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In recent years, the exploration of topological states within two-dimensional
materials has emerged as a compelling focus, complementing their three-
dimensional counterparts. Through theoretical calculations, we unveil the
exceptional topological state in the monolayer lithium hydrosulfide, where an
ideal hourglass nodal loop is identified. Notably, this nodal loop is characterized
by only four bands, representing the simplest configuration for realizing hourglass
dispersion. We provide detailed symmetry arguments alongside model
calculations to elucidate the formation mechanism of the nodal loop and its
corresponding hourglass dispersion. Moreover, the associated edge states are
not only well-separated from the bulk band projection but also persist
consistently throughout the Brillouin zone. Due to the lightweight constitutive
elements of this material, both the hourglass dispersion and the edge states
remain robust even in the presence of spin-orbit coupling. To enhance its
practical applicability, we have evaluated various mechanical parameters,
analyzing their anisotropic behaviors. Furthermore, we examined the material’s
response to strain conditions under both compressive and tensile stress,
uncovering distinct variations in energy, size, and the hourglass dispersion of
the nodal loop. Overall, the hourglass nodal loop state explored in this study,
along with the proposed material candidate, provides a strong foundation for
future experimental investigations. This research potentially paves the way for
significant advancements within this emerging field.
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Introduction

Significant progress has been achieved in the exploration of topological states within the
fields of condensed matter physics and solid-state materials (Xiao and Yan, 2021; Zhang
et al., 2019a; Tang et al., 2019a; Tang et al., 2019b), particularly following the development
of topological band theory (Bansil et al., 2016; Chiu et al., 2016; Cooper et al., 2019; Hasan
and Kane, 2010; Qi and Zhang, 2011; Wang et al., 2024; Wang et al., 2023; Gong et al., 2024;
Singh et al., 2023; Li et al., 2023a; Wang et al., 2022; Yang et al., 2024). This theoretical
framework is vital for elucidating the characteristics of topological states in crystalline
materials, linking them to structural symmetry operations and the limitations dictated by
band topology. As research has evolved, the focus of investigation has expanded beyond just
topological insulators to include a broader array of systems, encompassing topological
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semimetals (Soluyanov et al., 2015; Burkov, 2016; Yan and Felser,
2017; Gao et al., 2019; Burkov, 2018; Schoop et al., 2018; Weng et al.,
2016; Bernevig et al., 2018; Hirayama et al., 2018; Burkov et al., 2011;
Armitage et al., 2018), as well as topological phonons (Yang et al.,
2019; Long et al., 2020; Wang et al., 2020; Xia et al., 2019; Liu et al.,
2022), photons (Liu et al., 2021; Yang et al., 2018; Pan et al., 2023; Lin
et al., 2023; Hu et al., 2022; Deng et al., 2022), and magnons (Li et al.,
2017; Nie et al., 2020; Zhu et al., 2021; Corticelli et al., 2022;
Moghaddam et al., 2022; Gordon et al., 2021; He et al., 2021).
Depending on their unique configurations, topological
quasiparticles in solid-state systems can exhibit diverse
pseudospin structures, topological charges, and dispersion types,
along with various topological manifolds. A primary hallmark of
topological properties is the manifestation of nontrivial surface
states, which serve as the defining feature of topological
properties and are frequently employed in both theoretical
calculations and experimental analyses to ascertain corresponding
topological states (Neupane et al., 2016; Xu et al., 2015; Zhang et al.,
2019b; Xiao et al., 2020; Yu et al., 2017; Zhang et al., 2020; Takane
et al., 2019; Yang et al., 2023). For example, the Fermi arc spectrum
emerges from the crossing points associated with topological nodal
points, while drumhead surface states arise between crossing lines or
within crossing loops for topological nodal lines or loops. These
nontrivial surface states are fundamental to the topological
characteristics associated with crystal space group symmetries
and present exciting prospects for the development of new
quantum devices and applications.

