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Introduction:Monoclonal antibody (mAb) drug treatments have proven effective
in reducing COVID-19-related hospitalizations or fatalities, particularly among
high-risk patients. Numerous experimental studies have explored the structures
of spike proteins and their complexes with ACE2 or mAbs. These 3D structures
provide crucial insights into the interactions between spike proteins and ACE2 or
mAb, forming a basis for the development of diagnostic tools and therapeutics.
However, the field of computational biology has faced substantial challenges due
to the lack of methods for precise protein structural comparisons and accurate
prediction of molecular interactions. In our previous studies, we introduced the
Triangular Spatial Relationship (TSR)-based algorithm, which represents a
protein’s 3D structure using a vector of integers (keys). These earlier studies,
however, were limited to individual proteins.

Purpose: This study introduces new extensions of the TSR-based algorithm,
enhancing its ability to study interactions between twomolecules. We apply these
extensions to gain a mechanistic understanding of spike - mAb interactions.

Method: We expanded the basic TSR method in three novel ways: (1) TSR keys
encompassing all atoms, (2) cross keys for interactions between two molecules,
and (3) intra-residual keys for amino acids. This TSR-based representation of 3D
structures offers a unique advantage by simplifying the search for similar
substructures within structural datasets.

Results: The study’s key findings include: (i) Themethod effectively quantified and
interpreted conformational changes and steric effects using the newly
introduced TSR keys. (ii) Six clusters for CDRH3 and three clusters for
CDRL3 were identified using all-atom keys. (iii) We constructed the TSR-
STRSUM (TSR-STRucture SUbstitution Matrix), a matrix that represents
pairwise similarities between amino acid structures, providing valuable
applications in protein sequence and structure comparison. (iv) Intra-residual
keys revealed two distinct Tyr clusters characterized by specific triangle
geometries.
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Conclusion: This study presents an advanced computational approach that not
only quantifies and interprets conformational changes in protein backbones, entire
structures, or individual amino acids, but also facilitates the search for substructures
induced by molecular binding across protein datasets. In some instances, a direct
correlation between structures and functions was successfully established.
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1 Introduction

Proteins are fundamental to sustaining life, requiring specific 3D
structures to perform their biological functions. Among the pivotal
elements driving various processes are noncovalent interactions,
including protein - protein, protein - DNA/RNA, ligand - receptor,
drug - target, or host - guest interactions. Structural and
experimental methods such as X-ray crystallography, NMR or
Cryo-EM techniques are employed to determine these molecular
interactions. Additionally, laboratory-based functional assays,
including yeast-two hybrid, pulldown experiment, or FRET
method, can provide evidence of these interactions. Despite these
methods, predicting molecular interactions computationally
remains a formidable challenge. Physics-based methods for
calculating binding free energy and empirical scoring functions
for assessing binding affinities have been used to study protein -
protein interactions (PPIs) (Massova and Kollman, 1999; Henrich
et al., 2010). However, the lack of a mechanistic understanding of
molecular interactions hinders the identification of binding partners
and the elucidation of their regulatory mechanisms (Viswanathan
et al., 2019).

Protein structures are intricately specified within their amino
acid sequences. Sequence and structure comparison techniques
benefit from the ever-expanding repositories of sequence and
structure databases (Henrich et al., 2010). Yet despite decades of
dedicated efforts, the mechanisms underlying molecular
interactions remain elusive (Lupas et al., 2021; Marsh and
Teichmann, 2015). Lack of accurate protein structural
comparison and the precise prediction of molecular interactions
remain as pivotal and enduring obstacles in the field of
computational biology (Yang et al., 2020). To surmount the
obstacle of precisely predicting PPIs, the field must confront two
key challenges. The first challenge stems from the absence of a
mechanistic understanding of a binding surface, leaving us uncertain
about the distinguishing characteristics of a protein - protein
binding site compared to the rest of the surface. This is
manifested in the relatively low accuracy attained by
computational methods, often employing various machine
learning (ML) techniques, in predicting protein interfaces
(Viswanathan et al., 2019). The second challenge lies in the
dearth of mechanistic insights into conformational changes that
occur when a molecule binds with its partner. Innovation in
methods for representing protein 3D structures is critical for a
mechanistic understanding of their functions. The development of
computational methods capable of discerning binding surface from
the rest of the surface, capturing subtle alterations at the residue level
interactions, and tracing their propagation over local and global

distances to predict conformational changes, which is the focus of
this study, will have a profound impact on enhancing our
understanding of PPIs.

The Triangular Spatial Relationship (TSR)-based method was
developed for comparing protein 3D structures (Kondra et al.,
2021). The input data for the TSR-based methods are
experimentally determined 3D structures from the Protein Data
Bank (PDB) (Bernstein et al., 1977). Structural data is an essential
asset in understanding the mechanisms of protein functions (Abali
et al., 2024). A TSR key is computed using the length, angle and
vertex labels based on a rule-based label-assignment formula, which
ensures the assignment of the same key to identical TSRs across
different proteins. The features of the method include (i) A unique
approach to representing molecular 3D structures, eliminating the
need for structural superimposition or alignment (Kondra et al.,
2021), (ii) Accurate quantification of structural similarity, either
globally or locally, by counting the common TSR keys between two
proteins (Kondra et al., 2021), (iii) The ability to search for similar
structural motifs [e.g., drug binding sites (Kondra et al., 2021; Sarkar
et al., 2021), metal binding sites (Sarkar et al., 2022), active sites
(Kondra et al., 2021; Sarkar et al., 2021; Kondra et al., 2022), linking
TSR keys to protein functions (Xu et al., 2020; Luo et al., 2023)]
within protein structures, (iv) The utilization of different types of
TSR keys to provide a unique way to interpret hierarchical
relationships and distinctions between structures and sequences
(Kondra et al., 2022), as well as the stereospecific properties of
molecular binding or biochemical reactions (Sarkar et al., 2023).

The comparison of two protein structures, despite its apparent
simplicity, is a non-trivial challenge. The TSR algorithm simplifies
this complex problem to one of matching two integer vectors. This is
the first step towards addressing the aforementioned challenges.
Another advantage of this approach is that its adoption of an
integer-based data structure allows the deployment of ML-based
algorithms from the field of artificial intelligence (AI), for prediction
purposes. To facilitate this study, focused on interaction between
two molecules, we have created a curated dataset containing the
annotated Third Complementarity Determining Region (CDR3) of
heavy chain (CDRH3) and CDR3 of light chain (CDRL3) of spike
monoclonal antibodies (mAbs). Additionally, we have developed
new versions of the TSR-based method with a specific focus on
probing interactions between spike proteins and their
corresponding mAbs.

The COVID-19 pandemic was caused by the widespread
infection with Severe Acute Respiratory Syndrome CoronaVirus
2 (SARS-CoV-2) (Hwang et al., 2022). SARS-CoV-2 is classified as a
single-stranded RNA virus within the Betacoronavirus genus. The
distribution of the virus-targeted receptor protein, angiotensin
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converting enzyme II (ACE2), determines which organs are
susceptible to attack by SARS-CoV-2. Notably, ACE2 is highly
expressed in several vital organs, including the lungs, immune
system, heart, kidneys, esophagus, and small intestine (Chen
et al., 2020).

The first critical step in the infection process occurs when the
viral spike (S) glycoprotein binds to a host cell receptor, which can be
either ACE2 (Zhou et al., 2020; Wrapp et al., 2020;Walls et al., 2020)
or cluster of differentiation 147 (CD147) (Wang et al., 2020; Behl
et al., 2022). Following the initial binding event, facilitated by the
interaction with the receptor binding domain (RBD) of S and ACE2,
host proteases, including furin (Peacock et al., 2021),
transmembrane serine protease 2 (TMPRSS2) (Matsuyama et al.,
2020), and cathepsin L (Simmons et al., 2005), cleave the head of S
protein, transforming it into a spring-like structure. This structural
change enables the viral membrane to fuse with the host membrane,
facilitating entry into the host cell. This entry can occur through
direct cell surface entry or endocytosis into endosomes (Matsuyama
et al., 2020).

The RBDs of the spike protein display a dynamic hinge-like
conformational equilibrium, shifting between a closed pre-fusion
state (down conformation) and an open fusion-prone state (up
conformation) (Wrapp et al., 2020; Shang et al., 2020; Henderson
et al., 2020). mAb drugs, the fastest growing class of drugs on the
market (Loomis et al., 2024), that are able to bind to and
“neutralize” the virus in infected patients represent a novel
class of antibodies for antiviral intervention (Renn et al., 2020).
These mAbs, termed “neutralizing,” can be used as passive
immunotherapy to minimize virulence (Taylor et al., 2021) as
they prevent the virus from binding to ACE2 on the surface of
human cells. This is a critical step for infection (Cox et al., 2023).
Recent literature classifies mAbs into four classes depending on
their binding mode to the spike protein (Miguez-Rey et al., 2022;
Barnes et al., 2020; Kumar et al., 2021; Corti et al., 2021). Class
1 mAbs (e.g., regdanvimab, etesevimab and imdevimab) are
IGHV3-encoded with short CDRH3 loops and exclusively bind
to epitopes on the receptor binding motif (RBM) in the up
conformation (Miguez-Rey et al., 2022; Barnes et al., 2020;
Kumar et al., 2021). Class 2 mAbs (e.g., bamlanivimab) are
also IGHV3-encoded but have longer CDRH3 loops, allowing
them to bind to the RBD in both the up and down conformations
(Miguez-Rey et al., 2022; Barnes et al., 2020; Kumar et al., 2021).
Class 3 mAbs block the ACE2 binding site by binding outside the
ACE2 binding site; they can also recognize both up and down
RBD conformations (Miguez-Rey et al., 2022; Barnes et al., 2020;
Kumar et al., 2021). Class 4 mAbs (e.g., casirivimab, sotrovimab)
do not overlap with the ACE2 binding site; instead, they bind to a
highly conserved epitope of RBD, specifically in the up
conformation (Miguez-Rey et al., 2022; Barnes et al., 2020;
Kumar et al., 2021). Classes 1–4 mAbs achieve their
neutralizing effects through either direct competition with
ACE2 for Classes 1 and 2 or steric hinderance of
ACE2 interactions (Class 3, adjacent to RBM) and Class 4
(distal to RBM). Several mAbs drugs have received FDA
approval, such as casirivimab (formerly REGN10933),
imdevimab (REGN10987), bamlanivimab (LY-CoV555),
etesevimab (CB6, JS016, LY-CoV016), tixagevimab (COV2-
2196/AZD8895), and cilgavimab (COV2-2130/AZD1061).

