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Rhodium(III) catalysis has been used for C-H activation of N-nitrosoanilines with
substituted allyl alcohols. This method provides an efficient synthesis of the
functional N-nitroso ortho β-aryl aldehydes and ketones with low catalyst
loading, high functional group tolerance, and superior reactivity of allyl alcohols
toward N-nitrosoanilines. We demonstrated that reaction also proceeds through
the one-pot synthesis ofN-nitrosoaniline, followed by subsequent, C-H activation.
The protocol was also feasible with acyrlaldehyde and methyl vinyl ketone which
furnished the same oxidative N-nitroso coupling product.
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Introduction

Transition metal-catalyzed reactions have a great impact on the synthesis of natural
products and in medicinal chemistry (Crawley and Trost, 2011; Du Bois, 2011; Hayler et al.,
2019; Brandsma et al., 1999). They have been proven to be the promising and key-driven
strategy for the C-H activation of functionalized arenes. In this context, traditional palladium-
catalyzed C-H olefination (the oxidative Heck reaction or Fujiwara–Moritani reaction) has
been known for generating a new C-C bond (Oestreich, 2009; Moritani and Fujiwara, 1967;
Fujiwara et al., 1969). Later, in 2000, Matsumoto disclosed the rhodium-catalyzed oxidative
Heck reaction (Matsumoto and Yoshida, 2000; Matsumoto et al., 2002). Furthermore, various
research groups have significantly contributed toward rhodium-catalyzed C-H
functionalization (Colby et al., 2009; Tian and Loh, 2015; Huang et al., 2013; Li B. et al.,
2015; Deng et al., 2016; Kim et al., 2017; Font et al., 2018; Wu et al., 2019; Shi et al., 2020). In
this respect, transitory directing groups have reached a remarkable milestone. Indeed, among
the various nitrogen-based directing groups (amide, amine, imine, pyridine, pyrimidine, and
pyrazole), we focused onN-nitrosoanilines with all the key features, which can be transformed
to various prevalent structural motifs with significant synthetic and biological importance.

N-nitrosamines are chemical compounds that are extensively found in naturally active
molecules and also in a range of food and cosmetic products (Loeppky and Outram, 1982;
Loeppky and Michejda, 1994; Wang et al., 2005). The chemistry of N-nitrosamines has gained
interest in organic and medicinal chemists. In this respect, N-nitrosoanilines are found to be a
very attractive directing group as they can be easily removed and installed (Chaudhary et al.,
2016a; Chaudhary et al., 2018).N-nitrosamines belong to a versatile class of compounds as they
serve as important building blocks. They have become valuable intermediates, which are
generally used as an anchor for further transformation, such as reduction to hydrazines
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(Hartman and Roll, 1933; Chaudhary et al., 2016b) and amines
(Chaudhary et al., 2018), synthesis of mesoionic–heterocyclic
compound sydnones (Stewart, 1964; Browne and Harrity, 2010) and

aryl C-nitroso compounds through Fischer–Hepp rearrangement
(Williams, 1975; Cikotiene et al., 2013), and, also, derivatization at
the α-carbon of N-nitrosamines (Seebach and Enders, 1975). In
addition to these, recently, N-nitrosoanilines have emerged as a
traceless directing group since the nitroso functionality possesses the
lone pair which can coordinate with the transition metal for the
activation of the inert C-H bond (Lee et al., 2002). Several research
groups have developed metal-catalyzed ortho-functionalization of
N-nitrosoanilines, for example, alkenylation, acylation, alkoxylation,
acyloxylation, and cyanation (Scheme 1) (Liu B. et al., 2013; Wu et al.,
2016; Gao and Sun, 2014; Li D.-D. et al., 2015; Dong et al., 2015; Huang
et al., 2016; Xiong et al., 2023). Despite this recent progress in the C-H
functionalization ofN-nitrosoanilines, to the best of our knowledge, the
oxidative alkylation ofN-nitrosoanilines with allyl alcohols has not been
reported. Allyl alcohols serve as immensely important building blocks
in organic synthesis and have been explored as a reaction partner for
C-H functionalization (Wang et al., 2018; Chen et al., 2012;Wang et al.,
2019; Ouyang et al., 2022). Herein, we report rhodium-catalyzed
regioselective ortho C-H oxidative alkylation of N-nitrosoanilines
with various substituted allyl alcohols to provide valuable functional
N-nitroso ortho β-aryl aldehydes and ketones (Scheme 1).