During recent years, the exploration of topological states in two-
dimensional materials has rapidly ascended to the forefront of
scientific inquiry, augmenting the conventional studies of their
three-dimensional counterparts (Chen et al., 2024; Zhong et al.,
2024; Xie et al., 2023; Li et al., 2023b; Liu et al., 2023; Zhong et al.,
2023; Yu et al., 2023; Guo et al., 2023a; Guo et al., 2023b; Zhang et al.,
2023). This burgeoning interest is not only driven by the novel
physics these systems offer, but also by their potential to
revolutionize current technologies. Two-dimensional materials,
with their unique properties, have opened up a plethora of
possibilities for practical applications (Miró et al., 2014; Feng
et al., 2021; Zhou, 2020; Jiang and Mi, 2023). Their thin, planar
nature facilitates structural integration, allowing for a seamless
incorporation into a variety of systems. This adaptability makes
two-dimensional materials highly compatible with existing
technologies, thereby reducing the barriers to their practical use.
Moreover, the intrinsic planarity of these materials simplifies their
incorporation into devices, providing a straightforward pathway for
the development of advanced applications. This ease of integration,
combined with the novel properties these materials exhibit,
positions two-dimensional materials as a promising frontier in
the quest for next-generation technologies. This positions them
as promising candidates for various applications. Similar to their
bulk counterparts, two-dimensional materials exhibit analogous
topological behaviors. Specifically, various topological states can
be distinguished based on characteristics such as band degeneracy
overlap, band dispersion conditions, and the arrangement of band
crossings. However, a key distinction in two-dimensional materials
arises from their reduced dimensionality, which typically leads to a
transition from topological surface states to edge states. While
substantial advancements have been made in this area, the

investigation of topological states remains an active and rapidly
evolving field, continuously presenting new challenges and
opportunities. Notably, the search for ideal topological states in
two-dimensional systems is urgent, as the range of available material
candidates is still considerably limited in comparison to three-
dimensional materials. This underscores the critical need for
further discovery and exploration of new materials, particularly
those that exhibit ideal topological states and straightforward
topological configurations.

In this study, we identify monolayer lithium hydrosulfide as a
highly stable candidate material with remarkable topological
properties. Through theoretical analyses and effective model
calculations, we demonstrate that this two-dimensional
compound exhibits an ideal hourglass nodal loop state within its
top valence bands. This unique nodal loop is characterized by only
four bands, free from interference from other bands, representing
the simplest configuration for achieving hourglass dispersion. We
utilize symmetry arguments to explain the formation mechanism of
the nodal loop and its hourglass dispersion. Additionally, three-
dimensional band surface scans provide further validation of the
hourglass crossings throughout the entire nodal loop. Notably, this
loop displays a flat profile in terms of both energy dispersion and
spatial distribution, occupying a substantial area in space, which is
highly advantageous for experimental characterization and practical
applications. Furthermore, we find that the calculated edge states
along the (100) direction are well-separated from the bulk band
projection, persisting throughout the Brillouin zone. Importantly,
due to the lightweight constituent elements, both the hourglass
dispersion and corresponding edge states remain intact even in the
presence of spin-orbit coupling. To support its practical
applicability, we have derived various mechanical parameters and
analyzed their anisotropic behaviors. We also assessed the material’s
response under both compressive and extensive strain conditions,
revealing differing trends in energy, size, and hourglass dispersion of
the nodal loop. Careful consideration of both the direction and
magnitude of strain is essential for specific applications. In
conclusion, the hourglass nodal loop state presented in this
research offers an ideal foundation for future experimental
investigations and explorations.

Computational details

Based on density functional theory (DFT) (Payne et al., 1992),
we performed first-principles calculations with the Vienna Ab
initio Simulation Package (VASP) (Hafner, 2008), applying
the projected augmented wave method (Steiner et al., 2016).
The exchange-correlation interactions were described using the
Perdew–Burke–Ernzerhof (PBE) functional within the generalized
gradient approximation (GGA) framework (Perdew et al., 1996).
To prevent interlayer interactions, a vacuum space of 15 Å was
incorporated into the crystal structure model. Long-range van der
Waals forces were considered by employing the DFT-D2 method
(Hafner, 2008). Our computational setup involved a plane wave
basis energy cutoff of 500 eV and utilized a 7 × 7 ×
1 Monkhorst–Pack k-point mesh for efficient sampling of the
first Brillouin zone. In the context of the projector augmented wave
(PAW) method (Blöchl, 1994), valence electron configurations
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were designated as H (1s1), S (3s23p4) and Li (2s1). For structural
relaxation and self-consistent calculations, we defined convergence
criteria whereby the residual force per atom remained below 1 ×
10−3 eV/Å and the energy variation per atom fell under 1 × 10−6 eV.
The ab initio molecular dynamics (AIMD) simulation is
performed in a 5 × 5×1 supercell for 2 ps at 100–300 K with a
canonical ensemble (Bucher et al., 2011). The exploration of
topological properties involved constructing maximally localized
Wannier functions with the WANNIER90 code (Mostofi et al.,
2008; Mostofi et al., 2014), and subsequently calculating projected
surface states using the WANNIERTOOLS package (Wu et al.,
2018). Mechanical properties were assessed using the stress-strain
method (Wang et al., 1995). To streamline the analysis and
processing of results, we utilized the VASPKIT high-throughput
package (Wang et al., 2021).