mAbs targeting the RBD have epitopes that either fully or
partially overlap with the RBM on the RBD, effectively
blocking viral entry by preventing ACE2 from binding to RBM
(Mornese Pinna et al., 2021). In contrast, non-RBM mAbs like
sotrovimab (VIR-7831, S309) appear to block viral infection by
sterically interfering with the viral membrane fusion after
ACE2 engagement with the RBM (Ji et al., 2022). Combining
mAbs from different classes can synergistically enhance
neutralization effects (Pandey et al., 2021). Due to the rapid
emergence of new SARS-CoV-2 variants, mAb drugs
recognizing conserved regions across new SARS-CoV-
2 variants could be more effective (Guenthoer et al., 2024;
Focosi et al., 2024).

Numerous experimental studies have been conducted to
determine the structures of spike proteins and their complexes
with ACE2 or mAbs. These 3D structures provide insight into
the mechanistic understanding of spike - ACE2 and spike - mAb
interactions, and they serve as a foundation for the development of
diagnostic tools and therapeutic agents. This work has two
objectives: to introduce a new computational methodology and
software tools designed for probing PPIs and to take advantage
of available 3D structures of spike - ACE2/mAb complexes and the
computational methodology to provide mechanistic insight into
how the binding of a mAb affects the binding of the spike protein to
ACE2. Notably, certain mAbs can completely prevent the spike
protein from binding to ACE2, while others may result in weaker
binding of the spike to ACE2 (Supplementary Figure S1). The
Results section of this study covers six key areas. First, we
compare overall structures of the spike proteins as well as heavy
and light chains of mAbs. The motivation for starting with global
structure comparison is two folds: one is to examine correct labeling
of the chains in the dataset and the other is to provide a solid
foundation for local structural analyses. Second, we evaluate the
performance of the TSR-based method in studying conformational
changes and provide detailed annotations to the conformational
changes using different types of TSR keys. Third, we introduce the
concept of cross TSR keys, using either only Cα atoms or all atoms
for defining binding surfaces. The approach aims to demonstrate the
structural uniqueness of a binding surface from both the rest of the
surface and the interior portion (non-surface) of the structures.
Fourth, we discuss the structural similarities and differences of a
dataset containing approximately 200 CDRH3 and CDRL3. Fifth,
we introduce a novel computational methodology for quantifying
amino acid structures, including the generation of the matrix of
pairwise amino acid similarities, which is termed TSR-STRSUM
(TSR-STRucture SUbstitution Matrix). This matrix opens the door
for valuable applications in protein sequence and structure
comparison. Sixth, we discuss the effect of mAb binding on the
structural change of the ACE2 binding site. To clearly distinguish
the mAbs already on the market from those that are not, we refer to
those found in the PDB but not on themarket as “mAbs”while those
that have been approved and are available on the market are referred
to as “mAb drugs.” In summary, this work introduces a new
computational method with advantages in quantifying as well as
interpreting conformational changes and defining binding surfaces.
Through this extensive study of spike - mAb interactions, we have
discovered unique substructures associated with the binding
surfaces of specific spike - mAb pairs.
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2 Materials and methods

2.1 Key generation

The process began with extracting Cα atoms from PDB files of
each protein under analysis. Next, the three side lengths and angles
of all triangles constructible from these Cα atoms were systematically
calculated (Kondra et al., 2021). We mapped the amino acids
associated with the three vertices of triangle i to corresponding
integer IDs to three labels li1, li2 and li3; we then ensured uniqueness
of the same TSR triangle across proteins to be represented by the
same integer keys by applying the rule-based label-determination of
vertices of each triangle (Guru and Nagabhushan, 2001). Once li1, li2
and li3 are determined for triangle i, we calculate θ1 using Equation 1
and θΔ based on θ1 values.

θ1 � cos−1 d13
2 − d12

2
( )

2

− d3
2( )/ 2 ×

d12

2
( ) × d3( )( ) (1)

θΔ � θ1 if θ1 ≤ 90°
180° − θ1 otherwise

{
where, for triangle i,

d13: distance between li1 and li3
d12: distance between li1 and li2
d3: distance between li3 and the midpoint of li1 and li2
We refer to the value of D as MaxDist and the value of θΔ as

Theta (Kondra et al., 2021). MaxDist is defined as the distance of the
longest edge of a triangle. Theta is defined as the angle that is <90°
between the line from the midpoint of the edge of li1 and li2 to the
opposite vertex li3 and half of the li1 - li2 edge. once the labels: li1, li2,
li3, D and θΔ are determined, we use Equation 2 to calculate the key
for each triangle (Kondra et al., 2021). Crucially, the generated key
for each triangle depends on li1, li2 and li3 (vertex labels), Theta (θΔ)
andMaxDist (D). This design ensures that the keys, while remaining
invariant to rotations and translations, can effectively capture scale
changes in protein structures, making them suitable for alignment-
free, pairwise comparison of 3D structures.

k � θTdT li1 − 1( )m2 + θTdT li2 − 1( )m + θTdT li3 − 1( ) + θT d − 1( )
+ θ − 1( )

(2)

2.2 Protein structural similarity and distance
calculation

We apply the Generalized Jaccard coefficient measure (Jaccard,
1901), Equation 3, for the calculation of similarity between
two proteins.

Jacgen � ∑n
i�1
ϵi/∑n

i�1
zi (3)

where n is the total number of unique keys in proteins p1 and p2.
Equivalence ϵ for a given key ki in two different proteins p1 and

p2 is defined as ϵi � kp1
i ∩ kp2

i where ∩ is defined by the minimum of
the count of corresponding keys.

Difference z for a given key ki in a pair of proteins is defined
as zi � kp1

i ∪ kp2
i

where ∪ is defined by the maximum of the count of
corresponding keys. The count of a key is the number of times
that key occurs (occurrence frequency) within a protein.

Once a similarity matrix is generated, the distance matrix is
derived simply by taking each value in the similarity matrix and
subtracting it from 1. Protein structure clustering is visualized using
on Average Linkage Clustering (Ackerman and Ben-David, 2016). A
six-layer fully connected neural network is used for classifying
protein structures (Kondra et al., 2022). Structural images were
prepared using the Visual Molecular Dynamics (VMD) package
(Humphrey et al., 1996).

2.3 Definition of distinct, total, distinct
common, total common, and specific keys

The TSR-based method utilizes different types of keys so that the
clustering results can be interpreted. A key represents a triangle that
is made up of three amino acids. Each triangle represents the
smallest substructure of the protein being analyzed. Every
possible combination of three amino acids in a protein’s amino
acid sequence is detected and generated into a substructure by the
TSR algorithm. Each key contains a specific geometry that allows for
the further classification of the substructure. Five types of TSR keys
(Kondra et al., 2022) are used to analyze the results. Distinct keys
represent all keys for each individual protein without considering
the key frequency. Total keys represent all the distinct keys but also
account for key frequency. Distinct common keys represent all the
common substructures that are shared amongst all proteins in a
dataset. In other words, a triangle that is made up of the same three
amino acids that have similar angles and distances and is found in all
proteins of the dataset is identified as a common key. Total common
keys represent all distinct common keys accounting for frequency.
Specific keys represent substructures that are unique to a certain
protein (sub)family. Determination of common and specific keys are
useful in a protein structure analysis because common keys can
provide information on how a protein is folded and specific keys are
the structural foundations for motif discovery.

2.4 Dataset preparation and analysis

We have prepared a dataset containing approximately
200 SARS-CoV-2 spike proteins and their interacting mAbs. The
chains of the spike proteins and their mAbs were visualized using the
VMD software to ensure that the correct chains are selected for
probing spike - heavy chain interactions, spike - light chain
interactions and heavy chain - light chain interactions. In this
study, we aimed to include all RBDs of spike structures
complexed with one or more mAbs. There are full-length spike
structures complexed with one or more mAbs. To avoid a potential
structural effect of the outside RBD region of the spike on the RBD,
those full-length spike structures were not included in this study.
FDA approved mAb drugs: sotrovimab (six structures),
bamlanivimab (one structure), cilgavimab (one structure) and
tixagevimab (one structure) are included in the dataset. The PDB
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IDs, chain information, annotated CDRH3 and CDRL3, spike -
heavy chain interfaces and spike - light chain interfaces can be found
in the Supplementary Material S1. All proteins in the dataset were
selected from the PDB (Berman et al., 2000).