Our investigation to optimize reaction conditions began with the
reaction of N-methyl N-nitrosoaniline (1a) and allyl alcohol (2a)
under different catalysts, additives, and solvents (Table 1). Initially,
we studied that the reaction of 1a with 2a in the presence of

SCHEME 1
Recent reports of metal-directed C-H activation of
N-nitrosoanilines and this work.

TABLE 1 Optimization of reaction conditionsa.

aReaction conditions: 1a (0.5 mmol) and 2a (0.6 mmol) in the solvent (3 mL) under a N2 atmosphere.
bIsolated yield after column chromatography.
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[RhCp*Cl2]2 (5 mol%) and AgSbF6 (10 mol%) in 1,2-dichloroethane
(DCE) at 80°C for 12 h did not provide any product. (Table 1, entry
1). Therefore, the role of additives was examined for any
improvement in the reaction. The employment of 100 mol% of
Cu(OAc)2, Ag2CO3, NaOAc, and AgOAc in dichloroethane at 80°C
for 12 h afforded 3a with 60, 46, 31% and 67% yields, respectively

(Table 1, entries 2–5). An increase or decrease in the amount of
AgOAc from 200 mol% to 50 mol% did not affect the yield of the
desired product 3a (Table 1, entries 6 and 7). However, decline in the
loading of the [RhCp*Cl2]2 catalyst to 2.5 mol% along with AgSbF6
(10 mol%) and 100 mol% of AgOAc in DCE at 80°C for 12 h

FIGURE 1
Syn and anti orientation of 3a (Liu B. et al., 2013).

TABLE 2 Substrate scope of various N-nitroso N-alkyl nitrosoanilines
1b–1m and allyl alcohol 2aa,b,c.

aReactions were performed with 1 (0.5 mmol, 1.0 equiv.) and 2 (0.6 mmol, 1.2 equiv.) in

DCE (3 mL) at 90°C for 12 h under a N2 atmosphere.
bIsolated yield.
cRatio of syn to anti isomers, determined using the 1H NMR spectrum.

TABLE 3 Substrate scope of various N-nitroso N-alkyl nitrosoanilines 1a’-
1u’ and substituted allyl alcohol 2b-2ea,b,c.

aReactions were performed with 1 (0.5 mmol, 1.0 equiv.) and 2 (0.6 mmol, 1.2 equiv.) in

DCE (3 mL) at 90°C for 12 h under a N2 atmosphere.
bIsolated yield.
cRatio of syn to anti isomers, determined using the 1H NMR spectrum.
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provided a high yield of 3a (82%) (Table 1, entry 8). The product 3a
was obtained as syn- and anti-isomers in 1: 0.13 ratio. Furthermore,
the decrease in the amount of the [RhCp*Cl2]2 catalyst to 1 mol%
was experimented for 12 h, which lowered the yield of 3a to 75%
(Table 1, entry 9). However, any increase or decrease in the amount
of AgSbF6 from 20 mol% to 5 mol% did not enhance the yield
(Table 1, entries 10 and 11). Later, the effect of the solvents was
explored. In non-polar and polar solvents such as CH3CN, 1,4-
dioxane, THF, and MeOH, 3a was obtained in 15, 32, 21%, and 11%
yields, respectively (Table 1, entries 12–15).

In the absence of the [RhCp*Cl2]2 catalyst, no product was
detected with AgSbF6 and AgOAc in 1,2-DCE (Table 1, entry 16),
whereas the absence of AgSbF6 leads to a lower yield of 3a (33%)
(Table 1, entry 17) in the presence of 2.5% [RhCp*Cl2]2.
Furthermore, other catalysts such as [Ru (p-cymene)Cl2]2 and
[IrCp*Cl2]2 were found to be less efficient compared to
[RhCp*Cl2]2 for the transformation (Table 1, entries 18 and 19).
The 1H NMR spectrum of 3a showed distinctive signals for adjacent
methylene (–CH2-CH2-) protons to aldehyde (δ 2.76 and δ 2.86 ppm
as a triplet, J = 7.4 Hz), and the aldehyde singlet proton was observed
at δ 9.75 ppm. The 13C NMR spectrum of 3a showed a representative
signal for the adjacent methylene carbon to aldehyde, which was
observed at 44.7 ppm, and the next methylene carbon to it was
observed at 23.8 ppm; the carbonyl group of the aldehyde was
observed at 200.5 ppm. 3a was obtained as a mixture of syn and anti

at a ratio of approximately 1: 0.13 (determined using the 1H NMR
spectrum) with 82% yield (Figure 1).