Results and discussions

The monolayer lithium hydrosulfide (LiHS) features a two-
dimensional tetragonal lattice, categorized under the space group
P4/nm, No. 129. Figures 1A, B provide the top and side views of the
lattice structure, respectively. In the top view, the gray-shaded region
represents the primitive cell of the LiHS monolayer, which
comprises two hydrogen atoms, two lithium atoms, and two
sulfur atoms positioned at the 2a, 2b, and 2c Wyckoff sites,
respectively. From the side view, the LiHS lattice reveals a
quintuple atomic layer arranged in the sequence H–S–Li–S–H.
The lattice constant for the LiHS monolayer is optimized to a =
b = 4.515 Å. The bond lengths are measured at 2.478 Å for Li–S and
1.345 Å for S–H. Additionally, the angle of the S–Li–S bond is
131.24°, slightly larger than the Li–S–H bond angle of 114.38°, as
illustrated in Figure 1B. Initially reported in the C2DB database
(Gjerding et al., 2021; Haastrup et al., 2018), the structure of the
LiHS monolayer is noted for its high kinetic stability and potential
for exfoliation from its three-dimensional crystalline form. To
further assess its thermal stability, we conducted ab initio
molecular dynamics (AIMD) simulations of the LiHS monolayer.
In these simulations, a 5 × 5 × 1 supercell was used, with
temperatures set at 100 K, 200 K, and 300 K, respectively. The
simulations spanned 2000 steps, with each step representing
1 femtosecond. As demonstrated in Supplementary Figures

S1–S3, the total energy of the LiHS monolayer exhibits minor
fluctuations over time, maintaining its structural integrity with
negligible deformations across all tested temperatures. This
confirms the LiHS monolayer’s robust thermal stability, up to
temperatures of 300 K. Collectively, these findings of both kinetic
and thermal stability underscore the feasibility of experimentally
synthesizing the LiHS monolayer, paving the way for its potential
applications.

Based on the optimized crystal structure, the electronic band
structures of the LiHS monolayer were calculated, with the results
presented in Figure 2. The Fermi energy level serves as the reference
point, set at 0 eV. High-symmetry k-paths were determined
according to the structural crystallographic data and they were
selected via the Seek-Path code, as depicted in Figure 1B. It
should be noted that spin-orbit coupling was not considered in
this analysis, given the light nature of the constituent elements; its
effects will be discussed in subsequent sections. The electronic band
structures were evaluated using both the PBE and
HSE06 formalisms, and these results are combined in the

FIGURE 1
The top (A) and side (B) views of the monolayer lithium hydrosulfide. The corresponding Brillouin zone (C) with high-symmetry points and paths.

FIGURE 2
The calculated electronic band structure for the monolayer
lithium hydrosulfide under both PBE and HSE formalism calculations.
The top valence bands are further enlarged in the bottom panel.
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top panel of Figure 2. Analysis shows that the LiHS monolayer
exhibits a direct band gap of 3.99 eV with the PBE functional
and 5.08 eV with the HSE06 functional, occurring between the
valence band maximum and the conduction band minimum at

the Γ point. This clearly underscores the insulating nature of
the LiHS monolayer. Although the conduction bands shift
significantly upwards under the HSE06 formalism, the
electronic band dispersion of the top valence bands remains
largely similar between the PBE and HSE06 evaluations. This
consistency in band dispersion evident with the
HSE06 formalism validates the reliability of employing the
PBE functional for further analysis. Therefore, PBE will be used
for subsequent studies due to its computational efficiency and
reliable depiction of band structure trends.