2.5 Development of a new version of the
TSR-based method using all atoms

We have previously reported the TSR-based method using Cα
atoms to quantify protein (sub)structures and motif discovery
(Kondra et al., 2021). To quantify the structures of the side chain
of a protein, we have developed a new version of the TSR-based
method where every possible triangle is constituted from all the
atoms in a protein, especially those in a binding site. C, N, O and S
atoms were assigned unique integer labels. The bin boundaries for
Theta were used the same as we reported for the TSR algorithm
using Cα atoms (Kondra et al., 2021). Seventeen bins with a one-
angstrom interval were used for MaxDist. Equation 2 is used to
generate keys when utilizing all atoms.

2.6 Development of a new version of the
TSR-based method using cross keys

A cross TSR key is defined based on the location of the atoms
associated with the vertices. Specifically, these are keys are
constructed from triangles where one of the atoms is in one
polypeptide and the other two are in a different polypeptide. The
cross keys allow the 3D structure of the interface of a molecular
complex to be represented and the similarities between different
interfaces to be quantified.

2.7 Development of a new TSR algorithm for
quantifying structures of amino acids

The TSR concept was used to develop a new algorithm for
quantifying the similarities between structures of different amino
acids and those between same amino acids at the different positions.
The bin boundaries for Theta and MaxDist are the same as those for
the TSR algorithms for using all atoms.

2.8 Sequence alignment

SnapGene was applied to conduct multiple sequence alignments.
Sequence alignment and phylogenetic analysis were done using
MEGA7 (Kumar et al., 2016). TM-align was used for pairwise
sequence alignment (Zhang and Skolnick, 2005), and Muscle
algorithm is used for multiple sequence alignment (Edgar, 2004).

2.9 Statistical analysis

t-test was used to identify statistical differences between
different structural comparison methods. A threshold of p <
0.05 was used to determine significance.

3 Results

3.1 Global structural comparison of spike
and monoclonal antibodies and
interpretation of clustering results

More than 200 depositions of mAb structures against spike
proteins are currently accessible in the PDB. Based on these available
structures determined by experiments, it is possible to conduct a
comprehensive study for estimating the comparative models of
mAbs against the spike surface antigens. The structure of an
antibody forms a Y-shaped glycoprotein that is composed of two
identical heavy and two identical light chains. The first step of the
comprehensive study is to compare the global structures of variable
regions of heavy and light chains of mAbs that bind to target
antigens. The hierarchical clustering result obtained using
pairwise structure similarities based on the TSR keys calculated
using Cα atoms (CA-TSR keys) demonstrates two distinct clusters: a
mAb cluster and a spike cluster. The mAb cluster can be further
divided into heavy chain and light chain clusters indicating that
heavy chains are structurally different from light chains (Figure 1A).
Light chains (43.9%) have a slightly higher structural similarity on
average than heavy chains (42.4%). Spike proteins (52.4%) have
higher structural similarity on average than both heavy chains and
light chains of mAbs (Figure 1B). As the first step in interpreting
structure similarity, we have performed sequence alignment
analyses: the pairwise sequence using TM-align method (Zhang
and Skolnick, 2005) and the multiple sequence using Muscle
algorithm (Edgar, 2004). The sequence alignment study shows
high sequence similarities (Supplementary Figure S2). The trends
for structural similarities using the TSR-based method and for
sequence similarities using the pairwise sequence comparison are
the same. The multiple sequence alignment analysis shows that the
heavy chains have a higher sequence similarity than the light chains,
but an opposite scenario is observed when the corresponding
structural similarities are compared. To verify the hierarchical
clustering results, we have performed MDS and classification
analyses. Both MDS (Figure 1C) and classification
(Supplementary Figures S3A, B) results agree with the results
from the hierarchical clustering (Figure 1A). We have identified
common (3.61 × 103/5.18 × 105 = 0.697%) and Common (1.31 × 104/
1.54 × 106 = 0.851%) TSR keys. The result demonstrates that only a
small portion of the substructures are conserved across spike
proteins, as well as for heavy and light chains (Figure 1D). The
conserved substructures represented by common keys have shorter
MaxDist values and larger Theta values; further, they enrich certain
types of amino acids (valine for spike proteins and serine for heavy
and light chains) (Supplementary Figures S4A–D). When
considering 167 spike proteins as one group, 233 heavy chains as
another group, and 233 light chains as the third group, the three
groups share a significant number of common substructures
(948213/1333811 = 71.1%) (Supplementary Figure S5). Small
percentages of the Specific TSR keys were identified for the spike
(0.496%), heavy chain (5.88%) and light chain (1.37%) groups
(Supplementary Figure S5). The spike proteins share a high
amino acid sequence similarity (on average 98.7%–98.9%)
(Supplementary Figure S2). We carefully examined each spike
structure and found that while some are variants (e.g., Beta,
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Delta, Omicron), others are just spike proteins alone or protein
complexes with ACE2 and/or mAbs. This suggests that mutations
and/or the binding of an interacting protein could lead to substantial
structural changes. The specific TSR keys were identified for certain
subsets of spike proteins (Supplementary Figure S6). In conclusion,
the TSR-based method can distinguish structures of heavy chains
from those of light chains. It provides a foundation for further
substructural analyses.

3.2 Development of the TSR-based method
for quantifying conformational changes
upon binding of an interacting polypeptide

Proteins are inherently flexible molecules due to the non-
covalent nature of their folded 3D structures, but crystal
structures often make a protein appear as if it exists in a single
state (Gutteridge and Thornton, 2005). However, a protein exists in
a range of dynamic conformations that are triggered at a local
binding site and propagated to the neighboring and distal regions
upon the binding of an interacting protein. Dynamic conformations
of a protein are often intimately coupled to its biochemical function.
The objective of this section is to demonstrate that TSR keys offer a
convenient way to probe such conformational changes. First, we will
show the results on tracing global structural changes. Second, we will
focus our discussion on structural changes at binding sites.

To provide a detailed interpretation of global and local
conformational changes, we prepared a small dataset containing
the maximum number of available spike structures complexed with
the same mAbs. Eleven spike proteins complexed with CR3022 were
found by searching the PDB. CR3022, a member of Class 4 mAbs,
promotes the destruction of the pre-fusion spike protein trimer by
perturbing the folding of both the N-terminal domain (NTD) and
RBD (Huo et al., 2020a). These eleven structures can be divided into
nine groups: spike protein group with CR3022 alone (two
structures) (Supplementary Figure S7A), spike protein group with
CR3022 and NB-D4 (two structures), spike protein group with
CR3022 and CV2-1169 (one structure), spike protein group with
CR3022 and BG4-25 (one structure), spike protein group with
CR3022 and C099 (one structure), spike protein group with
CR3022 and CC12.1 (one structure) (Supplementary Figure S7B),
spike protein group with CR3022 and CC12.3 (one structure)
(Supplementary Figure S7C), spike protein group with
CR3022 and CV05-163 (one structure) and spike protein group
with CR3022 and NB-H11-H4 (one structure). CC12.1 and
CC12.3 belong to Class 1 mAbs. Both overlap with the
ACE2 binding site, but not with the CR3022 epitope. CR3022
(Kd = 6.3 nM or Kd = 15 or 30 nM) (Tian et al., 2020; Huo
et al., 2020b) has a binding affinity similar to that of CC12.1
(Kd = 17 nM) and CC12.3 (Kd = 14 nM) (Yuan et al., 2020). The
structures of spike proteins complexed with either CC12.1 or
CC12.3 are available in the PDB (Supplementary Figures S7C,

FIGURE 1
Clustering and MDS studies of the spike proteins and their monoclonal antibodies. (a) The clustering heatmap shows the hierarchical clustering
result of the spike proteins and their monoclonal antibodies (heavy and light chains). The numbers of the polypeptides are indicated. The dissimilarity
values are indicated in the upper left corner. This is applied to all the clustering heatmaps in this study. The PDB IDs, and chain and class labels can be
found in Supplementary Material S1A. The complete list of the clustering result in the same order as the clustering heatmap are provided in
Supplementary Material S1B; (b) The structural similarity of the spike proteins, heavy chains and light chains and all the polypeptides are shown. The
average values and SDs are indicated; (c) TheMDS analysis of the spike proteins and their monoclonal antibodies (heavy and light chains); (d) The distinct,
total, distinct common and total common keys of the spike proteins, heavy chains, light chains and all three polypeptides were calculated and are present.
The number of those keys are labeled.
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D). Therefore, we included two more structures in the dataset for
quantifying the conformational change of spike - CR3022 upon the
binding of CC12.1 or CC12.3 as well as the conformational change
of spike - CC12.1 or spike - CC12.3 upon the binding of CR3022.
Two structures of the spike alone and the spike with ACE2 were
included as the controls. The final version of this small dataset
contains a total of fifteen structures. This dataset has a total of
680,133 distinct keys. We have organized the structures in a
hierarchical fashion that depends on whether the spike has an
interacting polypeptide and whether the spike binds to ACE2,
one mAb, or more mAbs (Figure 2A). The hierarchical structure
of spike proteins has six levels (Supplementary Figure S8). To avoid
accounting for the effect of different numbers of amino acids into
conformational changes, we have trimmed the structures to make
sure all fifteen structures have identical amino acid sequences.

