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Disposable electrochemical biosensors with high sensitivity are very fit for point-
of-care testing in clinical diagnosis. Herein, amino-functionalized, vertically
ordered mesoporous silica films (NH2-VMSF) attached to an electrochemically
polarized screen-printed carbon electrode (p-SPCE) are prepared using a simple
electrochemical method and then utilized to construct a gated electrochemical
aptasensor for rapid and sensitive determination of carcinoembryonic antigen
(CEA). After being treated with the electrochemical polarization procedure,
p-SPCE has plentiful oxygen-containing groups and improved catalytic ability,
which help promote the stability of NH2-VMSF on SPCE without the use of an
adhesive layer and simultaneously generate a highly electroactive sensing
interface. Owing to the numerous uniform and ultrasmall nanopores of NH2-
VMSF, CEA-specific aptamer anchored on the external surface of NH2-VMSF/
p-SPCE serves as the gatekeeper, allowing the specific recognition and binding of
CEA and eventually impeding the ingress of electrochemical probes [Fe(CN)6

3−/4−]
through the silica nanochannels. The declined electrochemical responses of
Fe(CN)6

3−/4− can be used to quantitatively detect CEA, yielding a wide detection
range (100 fg/mL to 100 ng/mL) and a low limit of detection (24 fg/mL). Moreover,
the proposed NH2-VMSF/p-SPCE-based electrochemical aptasensor can be
applied to detect the amount of CEA in spiked human serum samples, which
extends the biological application of a disposable NH2-VMSF/p-SPCE sensor by
modulating the biological recognition species.
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1 Introduction

Vertically ordered mesoporous silica films (VMSF), called silica
isoporous membranes, consist of many regularly and
perpendicularly aligned nanochannels parallel to each other
(Walcarius, 2021; Zhou et al., 2020). These nanochannels are
ultrashort (~100 nm), and their diameter is ultrasmall
(2–11.8 nm), making VMSF a promising electrode modification
material in the field of electrochemical analysis (Fan et al., 2024;
Duan et al., 2024; Wei et al., 2022; Zhang et al., 2023a). Benefiting
from the permselectivity at the molecular level, VMSF not only
greatly increases the amounts of small electroactive molecules near
the electrode via electrostatic (Huang et al., 2024a; Luo et al., 2022;
Yu et al., 2024), lipophilic (Sun et al., 2016), or hydrogen bond
(Zheng et al., 2022) effects but also exhibits excellent anti-biofouling
capacity in biological samples without complicated pretreatment
procedures. VMSF, as a rigid structure, has two independent
regions, namely, tiny internal nanochannels and the external
surface. The uniform nanospace afforded by silica nanochannels
can accommodate nanostructures [e.g., graphene quantum dots
(Zhang et al., 2023b), metal nanoparticles (Zhou et al., 2024;
Zhang et al., 2023c; Chang et al., 2023; Zhang et al., 2024), and
conductive polymers (Ding et al., 2014)] for enhanced analytical
performance and simultaneously permit the access of
electrochemical probes/electrochemiluminescence luminophores
for signal generation. The external surface of VMSF can be
modified with biological species [e.g., enzymes (Huang et al.,
2024b; Ma et al., 2024), antibodies (Chen et al., 2023; Xing et al.,
2024; Huang et al., 2023a), antigens (Gong et al., 2022), and
aptamers (Li et al., 2023; Zhang et al., 2023d; Xing et al., 2023;
Zhou et al., 2023; Ma et al., 2023)] through covalent or electrostatic
effects to form a target-specific interface, and the signal variation of
electrochemical probes/electrochemiluminescence luminophores
can be introduced. The above characteristics endow VMSF with a
unique potential for developing various electroanalytical strategies.

In general, Stöber-solution growth and electrochemically
assisted self-assembly (EASA) methods are two common bottom-
up approaches for fabricating VMSF on the electrode surface (Teng
et al., 2012; Walcarius et al., 2007). The former method requires the
substrate electrodes carrying negative charges [e.g., indium tin oxide
(ITO) and glass], and the latter one needs conductive electrodes
[e.g., ITO (Ma et al., 2022a; Zeng et al., 2023), gold (Yan et al., 2022),
glassy carbon electrodes (Huang et al., 2023b), or screen-printed
carbon electrodes (SPCEs) (Ma et al., 2022b)]. As for the instability
issue of VMSF on the carbonaceous electrodes, the introduction of
oxygen-containing moieties on the electrode surface, including pre-
activation procedures (Su et al., 2022; Zhu et al., 2022; Deng et al.,
2023) or adhesive layers [silane molecules (Nasir et al., 2016), two-
dimensional graphene nanosheets (Lv et al., 2022; Ma et al., 2022c)
and their nanocomposites (Zhou et al., 2022)] have been employed.
As reported previously, the electrochemical polarization of SPCE is
helpful for the stable growth of VMSF, and the obtained VMSF/
p-SPCE has been selected as sensitive anti-biofouling sensors for the
detection of small electroactive species (Wang et al., 2022). To the
best of our knowledge, such VMSF/p-SPCE has not been designed
for gated electrochemical biosensors.

