeline not only enhanced efficiency but also improved the
optimization of computational costs for the identification of
viable huAChE inhibitors.

Additionally, the use of pharmacophore model ensembles
provided a good metrics, showcasing their high capability to
identify active molecules. The consideration of stable and
unstable conformations to account for the flexibility of the
protein’s active site resulted in a improved performance
compared to ligand-based models. We believe that the
application of model ensembles could emerge as a powerful
technique for virtual screening processes, especially when dealing
with large numbers of molecules.

The experimental validation further strengthened these findings.
Seven of the nine molecules tested showed strong inhibitory activity
against huAChE, with molecules 4, 5, 6, 7, 8, and 9 demonstrating
IC₅₀ values superior to the control, galantamine. It is noteworthy
that the observed inhibitory capacities may be underestimated due
to partial solubility of these molecules, suggesting that their effective
concentrations could be even lower, potentially enhancing their IC₅₀
values. In contrast, molecules 1 and 2 exhibited inconsistent results,
likely due to solubility issues in DMSO, which could be resolved by
exploring alternative solvents in future studies.

Finally, the successful identification of promising inhibitors
through the integrated approach of virtual screening,
experimental validation, and advanced ML algorithms represents
a significant achievement. This comprehensive methodology not
only accelerates the identification of viable huAChE inhibitors but
also establishes a reliable and efficient framework for drug discovery.
The findings from this research open the door to designing new
molecules with high affinity for huAChE, potentially paving the way
for novel treatments for Alzheimer’s disease. We believe that this
study sets a precedent for future virtual screening efforts, combining
computational, experimental, and machine learning approaches to
discover potent enzyme inhibitors.
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