3.2.1 TSR keys are used to quantify conformational
changes of proteins and interpret the results in the
context of a hierarchical organization

The hierarchical cluster analysis of spike proteins shows two
clusters. The first one, a smaller cluster, contains the spike alone and
the spike with ACE2. The other, larger cluster contains spike
proteins with mAbs (Figure 2B). No two structures are identical,
even though they all have the same amino acid sequences. The
average of the pairwise structural similarities is 53.6% (Figure 2C).
The clustering result based on the hierarchical clustering method
(Figure 2B) does not perfectly match with the hierarchical structure

arranged based on the number of interacting polypeptides and
which polypeptide (polypeptides) binds (bind) to spike proteins
(Figure 2A; Supplementary Figure S8). Specific keys exclusively
belonging to each node at every level of the hierarchical
arrangement were identified. The specific keys not only serve as
decision makers for each node to distinguish itself from other nodes,
but they are also used to quantify conformational changes
(Figure 2A; Supplementary Figure S8). For example, 19 distinct
keys were identified as specific to the spike proteins complexed with
CR3022 and two polypeptides at the level 4 (Figure 2A;
Supplementary Figure S8). Two representative keys (7799302 and
8756479) out of 19 are shown in Supplementary Figure S9. The
7799302-associated triangle is formed from Cys361, Val362 and
Cys525 (Supplementary Figure S9A) and the 8756479-associated
triangle is constituted from Lys417, Arg454 and Leu455
(Supplementary Figure S9B). The latter triangle is close to
Gly97 of the heavy chain of CC12.3 (Supplementary Figure S9B).
Figure 3 shows another representative example of how specific keys
can be used to quantify conformational changes. A total of
13,986 distinct specific keys (13,986/680,133 = 2.06%) are found
to belong to the structure of the spike alone and are not found in any
other fourteen structures in the dataset (Figure 3A). Similarly,
180 distinct specific keys (180/680,133 = 0.0265%) are found for
the spike complexed with CR3022 only and 1156 distinct specific
keys (1156/680,133 = 0.0170%) are identified for the spike
complexed with both CR3022 and C099 (Figure 3A). The key set
with 180 specific keys represents the substructure unique to the spike

FIGURE 2
Hierarchical clustering of the spike proteins with or without an interacting protein. (a) The structures of the spike proteins were organized in a
hierarchical fashion from the root to leaf nodes based on whether the spike proteins interact with CR3022 alone or an additional mAb. The free spike
protein and the spike-ACE2 complex are included as the references. The numbers of the specific keys for each level of the hierarchical organization are
indicated; (b) The clustering heatmap shows the hierarchical clustering result of the spike proteins. mAbs and PDB IDs are indicated; (c) The pairwise
structural similarity of the spike proteins presented in (b) is shown. The average of the structural similarity is labeled; (a–c), A total fifteen structures are
presented in the panels of (a–c).
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complexed only with CR3022. Two representative keys
(6787418 and 9292400) out of 180 specific keys are shown in
Figures 3B, C. The key of 6787418 was calculated from the
triangle constituted from Pro384, Thr385 and Leu 390 of the
spike. This triangle is close to Ser100 of the CR3022 heavy chain
(Figure 3B). Similarly, the key set containing 1156 specific keys
represents the substructure unique to the spike complexed
with both CR3022 and C099. Two representative keys
(9343121 and 9348198) out of 1156 specific keys are shown
in Figure 3D. These two keys were calculated from two triangles:
9343121 formed by Gln474, Ala475 and Asn487 and
9348198 formed by Ala475, Gly476 and Asn487. The two
triangles share a common edge and are close to three amino
acids (Gly26, Asn32 and Arg97) of the C099 heavy chain
(Figure 3D). The numbers of amino acids, distinct keys, total
keys, distinct common keys and total common keys are
summarized in Supplementary Table S1.

We can use the same approach to study the hierarchical
relationships of the heavy and light chains of CR3022. The
hierarchical cluster analysis shows that the heavy chains of
CR3022 are grouped together and the light chains of CR3022 are
also grouped together (Supplementary Figure S10). The hierarchical
organization of the heavy chains of CR3022 is shown in
Supplementary Figure S11. The specific keys are identified for
every conformation. 154 specific keys were identified as belonging
uniquely to the heavy chain of CR3022. They are not found in nine

heavy chains of C099 (one), CC12.1 (two), CC12.3 (two), BG4-25
(one), CV05-163 (one) and CV2-1169 (one), nor in the light chains
of CR3022 and all the other corresponding mAbs and ACE2. Two
representative keys (5958107, 5960137) out of 154 are shown in
Supplementary Figure S12. A total of 16 keys were identified as
specific to the heavy chains of CR3022 complexed only the spike.
Three specific keys (7114234, 7236018, 7666384) out of 16 are shown
in Supplementary Figure S13. Those key-associated triangles are
close to Phe377 and Cys379 of the spike (Supplementary Figure
S12). Additionally, 4 keys were identified exclusively for the heavy
chains of CR3022 complexed with the spike and other mAbs.
Supplementary Figure S14 shows three specific keys (7263475,
7666383, 8866112) out of 4. The key7666383-associated triangle
is close to Phe373 of the spike. In the results above from the study of
the spike proteins and the heavy chains, we have demonstrated that
TSR keys can be used to interpret structural differences and quantify
conformational changes.

3.2.2 TSR keys are used to quantify conformational
changes of binding sites

To demonstrate the application of the TSR-based method in
quantifying local conformational changes, we focused on three
binding sites of the spike protein: a site for binding of heavy
chain of CR3022, a site for binding of light chain of CR3022 and
a site for interacting with ACE2 (Figure 4A). As stated earlier, the
spike proteins in the dataset all have identical amino acid sequences

FIGURE 3
An example of how the TSR-based method can quantify structural changes is illustrated. (a) The structural changes of spike upon the binding of
CR3022 are shown. The structural changes of C099 are also shown after it binds to spike and the structural changes of the spike-CR3022 complex. The
number of specific keys for spike are indicated; (b-d) The representative triangles associated with the selected specific keys for spike complexed with
CR3022 (b, c) and spike complexed with both CR3022 and C099 (d) are illustrated. Proteins, amino acids and keys are indicated; (a–d) PDB IDs
are indicated.
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(Figure 4A). The heavy and light chains of CR3022 physically
interact with spike proteins. First, we will discuss these
interactions. The binding of CR3022 to the spike protein could
cause distal conformational changes at the ACE2 binding. It was
reported that CR3022 binds tightly to the outside of RBM and
allosterically perturbs ACE2 binding (Huo et al., 2020b). Second, we
will discuss the distal conformational changes.

We used 5 Å as the cutoff to define an interface; that is, the
interface includes all amino acid pairs between two molecules whose
atomic distance falls within 5 Å. We performed hierarchical cluster
analyses of the spike regions at the interfaces with either the heavy
chains (Supplementary Figure S15A) or the light chains
(Supplementary Figure S15B) of CR3022. The spike regions that
interact with the heavy chains of CR3022 are structurally different
(Supplementary Figures S15A, C). A scenario with greater structural
diversity is observed for the spike regions that interact with the light
chains of CR3022 (Supplementary Figures S15B, C). These
structural changes could be due to (i) a difference in amino acid
sequences of the CR3022 heavy (Supplementary Figure S16) or light
(Supplementary Figure S17) chains, (ii) allosteric effect of other

mAbs besides CR3022 (For example, binding C099 to the alters the
spike region that interacts with CR3022. C099 belongs to Class
1 mAbs and has broad neutralizing activities (Witte et al., 2023).
(Supplementary Figure S18) or (iii) a difference in amino acid
sequences of the spike protein (They were trimmed to have
identical sequences, but local structure difference caused by
different sizes of spike RBD regions are preserved). The
structural differences of the spike regions that interact with
CR3022 can be quantified by the numbers of specific keys that
exclusively belong to the situations where spike proteins interact
with CR3022 alone or CR3022 plus another mAb (Supplementary
Figure S19). All the spike proteins (Supplementary Figures S15A, B)
interact with CR3022. It will be interesting to know whether there
are conserved substructures in the regions that interact with
CR3022. Nineteen common keys were identified for the spike
regions interacting with the heavy chains of CR3022 (Figure 4B).
Two representative common keys out of the nineteen are shown in
Figure 4C. One common key was identified for the spike regions that
interact with the light chains of CR3022 (Figure 4B). It is shown
in Figure 4D.

FIGURE 4
Different types of keys of the spike regions that interact with the heavy chains of CR3022 compared with those interacting with the light chains of
CR3022 are shown. (a) The multiple sequence alignment shows the regions of spike that interact with the heavy chain and light chain of CR3022 and
ACE2. Green color represents the spike region that interact with ACE2; (b) The distinct, total, distinct common and total common keys for the spike
regions that interact with the heavy and light chains of CR3022 were calculated and are presented. The average is indicated; (c, d) The triangles
associated with the common keys are shown for the spike regions that interact with the heavy chain (c) or the light chain (d) of CR3022. PDB IDs, amino
acids and keys are indicated; (a, c-d) blue color represents the spike region that interacts with the heavy chain of CR3022 and red color represents the
spike region that interacts with the light chain of CR3022.
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We have demonstrated that the specific and common keys can be
used to quantify structural similarity and dissimilarity of the protein
binding sites. To evaluate the allosteric effect of CR3022 binding on
the ACE2 binding site of the spike protein, we used 3.5 Å as the
cutoff to select spike residues that closely interact with ACE2. Seven
amino acids (Tyr449, 489, 505, Asn487, 501, Gln493 and Thr500)
satisfied this criterion (Figure 5A). These seven amino acids of the
spike proteins have high structural diversity (Figures 5B, C) and do
not share any common substructures. Specific keys were identified
for the most spike groups depending on whether they have an
interacting polypeptide and which polypeptide(s) interacts
(interact) with the spike proteins (Figure 5D).