In this work, we propose the use of VMSF-bearing amino
groups on the p-SPCE (NH2-VMSF/p-SPCE) for the

construction of a disposable gated electrochemical aptasensor.
p-SPCE offers the electroactive substrate and oxygen-containing
moieties, which can be combined with NH2-VMSF to generate a
stable and sensitive sensing interface. Carcinoembryonic antigen
(CEA) is used as a model to examine the proposed sensing
strategy. After the covalent modification of CEA-specific
aptamer on the external surface of NH2-VMSF/p-SPCE with
the help of cross-linking agent, access of electrochemical
probes [Fe(CN)6

3−/4−] to the underlying p-SPCE is controlled
by the formation of the aptamer-CEA complex at the electrode
surface and thereby results in the quantitative relationship
between the electrochemical current signals of Fe(CN)6

3−/4−

and the logarithm of CEA concentration. The proposed gated
electrochemical aptasensing strategy based on the NH2-VMSF/
p-SPCE enables the analysis of CEA in spiked human serum,
providing a new avenue for the design of disposable and sensitive
electrochemical aptasensors and expanding the analytical
application of VMSF.

2 Materials and methods

2.1 Chemicals and materials

Carcinoembryonic antigen (CEA), alpha-fetoprotein (AFP),
carbohydrate antigen 125 (CA 125), carbohydrate antigen 19–9
(CA 19–9), and fetal bovine serum were purchased from Beijing
KeyGen Biotech Co., Ltd. (Beijing, China). Amino-modified CEA
aptamer (5′-ATACAGCTTCAATT-NH2-3′) (Yan et al., 2023) was
purchased from Sangon Biotechnology Co., Ltd (Shanghai, China).
Prostate-specific antigen (PSA) was procured from Beijing
Biodragon Immunotechnologies Co., Ltd. (Beijing, China).
Tetraethyl orthosilicate (TEOS, 98%), cetyltrimethylammonium
bromide (CTAB), bovine serum albumin (BSA), glutaraldehyde
(GA), sodium dihydrogen phosphate dihydrate
(NaH2PO4·2H2O), disodium hydrogen phosphate dodecahydrate
(Na2HPO4·12H2O), sodium hydroxide (NaOH), potassium
ferricyanide [K3Fe(CN)6], and potassium ferrocyanide
[K4Fe(CN)6] were purchased from Aladdin Bio-Chem
Technology Co., Ltd. (Shanghai, China). 3-
Aminopropyltriethoxysilane (APTES) and potassium hydrogen
phthalate (KHP) were purchased from Shanghai McLean Reagent
Co., Ltd (Shanghai, China). Sulfuric acid, acetone, anhydrous
ethanol (99.8%), and concentrated hydrochloric acid (HCl, 36%–
38%) were obtained from Shuanglin Reagent Co., Ltd. (Hangzhou,
China). Sodium nitrate (NaNO3) was ordered from Hangzhou
Gaojing Fine Chemical Co., Ltd. (Hangzhou, China). Screen-
printed carbon electrodes (SPCEs) were purchased from
Metrohm (Bern, Switzerland).

In brief, SPCEs contain three integrated electrodes, namely, a
working electrode (4 mm diameter), a counter electrode made up of
conductive graphite paste, and an Ag reference electrode comprising
of conductive silver paste. Phosphate-buffered saline (PBS, 0.01 M,
pH = 7.4) was prepared using NaH2PO4·2H2O and
Na2HPO4·12H2O. All the aqueous solutions used here were
prepared using ultrapure water (18.2 MΩ cm) from Milli-Q
Systems (Millipore Inc., Massachusetts, America). All chemical
reagents were of analytical grade.
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2.2 Characterization and instrumentation

The morphology and thickness of NH2-VMSF were
characterized using transmission electron microscopy (TEM,
model HT7700, Hitachi, Tokyo, Japan). To prepare TEM
samples, the NH2-VMSF layer was carefully scraped off the
electrode using a scalpel and dispersed in anhydrous ethanol
with subsequent ultrasonic dispersion. Then, the resulting
dispersion was drop-cast onto a copper grid. Before morphology
characterization under 200 kV, the sample was dried naturally. All
electrochemical experiments, including cyclic voltammetry (CV),
electrochemical impedance spectroscopy (EIS), and differential
pulse voltammetry (DPV), were conducted on an Autolab
electrochemical workstation (model PGSTAT302N, Metrohm
Autolab, Switzerland). The frequency range for EIS
measurements was from 0.1 Hz to 100 kHz, with a perturbation
amplitude of 5 mV.