Having established the optimized condition, the reaction of
substituted N-nitroso N-alkyl anilines was investigated with allyl
alcohol. Treatment of 2a with several substituted N-nitroso N-alkyl
anilines, namely, 1b–1m, bearing electron-donating and electron-
deficient groups, was observed (Table 2). The p-substituted electron-
donating N-nitroso N-methyl anilines (methyl and isopropyl) were
converted to the corresponding products 3b and 3c with good yields
(72% and 75%, respectively). Similarly, the substrates bearing halide
groups such as Br, Cl, and F at the para position under optimized
conditions provided the desired products 3d–3f with good yields
(60%–73%). It is noteworthy that other p-substituted functionalities
that have strong electron-withdrawing tendencies, such as
trifluoromethyl, cyano, nitro, ester, and acetyl groups, provided
the expected products 3g–3k with 62%–77% yields in 12 h.

The oxidative alkylation of m-fluoro N-methyl N-nitrosoaniline
also yielded the expected product 3l away from the sterically
hindered position with 75% yield. Later, the attempted reaction
of sterically hindered 1m with 2a regioselectively afforded the ortho-
substituted (2-benzoyl-6-(3-oxopropyl) phenyl)-N-methyl
N-nitrosoaniline (3m) smoothly with 76% yield. Overall, the
simple allyl alcohol underwent C-C bond formation effectively
with a range of N-nitrosoanilines of varying electronic and
steric factors.

SCHEME 2
(A) In situ addition of the N-nitroso group to N-methyl aniline for C-H activation. (B) Scaled-up reaction. (C) Further transformation of 4a.
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On account of these results, under the assistance of N-nitroso as
a directing group, we attempted to explore the reactivity of
substituted allyl alcohol 2b–2d toward different N-alkyl
N-nitrosoanilines (Table 3). The unsubstituted nitrosoaniline
reacted with 1-methyl and 1-ethyl, which yielded the
corresponding products 4a and 4b in 72% and 70%, respectively.
Similarly, the oxidative alkylation of the p-substituted electron-
donating substrate (-Me and -iPr) provided the corresponding β-
aryl ketones 4c and 4d in good yields (78% and 79%). In addition,
aryl halides such as bromide, chloride, and fluoride at the p-position
were found to be stable during the reaction conditions and produced
the products 4e, 4f, and 4g with 80%, 83%, and 81% yield,
respectively. Furthermore, the sensitive functionalities, such as 4-
CF3, 4-CN, 4-COOCH3, and 4-COCH3, on the benzene ring of N-
nitrosoanilines were allowed to react with 2b, as a result of which
4h–4l were successfully isolated with 73%–80% yield. Moreover, the

reaction of 2b with m-substituents such as methyl and fluoro
nitrosoanilines afforded the corresponding products 4m and 4n
with 71% and 70% yield, respectively. C-H activation occurred
toward a less sterically hindered position of nitrosoaniline. The
variation in N-alkyl substitution of 2-methyl N-nitrosoaniline from
methyl 1o’ to ethyl 1p’ was found to have well-participated under
the standard reaction conditions, and products 4o and 4p were
obtained in good yields (70%–72%). The other N-methyl
nitrosoanilines containing o-substituents such as -Ph and -COPh
provided the products 4q and 4r in 75% and 74% yields, respectively.
This indicates that the protocol has the least influence of steric
encumbrance of ortho-substituents. Intriguingly, we investigated
that the reaction of 1a’ with 1-phenyl allyl alcohol (2d) yielded
the products 4s and 4t in 32% and 17% yields, respectively.
Moreover, the combination of 1a’ with pent-3-en-2-ol (2e) was
also inspected, but no product was observed. This may be due to the
steric influence of the methyl group of 2e, which hindered the
oxidative coupling to N-methyl N-nitrosoaniline (1a’).

Regarding Csp2-Csp2 bond formation, we attempted one-pot
synthesis (Hayashi, 2016), where the addition of the nitroso
group (Chaudhary et al., 2018) to N-methyl aniline (1aa) leads to
the corresponding nitrosoaniline, and fortunately, we obtained the
oxidative coupled product (3a) under the standard reaction
conditions with 51% yield (Scheme 2A).

Henceforth, the protocol exemplifies that implementation of a
nitroso unit and subsequent oxidative C-H activation with allyl
alcohol reduces time and labor, which, obviously, displays its
advantages. To show the synthetic utility of the protocol, the
gram-scale synthesis of 4a had been performed (Scheme 2B) and

SCHEME 3
C-H activation of N-nitrosoaniline with α,β-unsaturated
aldehyde and ketone under standard conditions.