3.3 Introducing two new TSR strategies for
probing spike - mAb interactions

Life is about relationships between molecules, not a property of
any single molecule (Zuckerkandl et al., 1962). To understand
assembly of protein complexes, one must understand biochemical
underpinnings that facilitate exact and specific interactions at the
interface. To achieve this goal, we have developed two new strategies:
(i) TSR keys using all atoms including Cα atoms and (ii) cross-TSR
keys that are specifically designed for probing molecular
interactions. The cross keys are calculated from triangles

constituted from 1 Cα atom of one molecule and 2 Cα atoms
from another molecule. They are named CCA keys (Figure 6A).
The cross keys at an interface are meaningful. When cross keys at an
interface are calculated using only Cα atoms of the amino acid pairs
between two molecules whose atomic distance falls within 5 Å, then
they are named CCAI keys (Figure 6B). CCAI keys are a subset of
CCA keys. When cross keys are calculated using all atoms at an
interface whose pairwise atomic distance between two molecules are
within 5 Å, then they are named CATOM keys (Figure 6C).

In this work, we introduce and study the concept of cross keys
between two proteins for the first time. We compare the applications
of different types of cross keys in clustering analyses of structures
arising at molecular interaction surfaces. The cluster analysis using
CATOM keys shows two large clusters (Figure 7A) while the
analyses using either CCAI (Figure 7B) or CCA (Supplementary
Figure S20) keys reveal several small clusters. As expected, six spike -
sotrovimab complexes were grouped in one small cluster when
CCAI keys were used (Figure 7B). A similar scenario was observed
for the case using CCA keys. As expected, the structural similarity
using CCAI keys is much smaller than those using CATOM and
CCA keys (Figure 7C). The numbers of distinct and total keys using
CATOM, CCAI and CCA are shown in Supplementary Figure S21.
Distinct keys represent different types of substructures whereas total
keys represent entire structures using the smallest units (triangle).
One of the reasons why the structural similarity using CCAI keys is

FIGURE 5
The clustering study shows the steric effect of the binding of CR3022 on the ACE2 binding of spike. (a) The seven amino acids that have close
interactions with ACE2 are shown. The PDB IDs, proteins and amino acids are indicated. Red color represents ACE2 and blue color represents spike; (b)
The result of the hierarchical clustering study is illustrated. PDB IDs andwith orwithout ACE2 ormAbs are indicated; (c) The pairwise structural similarity of
the spike proteins presented in (b) is shown. The average of the structural similarity is labeled; (d) The numbers of the specific keys of the seven
amino acids that closely interact with ACE2 were calculated and are presented. The average values are indicated.
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FIGURE 6
The schema for different types of cross keys between two molecules is shown. (a) An example of the cross TSR keys only using Cα atoms (CCA TSR
keys) is shown; (b) An example of the cross TSR keys only using Cα atoms (CCA TSR keys) at the interface between two molecules (CCAI) is illustrated. (c)
An example of the cross TSR keys using all atoms between two molecules (CATOM TSR keys) is shown; (b, c), The cutoff distance for the interface is 5 Å.

FIGURE 7
Hierarchical cluster analyses of interface between spike and mAbs using different types of cross TSR keys. (a, b) The hierarchical clustering using
CATOM (a) and CCAI (a) keys. The numbers of total structures are labeled. Group A and Group B and numbers of structures in Group A and Group B are
labeled for the clustering using CATOM keys (a). The cutoff distance for the interface between spike andmAbs (heavy and light chains together) is 5 Å (b);
(c) Structural similarities using CATOM (All-Atom), CCAI (CA_5 Å) and CCA (CA_All) were calculated and are present. Average values are labeled. SDs
are shown; (d) Percentages of distinct and total common keys using CATOM (All-Atom), CCAI (CA_5 Å) andCCA (CA_All) were calculated and are present.
Distinct Common Key% = Number of Distinct Common Keys/Number of Distinct Keys. Total Common Key% = Number of Total Common Keys/Number
of Total Keys. Average values are labeled. SDs are shown.
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smaller is because spike - mAb pairs using CCAI keys do not share
common substructures, demonstrating a high diversity among the
backbone structures at the molecular interface. In contrast, the high
percentages of common keys were observed for the situations using
both CCA and CATOM keys (Figure 7D).

To demonstrate the specificity of cross keys, we focused on the
spike - CR3022 interfaces. We chose CCAI keys as the representative
example. The cluster analysis shows that the eleven interface
structures are diverse although all are spike - CR3022 interfaces
(Figure 8A). Specific CCAI keys were also identified for each of the
eleven spike - CR3022 interfaces (Figure 8B). Three specific CCAI
keys were identified as the representative of the spike - CR3022
alone interface when the spike is in a complex with only
CR3022 (Figure 8C).

As stated earlier, mAbs can be divided into four classes
depending on up or down conformation of RBD and whether a
binding site is within RBM or outside RBM. Thus, we aimed to test
whether cross keys can distinguish different types of mAbs. We
prepared a small dataset containing 10 members for each class. The
criterion for choosing such members is to keep high diversity by
removing the mAbs having high sequence similarities. The cluster
analysis using CCA keys demonstrates that the method cannot
distinguish one class from other classes for both the spike -
heavy chain pairs and the spike - light chain pairs
(Supplementary Figure S22). This result raised the question
whether one-molecule (Cα) keys can distinguish each class. The
cluster analysis using one-molecule keys cannot distinguish different
types of classes although such keys can nicely separate the heavy and
light chains (Supplementary Figure S23). We have shown that

applying size filtering can improve clustering (Kondra et al.,
2022), so we applied this to CCA keys. The clustering result
shows that CCA keys with the size filtering can distinguish Class
1 from Classes 2, 3 and 4 for both the spike - heavy chain and the
spike - light chain pairs (Supplementary Figure S24). The method,
however, cannot distinguish Classes 2, 3 and 4. The size filtering
shows that the CCA keys associated with smaller triangles will only
help distinguish Class 1 from other classes. Next, we performed
another cluster analysis using CCAI keys. If CCAI keys are used, the
method can distinguish Class 1 only for the spike - heavy chain
interfaces but not for the spike - light chain interfaces
(Supplementary Figure S25). To support this clustering result,
thirty-two specific CCAI keys were identified exclusively for the
spike - heavy chain interfaces of Class 1 mAbs and no specific CCAI
keys were identified for other Classes.

3.4 Application of the TSR-based method in
probing structural differences of CDRH3 and
CDRL3 of mAbs

Antibodies are formed by heavy and light chains composed of
constant and variable regions. The latter include six CDRs (three:
CDRL1, CDRL2 and CDRL3, for a light chain and three: CDRH1,
CDRH2 and CDRH3, for a heavy chain) that constitute the antigen
binding site (Gabrielli et al., 2009). The length and composition of
the CDR sequences of mAbs are highly variable, especially in the
CDR3 due to the gene recombination mechanism (Dondelinger
et al., 2018). Despite sequence diversity, five out of six CDRs
(CDRH3 being the exception) in antibodies assume a limited
number of conformations called canonical structures (Teplyakov
and Gilliland, 2014). Notably, CDRH3 plays a crucial role in
mediating individual antibody recognition, sometimes by
changing its conformation upon antibody binding (Shirai et al.,
1996). The other five CDRs are also more or less implicated in
increasing binding affinity to the antibody and some contact
residues can even be situated within framework of variable
regions (Davies and Cohen, 1996). We will focus on the
discussion on CDRH3 and CDRL3 in this section.

The cluster analysis of the heavy chains using CA keys shows
two clusters. One cluster contains smaller variable regions of the
heavy chains (107–129 amino acids) and the other cluster has
relatively larger variable regions (170–232 amino acids)
(Supplementary Figure S26A). The cluster analysis of only the
CDRH3 regions using CA keys shows a few very small clusters
(Supplementary Figure S26B). We identified two such small clusters:
one has twelve CDRH3s that have an identical amino acid sequence
[AGGSGISTPMDV, named Group A (GA)] and the other has
eleven CDRH3s that also have an identical amino sequence
[AKDGGKLWVYYFDY, named Group B (GB)] (Supplementary
Figure S26C). The pairwise structure comparisons demonstrated a
low similarity on average for CDRH3 (0.883%) and a relatively high
average similarity for the heavy chains (25.8%) (Supplementary
Figure S26D). GA and GB have structural similarities of 21.2%
and 24.5%, respectively (Supplementary Figure S33D) even GA has
the same amino acid sequences as well as GB (Supplementary Figure
S26C). We performed similar analyses of the light chains and
CDRL3s (Supplementary Figure 27a–27d). CDRL3s have a low

FIGURE 8
Hierarchical cluster analysis of spike and CR3022. (a) The
hierarchical clustering analysis shows structural relationships of the
interface between spike and CR3022. Two of eleven spike -
CR3022 pairs do not have a second mAb besides CR3022. The
rest nine spike - CR3022 pairs have one additionalmAb. The additional
mAbs are labeled. PDB IDs are shown; (b) Specific keys for each spike -
CR3022 pair were calculated and are present. Average values are
labeled; (c) Representative specific keys for a spike - CR3022 pair
without an additional mAb are shown. PDB ID, amino acids and keys
are labeled. S, spike; H, heavy chain of CR3022; L, light chain of
CR3022. (a–c) The cutoff distance for the interface between spike and
mAbs (heavy and light chains together) is 5 Å.
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structural similarity (1.06%) (Supplementary Figure S27D) and
three small clusters: CA, CD and DN were identified
(Supplementary Figure S27C). Each of the three clusters (CA, CD
and DN) has the same amino acid sequence but different structures
(Supplementary Figures S27C, D). It is well-known that CDRH3 and
CDRL3 are highly diverse. The TSR keys can quantify such
structural diversities.