2.3 Preparation of NH2-VMSF/p-SPCE

NH2-VMSF was grown on the surface of a p-SPCE electrode
using the EASA method, as reported in the literature (Ma et al.,
2022b). Bare SPCE was electrochemically polished by CV scanning
in diluted H2SO4 (0.05 M) 10 times at a potential of 0.4 V–1.0 V.
Then, the electrode was thoroughly washed with ultrapure water and
dried with nitrogen. After that, the cleaned SPCE was subjected to
electrochemical polarization. Specifically, a constant potential of
+1.8 V was applied to SPCE for 300 s to perform anodic oxidation,
followed by cathodic polarization in PBS (0.1 M, pH = 5) scanning
from −1.3 V to +1.25 V. The resulting electrode is called p-SPCE.

To grow NH2-VMSF on the p-SPCE, a mixture of 20 mL
ethanol, 20 mL NaNO3 solution (0.1 M, pH = 2.36), CTAB
(1.585 g), and APTES (318 μL) was prepared. The pH of the
solution was adjusted to 2.97 using HCl before TEOS (2,732 μL)
was added. Then, the solution was vigorously stirred and reacted for
2.5 h to obtain the precursor solution. Subsequently, the p-SPCE
electrode was put into the precursor solution and subjected to the
constant current (current density: −0.74 mA/cm2, duration: 10 s) to
grow NH2-VMSF on the p-SPCE surface. The resulting electrode
was washed with ultrapure water, dried with nitrogen, and aged at
80°C overnight to obtain the p-SPCE modified with a hybrid film
consisting of surfactant micelles (SMs) and NH2-VMSF, which was
named SM@NH2-VMSF/p-SPCE. Finally, the SM@NH2-VMSF/
p-SPCE electrode was immersed in an HCl-ethanol solution
(0.1 M) and stirred for 5 min to remove SMs from silica
nanochannels, yielding NH2-VMSF/p-SPCE with open
nanochannels.

2.4 Fabrication of the BSA/Apt/GA/NH2-
VMSF/p-SPCE aptasensor

NH2-VMSF/p-SPCE was used to construct an electrochemical
aptasensor for CEA detection by using GA as a cross-linking agent,
finally generating the amino groups on the outer surface of NH2-
VMSF and further immobilizing CEA-specific aptamer (Apt).
Specifically, to modify the GA only on the outer surface of NH2-

VMSF, the amino groups on the outer surface were first derivatized
with aldehyde groups before removing the SMs. A 1% GA solution
was dropped onto the SM@NH2-VMSF/p-SPCE and incubated at
37°C in the dark for 20 min. After thorough washing, the electrode
was soaked in a 0.1 M HCl-ethanol solution and stirred for 5 min to
remove SMs. The resulting electrode was denoted as the GA/NH2-
VMSF/p-SPCE. Next, a 100 mM Apt solution in 0.01 M PBS
(pH 7.4) was dropped onto the GA/NH2-VMSF/p-SPCE carrying
aldehyde moieties and incubated at 4°C for 90 min. The electrode
was then washed with 0.01 M PBS (pH 7.4) to remove any unbound
Apt to obtain Apt/GA/NH2-VMSF/p-SPCE. A 0.1 wt% solution of
BSA in 0.01 M PBS (pH 7.4) was used to incubate the Apt/GA/NH2-
VMSF/p-SPCE at 4°C for 30 min to block any nonspecific binding
sites. The resulting aptasensor was denoted as BSA/Apt/GA/NH2-
VMSF/p-SPCE.