To provide a clearer visualization of the top valence bands, the
local band structure is magnified in the bottom panel of Figure 2,
with each of the four involved bands highlighted in distinct colors.

FIGURE 3
The projection of the three-dimensional band dispersions along M-Γ-M and X-Γ-X paths for the monolayer lithium hydrosulfide. The red spheres
correspond to the hourglass crossing points.

FIGURE 4
The calculated edge states along the (100) direction for the monolayer lithium hydrosulfide without (A) and with (B) the spin orbital coupling effect.
The bulk band structures are overlaid, showing a strong correspondence, especially in the topological band crossing regions.

TABLE 1 The calculated various elastic constants (C11,C12, andC66), Young’s
modulus (E), shear modulus (G), and Poisson’s ratio (ν) for the monolayer
lithium hydrosulfide.

C11 C12 C66 E G ]

(N/M)

24.581 3.815 5.898 20.329 8.141 0.2841
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FIGURE 5
The calculated directional-dependent Young’s modulus (A) and shear modulus (B) for the monolayer lithium hydrosulfide.

FIGURE 6
The strain effect on the monolayer lithium hydrosulfide. The variation of the maximum and minimum values of the Young’s modulus (A) and shear
modulus (B) of the monolayer lithium hydrosulfide, and the energy level (C) and space position (D) of the hourglass nodal loop state.
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This enlarged view reveals several instances of band convergence
and overlap, notably featuring two prominent hourglass crossing
points along the Γ–X and M–Γ paths. These hourglass crossings
occur within the same set of valence bands, which are situated close
to the Fermi energy level and are distinctly separated from the other
bands. This separation simplifies both theoretical analysis and
experimental validation. The presence of hourglass band
crossings along the Γ–X and M–Γ paths suggests that these
crossings may not be isolated phenomena (Yu et al., 2023).
Instead, they likely form part of a larger structure known as a
nodal line. The LiHS monolayer, with its tetragonal P4/nm space
group, exhibits glide mirror symmetry Μz and time-reversal
symmetry Τ in the absence of spin orbit coupling (SOC) effect.
Under these symmetry operations, the double-degenerate state at
the Γ point shares identical eigenvalues of mz (±1), whereas at the
X (or M) point, the double-degenerate state exhibits opposite
eigenvalues of mz (±i). Considering the band structure along the
Γ-X path, as illustrated in Supplementary Figure S4, the
eigenvalues associated with mz reveal a partner-switching
behavior between the two doublets, leading to a band switch
from Γ to X and a Weyl crossing point along this path. Moreover,
this band switching is not limited to these paths alone; it occurs
along any path, forming an hourglass nodal loop. Such an
hourglass nodal loop is uncommon and has been
predominantly studied in three-dimensional materials. It holds
potential for generating exotic quantum phenomena, such as
unconventional superconductivity, non-Fermi liquid behaviors,
and fractional quantum Hall states. In contrast to previously
reported studies, the current nodal loop in the LiHS monolayer is
characterized by a four-band structure, representing one of the
most straightforward and simplest configurations.

Typically, a nodal loop often exhibits finite energy variation and
can display different dispersion types or crossing conditions