Besides quantifying structural differences, TSR keys can also be
used to interpret the clustering results. To do so, we calculated
common and specific keys. We could not find common keys for
CDRH3 (Supplementary Figure S28) or CDRL3 (Supplementary
Figure S29), further demonstrating their high structural diversities.
As expected, we have identified common substructures of GA, GB,
CA, CD and DN because the samples in each group have the same
amino acid sequences (Supplementary Figures S28, S29). One
specific key and eleven specific keys were identified for GA and
GB, respectively (Supplementary Figure S30A). One representative
triangle for the specific key (5960137) exclusively belonging to GA is
shown in Supplementary Figure S30B. This key is constituted from
Pro100A, Met100B and Asp101 of CDRH3 that have a close
interaction with Lys386 and Ser383 of the spike (Supplementary
Figure S30B). Two specific keys were identified for CA and no specific
keys were identified for CD and DN (Supplementary Figure S31).

We have shown high structural diversities of the backbones of
CDRH3 and CDRL3 using CA keys. We wanted to know the
similarity and difference of the entire structures of
CDRH3 compared with the entire structures of CDRL3. Thus, we
have developed a new version of the TSR algorithm using all atoms.
We name such keys as ATOM TSR keys. The hierarchical cluster
studies show six clusters of CDRH3 (Figure 9A) and three clusters of

CDRL3 (Figure 9B). The CDRH3 entire structures represented by
ATOM TSR keys are more similar (Average structure similarity:
41.6%) (Figure 9C) than the backbone structures represented by CA
keys (Average structure similarity: 0.883%) (Supplementary Figure
S26D). A similar scenario was observed for CDRL3 (57.6% for
CDRL3 entire structures vs. 1.06% for backbone structures)
(Figure 9C and Supplementary Figure S26D). The common
substructures represented by common keys were identified for
both CDRH3 and CDRL3 (Figure 9D). Combining the results
using CA and ATOM TSR keys, we show that the backbones of
CDRH3 (CDRL3) are highly diverse and CDRH3 (CDRL3) share a
significant portion of similar substructures.

3.5 Development of a new version of the TSR
algorithm for quantifying amino acid
structures

3.5.1 Introduction of the new TSR algorithm for
quantifying amino acid structures

In the algorithm, given a dataset, we first select all the atoms of
each amino acid of every protein and find all possible triangles
formed by all the atoms for each amino acid (Figure 10A). Second,
we calculate TSR keys for every triangle using Equation 2 and key
occurrence frequencies. Third, we quantify structure similarity or
dissimilarity of every amino acid pair using the Generalized Jaccard
similarity through computing identical and nonidentical keys and
their frequencies (Figure 10A). The approach does not require prior
superimposition of amino acid 3D structures and is customized to be
invariant to rotation and translation, but sensitive to size of the

FIGURE 9
The side-by-side comparison of CDRH3 and CDRL3 using hierarchical clustering analyses and different types of TSR keys are shown. (a, b) The
hierarchical clustering analyses of CDRH3 (a) and CDRL3 (b) using TSR CATOM keys. Numbers of CDRH3 (a) and CDRL3 (b) and the numbers of the
CDRH3 (a) and CDRL3 (b) clusters and numbers of CDRH3 (a) and CDRL3 (b) in each cluster are indicated; (c) The pairwise structural similarity of
CDRH3 and CDRL3 studied in (a, b)was calculated and is presented. (d) The numbers of distinct, total, distinct common and total common CATOM
keys of CDHR3 and CDRL3 studied in a-c were calculated and are presented; (c, d) The average values are labeled.
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triangles. We named the keys for amino acids intra-residual (IR)
TSR keys. Common and specific keys can be calculated. The keys
present in every amino acid, a certain amino acid (e.g., Tyr) or a
certain type of amino acids (e.g., aromatic amino acids) of a given
dataset are defined common keys and the keys exclusively belonging
to a certain amino acid or a certain type of amino acids are defined
specific keys. The representative ACE2 binding site of the spike
contains three Tyr, two Asn, one Gln and one Thr (Figure 5A). If a
specific key or a specific key set (two or more keys) can be identified
for a particular Tyr in the ACE2 binding site but not all other Tyr
residues across the spike proteins in the dataset, it will provide
insight into the role of the Tyr of the spike in ACE2 binding. If a
common key or a common key set can be identified for all three Tyr
residues in the ACE2 binding site across the spike proteins, it will
also help to understand the general role of the Tyr residue in the
ACE2 binding site. The main objectives of the IR-TSR algorithm are
to quantify structure similarity and dissimilarity of amino acids and
identify common and specific keys for mechanistic understanding of
binding sites or conformational changes (Figure 10B).

3.5.2 Evaluation of the IR-TSR algorithm
To evaluate the performance of the IR-TSR algorithm, we will

focus on (i) the clustering and classification of twenty different
amino acids and (ii) more detailed studies of Tyr, Leu and Ile. The
hierarchical cluster analysis demonstrates that the IR-TSR algorithm
can distinguish different categories of amino acids (e.g., aromatic,
alcohol-containing, amide-containing/acidic, basic, sulfur-
containing, small aliphatic), but as expected, cannot separate all
twenty different amino acids (Figure 11A). For instance, we
observed a cluster containing all aromatic amino acids (Tyr, Phe
and Trp). However, some Tyr and Phe are grouped together
(Figure 11A). A similar scenario was observed for the MDS

analysis (Supplementary Figure S32). In contrast to the cluster
study, the classification study shows that the ML approach can
distinguish the twenty amino acids (Figure 11B; Supplementary
Figure S33). The representative pairwise structure similarities are
shown in Figure 11C. As expected, we observed that intra amino
acids (between same amino acids) have higher structure similarities
on average than inter amino acids (between different amino acids)
(Figure 11C). We calculated the IR-TSR keys for all the amino acids
of the spike proteins as well as the heavy and light chains. Based on
those TSR keys from a total of 123,100 amino acids, we generated a
chart showing the pairwise structure similarity of twenty amino
acids (Figure 11D). We named this chart TSR-STRSUM. The
highest structure similarity was observed for the Ala-Ala pairs
and the lowest structure similarity was found in the Gly-Trp and
Gly-Tyr pairs (Figure 11D). The lowest intra residue structure
similarity was observed in the Met-Met pairs (Figure 11D;
Supplementary Figure S34). The popular amino acid substitution
matrices for protein sequence alignments are BLOSUM matrices
where the substitution score is based on the rates at which various
amino acids in proteins are being substituted by other residues over
time, which is done by counting the relative frequencies of amino
acids and their substitution probabilities (Trivedi and Nagarajaram,
2020). Sequence alignments make use of amino acid substitution
matrices to discover structural, functional, and evolutionary
relations of proteins. TSR-STRSUM provides an alternative way,
that is structure-based, of using amino acid substitution matrices for
sequence alignment and structural comparison.

Because the most abundant amino acid in the ACE2 binding site
is Tyr, we next focused on the more detailed evaluations of Tyr, Leu
and Ile. The hierarchical cluster study shows two clusters of all Tyr
residues from the spike proteins (Figure 12A). We also observed two
Tyr clusters of the mAb heavy chains (Figure 12B) and the light

FIGURE 10
An overview of the design of the IR-TSR algorithm is present. (a) The schema of converting amino acid geometries to integers (IR-TSR keys) and
calculating pairwise structural similarity using calculated keys and Generalized Jaccard coefficient approach is illustrated. An example of common and
specific keys is shown; (b) The IR-TSR key generation formula and the main objectives are shown.
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chains (Figure 12C). The MDS analyses confirmed the two Tyr
clusters for the spike proteins (Figure 12D), the heavy chains
(Figure 12E) and the light chains (Figure 12F). We observed two
Tyr clusters using either the hierarchical (Supplementary Figure
S35A) or MDS (Supplementary Figure S35B) approach when we
combined Tyr residues from the spike proteins and the heavy and
light chains. The classification study confirmed the clustering result
of two Tyr clusters (Supplementary Figures S35C, D).
Representative Tyr residues from the two clusters are shown in
Supplementary Figures S36A–E. The Tyr residues of the spike
proteins and heavy and light chains have a total of 718 distinct
IR-TSR keys (Supplementary Figure S37). The Tyr residues from
each polypeptide have similar numbers of distinct keys
(Supplementary Figures S38A–C). Only a small number of
specific keys were identified exclusively for the spike proteins and
the heavy and light chains (Supplementary Figure S39). The
common substructures were identified for the spike proteins, the
heavy chains and light chains (Supplementary Figure S40).

Leu and Ile are structural isomers (i.e., identical elemental
composition and molecular weight). They will have the same
number of IR-TSR keys. Therefore, we performed a more
detailed study on Leu and Ile. The Leu residues of the spike
proteins, the heavy chains and light chains form two clusters
(Supplementary Figure S41). In contrast, we observed four Ile
clusters (Supplementary Figure S42). The Ile residues have a
slightly higher structure similarity on average than the Leu

residue (Supplementary Figure S43). As predicted, the Leu-Ile
pairs have a lower structure similarity than the Leu-Leu and Ile-
Ile pairs (Supplementary Figure S43). Although the clustering
technique (unsupervised ML algorithm) cannot distinguish Leu
from Ile (Figure 11A), the classification approach (supervised ML
algorithm) can distinguish Leu and Ile (Supplementary Figures
S44A, B). It suggests that a training process using a set of
predefined class labels is required for distinguishing Leu and Ile.