SCHEME 4
(A) Chemoselectivity of between N-methyl N-nitrosoanilines 1a and 1b with allyl alcohol (2a). (B) Chemoselectivity of between N-methyl
N-nitrosoanilines 1a and 1f with allyl alcohol (2a). (C) Chemoselectivity of 4-methyl N-methyl N-nitrosoaniline (1b) with allyl alcohol (2a) and 1-methyl
allyl alcohol (2b).
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the product was obtained with 62% yield, which was utilized for
different transformation processes (Scheme 2C). Versatile N-nitroso
directing allowed further catalyzation of C-H activation of 4b at the
other ortho-position with rhodium (Liu B. Q. et al., 2013) and
palladium (Wu et al., 2016). The activation with diphenyl acetylene
and phenyl glyoxylic acid yielded the desired products 5a and 5b
with 43% and 32% yields, respectively. In the course of our study, we
performed the reaction of N-nitrosoaniline under the same reaction

conditions with acrylaldehyde and methyl vinyl ketone. To the best
of our knowledge, only β-hydride-eliminated products were
obtained such as 3b and 4a; no olefinated or protonolysis
product was observed (Scheme 3) (Sun et al., 2010; Peng et al., 2012).

The chemoselectivity of two different N-methyl
N-nitrosoanilines toward allyl alcohol (2a) was examined under
the standard reaction conditions (Scheme 4A). First, the reaction of
the unsubstituted (1a) and 4-methylN-methylN-nitrosoaniline (1b)

SCHEME 5
Preliminary mechanistic studies. (A) H/D Exchange Study. (B) Kinetic Isotopic Effect (KIE) Study.

SCHEME 6
Proposed mechanism.
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subjected to react with allyl alcohol (2a) for 12 h led to the respective
products 3a and 3b with 25% and 39% yields, respectively (Scheme 4;
Scheme 4A). Similarly, treatment of unsubstituted (1a) and 4-fluoro
N-methylN-nitrosoaniline (1f) with 2a afforded the products 3a and 3f
with 41% and 22% yields, respectively (Scheme 4B). The results
indicated that the N-nitrosoaniline bearing the electron-donating
group is more chemoselective than the unsubstituted and electron-
withdrawing bearing substrate. Even the chemoselectivity of 4-methyl
N-methyl N-nitrosoaniline (1b) toward allyl alcohol (2a) and 1-methyl
allyl alcohol (2b) was also investigated, which demonstrated the
formation of 3a:4b in the ratio of 1:6 at the same refractive index
(Rf) (Scheme 4C). These intermolecular competitive reactions indicate
the simultaneous formation of rhodium carbon and the cleavage of the
C-H bond probably by a concerted metalation mechanism (CMD)
(Lapointe and Fagnou, 2010).

To gain mechanistic insights, we conducted deuterium labeling
experiments, as shown in Scheme 5. The H/D exchange experiment
was carried out with 2.5 mol% Rh(III), AgSbF6 (10 mol%), and
AgOAc (1 equiv.) to yield 1a (Scheme 5A). The incorporation of
37% deuteriumwas observed at ortho positions of 1a,which revealed
that the C-H activation step is reversible. The parallel kinetic
isotopic effect (KIE) was evaluated through an experiment with
D5-1a and 1a and was found to be KD/KH = 4.1. This interprets that
the C-H bond activation step probably is the rate-determining
step (Scheme 5B).

Based on the deuterium labeling mechanistic studies and
available literature, we depicted the catalytic cycle. The foremost
step involves the ortho C-H activation of 1a with the active rhodium
catalyst A, which yields five-membered rodacycle B. Subsequently,
the co-ordination of 2a leads to C, which undergoes migratory
insertion to generate seven-membered rodacycle D. The β-hydride
elimination of D produces 3a’, which undergoes enol isomerization
to yield the desired product 3a with concomitant regeneration of the
Rh(III) catalyst for the next catalytic cycle (Scheme 6).

In conclusion, we have developed efficient Rh(III)-catalyzed C-H
functionalization of N-nitrosoanilines using substituted allyl alcohols.
The protocol was applied to a wide range of substrates which gave
good yields of products with high functional group tolerance. The
protocol provides rapid access for one-pot C-H activation and, also,
feasible C-H activation of N-nitrosoanilines with α,β-unsaturated
carbonyls. Low catalyst loading, great functional group tolerance,
and superior reactivity of N-nitrosoanilines with substituted allyl
alcohols are some of the key features of this protocol.
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