throughout its path. However, it is particularly noteworthy that
the two neck points along the Γ–X and M–Γ paths lie at the same
energy level, as indicated by the horizontal line in the bottom panel
of Figure 2. The complexities inherent in the energy variation and
dispersion conditions along the entire hourglass nodal loop make it
impossible to determine these aspects through symmetry analysis
alone, especially at the critical neck points. Consequently, we
conducted a comprehensive band structure analysis across the
entire kz = 0 plane, leading to the three-dimensional band
dispersions showcased in Figure 3. For this analysis, we selected
two projection paths, M–Γ–M and X–Γ–X, and applied consistent
color coding to the band surfaces, which align with the local band
structures depicted in the bottom panel of Figure 2. We highlighted
the hourglass crossing points with red spheres for clarity. These
visual representations conclusively demonstrate that the crossing
points form a closed nodal loop, thus confirming our earlier
symmetry analysis. Importantly, we observed no energy variation
at the neck points along this loop. As far as we know, this discovery
of a flat nodal loop, characterized in both energy dispersion and
spatial distribution, is unprecedented in prior studies and represents
a novel finding, particularly within two-dimensional systems.
Furthermore, to better visualize band distribution and the
configuration of this hourglass nodal loop, we have included the
corresponding three dimensional band surface distribution in
Supplementary Figure S5 and the hourglass nodal line profile
within the kz = 0 plane in Supplementary Figure S6. The nodal
loop reveals a slightly distorted circular shape, characterized by a
substantially large spatial occupation. Furthermore, we conducted a
detailed band segment scan, with the resulting band structures
presented in Supplementary Figure S7. Notably, the entire nodal
loop exhibits a consistent type-I crossing condition, and the
hourglass dispersion becomes increasingly pronounced as one
moves from the Γ–X direction to the Γ–M direction. The large
dimensions of the nodal loop, combined with the enhanced
hourglass dispersion, suggest significant potential for
experimental characterization and practical applications, marking
it as a compelling subject for further research.

In three-dimensional materials, the presence of a topological
phase is typically associated with nontrivial surface states. When
transitioning to two-dimensional materials, these surface states are
scaled down to edge states. For the top four valence bands associated
with the hourglass nodal loop in the LiHS monolayer, we performed
a detailed decomposition of their orbital contributions, with the
results presented in Supplementary Figure S8. Analysis reveals that
these four valence bands predominantly consist of p orbitals from S
element, particularly the px and py orbitals. Moreover, we observe a
band inversion feature near the hourglass crossing regions,
indicating the potential nontrivial band topology in the LiHS
monolayer. Building on these orbital compositions, we
successfully constructed a maximally localized Wannier tight-
binding Hamiltonian, enabling us to examine the correlated
topological edge states. The calculated edge states along the (100)
direction of the LiHS monolayer are illustrated in Figure 4. Notably,
the bulk band structures are overlaid on the edge projections,
showing a strong correspondence, especially in the regions of
topological band crossing. As shown in the figure, distinct edge
states emerge from the nodal loop crossing points and extend toward
the Brillouin zone boundary. Given the substantial size of the nodal

FIGURE 7
The calculated electronic band structure for the monolayer
lithium hydrosulfide under −10% compressive strain (A) and +10%
extensive strain (B).
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loop discussed earlier, the edge states exhibit a relatively limited
spatial distribution. Nevertheless, they remain well-separated from
the bulk band projection, which enhances their experimental
detectability and feasibility. Additionally, we explored the edge
states under the influence of SOC effect. Our findings indicate
that the band crossing points at the Γ position are opened up by
the introduction of a band gap; however, the integrity of the
hourglass crossing is preserved, and the corresponding edge
states are retained. This robust hourglass nodal loop under SOC
presents exciting and attracting possibilities for further research and
potential applications.

To facilitate future experimental characterization and guide
potential applications, we performed a comprehensive evaluation of
the mechanical properties of the LiHS monolayer. Several important
mechanical parameters are derived, including the three independent
elastic constants (C11, C12, and C66), along with Young’s modulus, shear
modulus, and Poisson’s ratio, and their values are presented in Table 1.
According to the elastic stability criteria for tetragonal
structures—namely, C11 > 0, C66 > 0, and C11 > |C12|—the LiHS
monolayer is confirmed to be mechanically stable. This, combined with
other stability factors, indicates a strong potential for the experimental
fabrication of the LiHS monolayer. We also investigated the
mechanical anisotropy by analyzing the directional
dependence of these properties. As illustrated in Figure 5,
the LiHS monolayer exhibits relatively large anisotropy in
both Young’s modulus and shear modulus, with calculated
values of 1.437 and 1.760, respectively. Notably, Young’s
modulus exhibits its maximum value along the (100)
direction, while the shear modulus reaches its peak along the
(110) direction. These anisotropic mechanical characteristics
underscore the importance of directional dependence, which is
especially relevant for applications that require tailored
structural integration or the formation of heterojunctions.
Given the pronounced anisotropic nature of the LiHS
monolayer, it is essential to consider careful selection of
directions in various engineering and technological
applications. This insight will enable more effective
utilization of the material’s mechanical properties in future
designs and integrations.