3.6 Study steric effects of the representative
mAbs drugs on ACE2 binding site

Sotrovimab (Kd = 0.21 nM, Class 4) is a non-RBM mAb drug
(Supplementary Figure S45) with the potential to block viral entry
into healthy cells and clear infected cells (Miguez-Rey et al., 2022;
Aggarwal et al., 2022). One advantage of non-RBM mAbs is that
they can tolerate mutations. It has been demonstrated that
sotrovimab retained activity against variants of interest and
concern, including the alpha, beta, gamma, delta, and lambda
variants in vitro (Aggarwal et al., 2022; Gupta et al., 2021). In
contrast, many of the other mAbs bind to the RBM that engages
ACE2; this is one of the most mutable and immunogenic regions of
the virus, and in some cases, these mAbs do not retain activity
against the variants (Gupta et al., 2021). Bamlanivimab (Kd = 1.5
nM) (Miguez-Rey et al., 2022) and Class 3 (Focosi et al., 2022) was

FIGURE 11
The IR-TSR-based method can quantify structural similarity of twenty different amino acids. (a) The hierarchical clustering analysis of the twenty
amino acids from the representative proteins. The major clusters are labeled; (b) The accuracy increase vs. epoch of the classification study using the 6-
layer fully connected neural network are present. The numbers of each type of amino acids and a total of amino acids are indicated. The classification was
independently repeated for five times and the average is shown; (c) The selected pairwise structural similarities are shown. Intra amino-acid
structural similarity means the pairwise structural compassion between same amino acids at different positions or different polypeptides. Inter amino-
acid structural similarity means the pairwise structural compassion between different amino acids; (d) The pairwise structural similarities between twenty
different amino acids were calculated from a total of 123,100 amino acids and the average values are presented, (b, c) The number for each type of the
amino acid (c) is the same as that presented in (b).
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developed by Eli Lilly after its discovery by researchers at AbCellera
Biologics and at the Vaccine Research Center of the National
Institute of Allergy and Infectious Diseases (Dougan et al., 2021).
The study demonstrated that bamlanivimab plus etesevimab led to a
lower incidence of COVID-19-related hospitalization and death
(Dougan et al., 2021) and a significantly lower proportion of
patients with persistently high viral load (Patel et al., 2024;
Nichols et al., 2024). Cilgavimab [RBM class II (Focosi et al.,
2022)] and tixagevimab [RBM class III (Focosi et al., 2022)] are
used together to prevent the virus from binding to ACE2 and
entering human cells (Suribhatla et al., 2023) through binding to
independent segments of the SARS-CoV-2 spike protein. The clinical
data demonstrated that they prevent COVID-19 complications in
at-risk patients (Al-Obaidi et al., 2023; Chen et al., 2023). The data
obtained from sotrovimab, bamlanivimab, cilgavimab and
tixagevimab indicated the steric effect on ACE2 binding site.
However, such steric effects have not been structurally quantified.

3.6.1 Study steric effects of the representative
mAbs on ACE2 binding site using CA- and
ATOM-TSR keys

To evaluate the potential application of the TSR algorithm in
quantifying steric effect, we focused on four mAb drugs: sotrovimab,
bamlanivimab, cilgavimab and tixagevimab and seven residues in
the ACE2 binding site, which consisted of three Tyr (Tyr449,
Tyr501 and Tyr505), two Asn (Asn487, Asn501), one Gln
(Gln493) and one Thr (Thr500) (Figure 5A). It is worth noting
that more mAbs and other residues in the ACE2 can be included in
the study. Before discussing the ACE2 binding site, we will provide a
brief introduction to overall structures of sotrovimab,

bamlanivimab, cilgavimab and tixagevimab and their
corresponding spike proteins. For the ACE2 binding site, we will
focus on the discussion on the ACE2 binding site using CA-TSR and
ATOM-TSR keys (this section) as well as IR-TSR keys (next section).

The cluster analysis shows that the heavy chains of six
sotrovimab structures are grouped together (Supplementary
Figure S46). The heavy chains of two mAbs: CV05-163 (Class 2)
(Yuan et al., 2021) and PDI 96 (Class 6) (Wheatley et al., 2021) are
structurally similar to the heavy chains of sotrovimab
(Supplementary Figure S46). The heavy chains of cilgavimab and
tixagevimab are clustered together (Supplementary Figure S46)
because both are smaller than the heavy chains of sotrovimab
and bamlanivimab. The heavy chain of bamlanivimab is
structurally similar to the heavy chains of sotrovimab
(Supplementary Figure S46). The heavy chains of two mAbs:
Beta-47 and 15033-7 are structurally similar to the heavy chain
of bamlanivimab (Supplementary Figure S46). A similar result was
obtained from the cluster analysis of the light chains of sotrovimab,
bamlanivimab, cilgavimab and tixagevimab (Supplementary Figure
S47). The light chain of CV30 is similar to that of sotrovimab and the
light chains of C002 and CV38-142 are similar to those of
bamlanivimab (Supplementary Figure S47). We were able to
identify the specific CA and CCA keys for the heavy and light
chains of sotrovimab, bamlanivimab, cilgavimab and tixagevimab
(Supplementary Figure S48). The clustering result for the spike
proteins with which sotrovimab, bamlanivimab, cilgavimab and
tixagevimab interact is shown in Supplementary Figure S49.

We have introduced the overall structures of sotrovimab,
bamlanivimab, cilgavimab and tixagevimab (last section). We will
now discuss the overall structure of the spike - heavy chain complex

FIGURE 12
The hierarchical clustering and MDS analyses demonstrate two major clusters of tyrosine residues. (a–c) The hierarchical clustering results of the
spike proteins (a), and heavy chains (b) and light chains (c) of the mAbs against spike are shown; (d–f) TheMDS results of the spike proteins (d), and heavy
chains (e) and light chains (f) of the mAbs against spike are shown; (a–f)Major clusters and numbers of the tyrosine residues in each cluster are labeled.
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and the spike - light chain complex as well as the interfaces between
the spike and the heavy chain and between the spike and the light
chain. The overall structural relationships of the spike - heavy chain
complexes and the spike - light chain complexes are shown in
Supplementary Figures S50, S51, respectively. As expected, all six
spike - sotrovimab complexes are clustered together (Supplementary
Figures S50, S51). The interfaces between the spike and the heavy
chain and between the spike and the light chain are related to the
functions. Using a similar approach, we evaluated the interfaces
using CCA-TSR and CATOM-TSR keys. The clustering result using
CCA keys shows that six spike - sotrovimab (heavy chain) interfaces
are similar (Supplementary Figure S52). The interfaces of spike -
bamlanivimab, spike - cilgavimab and spike - tixagevimab (heavy
chain) are different (Supplementary Figure S52). The interface of
spike - AZD8895 heavy chain is similar to that of spike - tixagevimab
heavy chain using CCA keys (Supplementary Figure S52) and
CATOM keys (Supplementary Figure S53). One spike -
sotrovimab (heavy chain) interface (PDB: 7L0N) is different from
the rest of the five interfaces when CATOM keys are used
(Supplementary Figure S53). We found that the interfaces of
spike - AZD1061 and spike - Fab06 (heavy chains) are similar to
that of the spike - cilgavimab heavy chain, the interface of spike -
EY6A (heavy chain) is similar to that of spike - bamlanivimab heavy
chain and the interfaces of spike - MW01 and spike - nCoV617
(heavy chains) are similar to those of most of the spike - sotrovimab
heavy chain pairs (Supplementary Figure S53). The interfaces of the
six spike - sotrovimab light chain pairs are similar using both CCA
(Supplementary Figure S54) and CATOM (Supplementary Figure
S55) keys. We observed that the interfaces of both the spike -
bamlanivimab and spike - cilgavimab are similar and the interface of
spike - THSC20 interface resembles that of spike - tixagevimab (light

chains and CATOM keys) (Supplementary Figure S55). The specific
CCA keys (Supplementary Figure S55) and specific CATOM-key set
(Supplementary Figure S56) for the interfaces between the spike
proteins and heavy and light chains of sotrovimab, bamlanivimab,
cilgavimab and tixagevimab were identified.

The structural relationships of spike proteins, heavy and light
chains of mAbs, and spike - mAb complexes we have discussed in
the last paragraphs will help to understand the steric effect of mAbs
on the ACE2 binding sites. The backbone structures (CCA keys) of
the seven amino acids in the ACE2 binding sites of the spike proteins
without or with ACE2 or mAbs are different (Figure 13A). The
binding of sotrovimab to the spike proteins has a similar steric effect
on the ACE2 binding sites (Figure 13A). Bamlanivimab has a similar
steric effect as cilgavimab plus tixagevimab (Figure 13A). Two of the
seven amino acids were mutated in the omicron variant where
Asn510 was changed to Tyr501 and Gln493 was mutated to Arg493.
This omicron variant has a greater difference from the rest of the
spike proteins with mAbs. The backbone structures of the seven
amino acids of the spike proteins with mAbs are different from those
of the spike only and the spike with ACE2 (Figure 13A),
demonstrating the steric effect due to the binding of mAbs. In
contrast to the backbone structures, the overall steric effect
quantified using the CATOM keys caused by the binding of
mAbs becomes smaller (Figure 13B). We calculated the pairwise
structural similarities using CA keys for the entire spike proteins and
using CA and CATOM keys for the seven amino acids in the
ACE2 binding sites. The average structure similarity of the seven
amino acids using CATOM is greater than that using CCA keys
(Figure 13C). The average structure similarity of the entire spike
proteins using CA keys is larger than the similarities of the seven
amino acids using CCA keys, but it is smaller than those using

FIGURE 13
The steric effect of binding of the selected mAbs approved by FDA is shown. (a, b) The hierarchical clustering analyses show the structural
differences of the spike regions that closely interact with ACE2 upon the binding of the selected mAbs using CCA (a) and CATOM keys (b). The mAbs
approved by FDA are indicated; (c) The structural similarities of the spike regions that closely interact with ACE2 quantified using the CA TSR keys; (d) The
numbers of the specific CA-TSR keys of the spike proteins against each mAb were calculated and are presented; (c, d) Average values are labeled.
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CATOM keys (Figure 13C). The specific CCA (Figure 13D) and
CATOM (Supplementary Figure S57) keys were identified for the
ACE2 binding sites of the spike, N439K variant or omicron variant
with or without sotrovimab, bamlanivimab, cilgavimab and
tixagevimab. We could not find common CCA keys for the seven
amino acids that were identified, which suggests a high diversity of
the backbone structures. In contrast, we succeeded in identifying
common CATOM keys (Supplementary Figure S58). It
demonstrates that the ACE2 binding sites share a significant
amount of common substructure.

3.6.2 Study steric effects of the representative
mAbs on ACE2 binding site using IR-TSR keys

We have discussed the steric effects of mAb binding on the
ACE2 binding site from the angles of the backbone and overall
structures. In this section, we will discuss the steric effects at the
individual amino acid level (three Tyr, two Asn, one Gln and one
Thr). The most abundant amino acid in the spike proteins is Asn
(Supplementary Figure S59) and the most abundant amino acid in
the mAb heavy (Supplementary Figure S60) and light
(Supplementary Figure S61) chains is Ser. Tyr is the most
abundant residue in the ACE2 binding site. All Tyr residues have
different structures, and no amino acid position-dependent clusters
are found (Figure 14A). Tyr501 from the omicron variant is
clustered separately from other Tyr residues (Figure 14A). We
observed amino acid position-dependent clusters for the Asn
residues. The Asn501 residues form two clusters and most
Asn487 except for Asn487 from the spike alone (with an
interacting polypeptide) form one large cluster (Figure 14B). The
Gln493 (Supplementary Figure S62) and Thr500 (Supplementary
Figure S63) residues are structurally different. We could not find a
particular mAb-dependent cluster for either Gln or Thr. The
ordering of structural diversity from high to low is Gln > Asn >
Thr > Tyr (Figure 14C). The tyrosine side chain has a ring structure

that is ridge, thus the Tyr residues are more similar than Thr, Asn
and Gln. It was reported that tyrosine side chains were capable of
mediating most of the contacts necessary for high-affinity antigen
recognition (Fellouse et al., 2004). The structural uniqueness of Tyr
may contribute to the molecular recognition, especially between
antigens and antibodies.

4 Discussions and future directions

It is estimated that more than 5,000 mAb structures were
deposited in the PDB. Among these 5,000 mAbs, ~200 mAbs
against the spike were investigated in this study. This study has
two main objectives: (i) to develop new computational methods and
software tools and (ii) to achieve discoveries and provide insight into
spike - mAbs interaction. We focused more on the method and tool
development, and evaluation. Once the methods are developed, the
associated tools will be available for the investigators to study the
mAbs (e.g., gp120 of HIV) or other proteins of interest to accelerate
the antibody drug development. This small-scale study shows that
the heavy chains of the mAbs against gp120 are structurally different
from their corresponding light chains (Supplementary Figure S64).
The heavy chains of the mAbs against the spike and gp120 are
grouped together into a large cluster, and the same thing also
happens with the light chains (Supplementary Figure S65).
However, the heavy chains of the mAbs against the spike are not
separated from those against gp120 (Supplementary Figure S65),
suggesting that some heavy chains of the spike and gp120 mAbs are
structurally more similar than those of the spike mAbs or those of
the gp120 mAbs. A similar situation was observed for the light
chains of the mAbs against the spike and gp120 (Supplementary
Figure S65). A comprehensive study of all mAbs and CDRs
(CDRH1, CDRH2, CDRH3, CDRL1, CDRL2 and CDRL3) will
provide insight into antigen-antibody interactions. Annotation of
such a dataset will need considerable amount of effort. A recent
study of 1,456 structures has led to the discovery of previously
unrealized interfaces: β-sheet dimers and variable-constant elbow
dimers, among antibodies (Yin et al., 2022).

We observed two Tyr clusters from spike proteins, heavy chains
and light chains both alone and combined. To demonstrate whether
the two Tyr clusters are dependent on the dataset, we included
different types of proteins (protein receptors). The hierarchical
cluster study of protein receptors shows the two Tyr clusters
(Supplementary Figure S66A) and the MDS study agrees with the
hierarchical clustering result (Supplementary Figure S66B). The
additional Tyr study from the protein receptor family suggests
the two clusters could be independent on datasets. To show the
difference in the geometry of the Tyr residues of the spike proteins
and their mAbs from the two clusters, we calculated the MaxDist
and Theta values. The MaxDist distance calculations show that the
triangles constituted from (C, CB and CD2), (C, CB and CE1), (C,
CB and CE2), (O, CZ and OH), (CA, C and CE2), (C, CE1 and CZ)
and (C, CE2 and CZ) have larger MaxDist values in one group and
smaller MaxDist values in another (t-test, p < 0.001) (Figure 15A).
The triangles with larger MaxDist values have smaller Theta values
(t-test, p < 0.001) (Figure 15B). For ease of discussion, we define the
group with the smaller MaxDist and larger Theta values as Group A.
The group with larger MaxDist and smaller Theta values is defined

FIGURE 14
The amino acid position-dependent or partial amino acid
position-dependent clusters are present. (a, b) The clustering analyses
of the tyrosine (a) and asparagine (b) residues in the ACE2 binding sites
of the selected spike proteins against the FDA approved mAbs
drugs. Amino acid positions and SARS-CoV-2 variant are labeled; (c)
The pairwise structural similarities of the tyrosine, asparagine,
glutamine and threonine residues in the ACE2 binding sites were
calculated and are presented. The average values are labeled.
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as Group B. The same scenario for MaxDist (Supplementary Figure
S67) and Theta (Supplementary Figure S68) was observed from the
Tyr residue of the protein receptors. To further demonstrate
whether the local protein environments determine whether a Tyr
residue will belong to Group A or B, we found that a high percentage
of Tyr351, Tyr423, Tyr453 and Tyr473 of the spike belong to Group
A while a high percentage of Tyr451, Tyr489, Tyr495 and
Tyr508 belong to Group B. The top four residues with a high
percentage of the amino acids surrounding Tyr473 (Figure 15C)
and Tyr508 (Figure 15D) residues are shown in Figure 15. Similar
analyses show the local environments for Tyr351, Tyr423 and
Tyr453 of Group A (Supplementary Figure S69) and those for
Tyr451, Tyr489 and Tyr495 of Group B (Supplementary Figure
S70). The local environment study indicates that the cluster
assignment of Tyr is dependent on amino acid position.
Therefore, we reasonably hypothesize that the protein’s local
environments determine the cluster to which a Tyr residue
belongs. Although we have examined a few of the representative
protein environments in determining the clusters of Tyr, we cannot
induce a general rule.

CCAI-TSR or CATOM-TSR keys are specifically designed for
quantifying interfaces between two molecules. We observed that the
structure similarity using CATOM-TSR keys is higher than that
using CCAI-TSR keys. For CCA-TSR keys, we assign each Cα atom
an integer. Two triangles will have different keys even though they
have similar or identical shapes if one or more amino acids between
the two triangles are different. For CATOM-TSR keys, the atoms
carbon, nitrogen, oxygen, and sulfur are assigned different integer
labels during the key computation. However, we did not consider
atom types. For example, we assign the same integer to a Cα, a
carbonyl carbon, a carbon in the carboxylic group, and a carbon

linked to a hydroxyl group.We will, in the future, include atom types
in the CATOM key generation formula.

One of the advantages of the TSR algorithms is that the integer
nature of data structure allows ML-based algorithms developed in
the AI field to be easily adapted for prediction purposes. We used a
6-layer fully connected neural network for classifying proteins using
CA-TSR keys or amino acids using IR-TSR keys. We will integrate
CA-TSR keys with IR-TSR keys for further discretizing global and
local structures. The data structure for individual proteins or amino
acids is a vector of integers. The data structure, therefore, will be a
matrix when we integrate CA-TSR and IR-TSR keys for each
protein. Integrating both keys will enable us to distinguish finer
differences between ligand or substrate binding sites and eventually
use a ML approach to predict binding sites.

5 Conclusions

The two objectives of this study are to introduce a new
computational methodology and provide mechanistic
understanding of spike - mAb interactions. From the
methodology perspective, cross TSR keys using Cα atoms (CCA)
and all atoms (CATOM) and intra-residual (IR) TSR keys were
developed specifically for defining and quantifying structural
characteristics of protein binding sites. From the perspective of
method evaluation and mechanistic understanding of spike - mAb
interactions, key findings are summarized. (i) Specific CCAI keys
were exclusively identified for Class 1 mAbs, (ii) Six clusters were
identified for CDRH3 and three clusters were found for CDRL3, (iii)
The steric effects of binding of mAb drugs: sotrovimab,
bamlanivimab, cilgavimab and tixagevimab on the ACE2 binding

FIGURE 15
The difference in geometry of two tyrosine clusters are present. (a, b) The difference in MaxDist (a) and Theta (b) of the two clusters of the tyrosine
residues are shown. Numbers of the tyrosine residues in each group are indicated. Average values are labeled. The t-test analyses were used and ***
means a p value < 0.001; (c, d) Examples of protein environments that determine the tyrosine clusters A (c) and B (d) are present.
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site were quantified, (iv) Asn487 residues of the spike interacting
with ACE2, sotrovimab, bamlanivimab, cilgavimab or tixagevimab
have their specific structural characteristics, (v) A new structure-
based matrix, TSR-STRSUM, is introduced as an alternative way,
instead of using BLOSUM, for protein sequence and structure
comparison, (vi) IR-TSR keys demonstrated two clusters of Tyr
structures.
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