Beyond the mechanical properties pertinent for structural
integration, it is imperative to consider the effects of strain during
both experimental preparation and practical application. Lattice
variation is pivotal in determining and influencing the physical
properties of materials, especially in two-dimensional systems where
in-plane strain occurs during substrate-supported preparation.
Moreover, strain significantly affects electronic topological properties,
notably altering the winding configuration of nodal loops and impacting
the band crossing conditions along these loops. Here, we examine the
influence of uniform in-plane strain on the electronic topological and
mechanical properties of the LiHS monolayer. The results are
summarized in Figure 6, with the strain range considered from −10%
to +10%. The maximum and minimum values of Young’s modulus, as
shown in Figure 6A, are defined based on their spatial distribution, with
the maximum occurring along the (100) direction and the minimum
along the (110) direction. In Figure 6B, the maximum value of the shear
modulus is located along (110) direction and the minimum value along
(100) direction. As strain is varied from compressive to extensive,
corresponding to range from −10% to +10%, both Young’s modulus

and shear modulus decrease monotonically, with the maximum values
exhibiting a more rapid change than the minimum values. At a strain of
+5%, we note a significant curve crossing, where the maximum and
minimum values converge, indicating a shift toward isotropic behavior
for both Young’s modulus and shear modulus. The directional
distribution at this strain point is illustrated in Supplementary Figure
S9, revealing an almost perfectly circular shape that further confirms this
isotropy. Regarding the hourglass nodal loop, we assessed the energy
level and spatial position of the neck point along the Γ–Mpath, with their
variations under strain conditions displayed in Figures 6C, D,
respectively. Specifically, the energy of the hourglass nodal loop shifts
effectively toward the Fermi level as strain transitions from compressive
to extensive; however, the size of the nodal loop decreases under the
same stress conditions.

To further confirm the hourglass dispersion of the nodal loop
under strain conditions, we present the local band structures of the
top four valence bands. These are shown under −10% compressive
strain in the top panel of Figure 7 and +10% extensive strain in the
bottom panel. Both the PBE and HSE06 methods are considered,
and their results show good consistence. Notably, the same energy
scale ratio is applied across different strains. It is evident that the
hourglass dispersion is significantly contracted in energy scale under
extensive strain. Considering the mechanical properties under
strain, the trade-off between energy, size, and hourglass
dispersion must be carefully evaluated for specific applications.
Consequently, for future experimental investigations and practical
applications of the LiHS monolayer, both the direction and
magnitude of strain should be carefully considered. These strain
characteristics not only highlight the material’s capabilities for
detailed analysis but also position it as a promising candidate for
various future technological applications.

Conclusion

In this study, we identify a topological hourglass nodal loop state
in the LiHS monolayer through first-principles calculations. This
unique nodal loop involves only four bands without interference
from other bands, representing the simplest configurations. Using
symmetry considerations and an effective Hamiltonian model, we
elucidate the formation mechanism of this nodal loop and its
hourglass dispersion. Three-dimensional band surface scans
confirm the hourglass crossing along the entire nodal
loop. Notably, this loop, with its slightly distorted circular shape,
is flat in both energy dispersion and spatial distribution and occupies
a substantially large spatial area. Orbital decompositions and a tight-
binding Hamiltonian reveal edge states along the (100) direction.
These states are separated from the bulk band projection and span
through the Brillouin zone. Importantly, given the light constituent
elements, the hourglass dispersion and corresponding edge states are
retained under the spin-orbit coupling effect. This robust hourglass
nodal loop enhances the potential for experimental detection and
applications. To support practical environmental applications, we
have derived key mechanical parameters and examined their
anisotropic behaviors, particularly for Young’s modulus and
shear modulus. We further evaluate strain conditions under both
compressive and extensive stresses, showing different variation
tendencies in energy, size, and hourglass dispersion of the nodal
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loop. Both the direction and magnitude of strain should be carefully
considered for specific applications. Overall, the hourglass nodal
loop state examined in this study provides an ideal platform for
future experimental investigations and explorations.
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