2.5 Electrochemical detection of CEA

The BSA/Apt/GA/NH2-VMSF/p-SPCE aptasensor was
incubated with different concentrations of CEA at 4°C for
60 min. The detection solution was a 0.1 M KCl solution
containing 1.25 mM Fe(CN)6

3−/4−. Electrochemical signals of
Fe(CN)6

3−/4− were determined by the BSA/Apt/GA/NH2-VMSF/
p-SPCE aptasensor before and after CEA binding using DPV.
The standard addition and recovery methods were used to
analyze the real samples of human serum from healthy adults
without complicated pretreatments. The received human serum
provided by healthy volunteers was diluted 50 times with PBS
(0.01 M, pH = 7.4), and then various known amounts of CEA
were added in turn to obtain real samples for detection.

3 Results and discussion

3.1 Fabrication of electrochemical
aptasensors for sensitive detection of CEA
based on NH2-VMSF/p-SPCE

Combining the advantages of carbon electrodes and screen-
printed electrodes, SPCE has the advantages of good chemical
stability, a wide potential window, low cost, and easy mass
production. As for the conductive property of SPCE, NH2-VMSF
can be grown on SPCE using the EASA method but lacks stability.
Therefore, prior to the fabrication of NH2-VMSF, bare SPCE
undergoes an electrochemical pre-activation procedure (Scheme
1). As displayed, oxygen-containing functional groups appear at
the p-SPCE and can form chemical bonds with silanol groups of
NH2-VMSF to effectively increase the stability of NH2-VMSF on the
p-SPCE. In addition, abundant defects presented in the pre-
activation operation can boost the electrochemical activity of
SPCE. NH2-VMSF directly obtained from the EASA method
remains on the surfactant micelles (SMs) within the silica
nanochannels and is employed to incubate with glutaraldehyde
(GA) cross-linking agent to specifically generate aldehyde groups
on the outer surface of NH2-VMSF. Note that SMs confined in the
nanochannels of NH2-VMSF effectively prohibit the access and
modification of GA on the inner nanochannels. After further
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covalent binding with CEA-specific aptamer (Apt) and blockage of
nonspecific binding sites by bovine serum albumin (BSA), SMs are
excluded using 0.1 M HCl-ethanol solution to obtain BSA/Apt/GA/
NH2-VMSF/p-SPCE. The detection mechanism for CEA relies on
the impeded diffusion of electrochemical probes [Fe(CN)6

3−/4−] to
the underlying p-SPCE upon the recognition of CEA. Based on the
above principle, the quantitative relation between the decreased
electrochemical current signals of Fe(CN)6

3−/4− and CEA
concentration can be used to realize the detection of CEA.

3.2 Characterization of p-SPCE and NH2-
VMSF/p-SPCE

Considering the good electrocatalytic ability of p-SPCE, CV curves
of bare SPCE and p-SPCE in 0.1M PBS (pH 5.0) are compared. As seen
in Figure 1A, compared with that of bare SPCE, apparent enhancement
of changing current is observed at the p-SPCE, suggesting the increased
electroactive area of p-SPCE after pre-activation treatment. Moreover, a
pair of redox peaks near 0 V appeared at the p-SPCE and were assigned

SCHEME 1
Schematic illustration for the preparation of the BSA/Apt/GA/NH2-VMSF/p-SPCE aptasensor and its electrochemical determination mechanism
for CEA.

FIGURE 1
(A) CV curves of bare SPCE and p-SPCE in PBS (0.1 M, pH 5.0). (B) CV curves of bare SPCE and p-SPCE in 0.1 M PBS containing 1.25 mM Fe(CN)6

3−/4−.
The scan rate in (A, B) is 100 mV/s.
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to the electrochemical reaction between hydroquinone and quinone.
Figure 1B displays the CV responses of bare SPCE and p-SPCE to
1.25 mM Fe(CN)6

3−/4−. Increased electrochemical redox currents are
shown at the p-SPCE, confirming the improved electron transport
property of p-SPCE and further allowing the design of highly sensitive
electroanalytical sensors.

NH2-VMSF scraped from p-SPCE was observed by TEM and the
results are shown in Figures 2A, B. The top-view TEM image of NH2-
VMSF exhibits many nanopores as bright spots with a pore diameter of
2–3 nm (Figure 2A). The cross-sectional TEM image of NH2-VMSF
shows several nanochannels parallel to each other, with a uniform
thickness of 120 nm (Figure 2B). Subsequently, different electrodes
including bare SPCE, p-SPCE, SM@NH2-VMSF/p-SPCE, and NH2-
VMSF/p-SPCE were employed to detect charged 0.5 mM Fe(CN)6

3−

and Ru(NH3)6
3+, and CV curves are shown in Figures 2C, D. As

displayed, electrochemical pre-activation of SPCE can result in the
increased charging currents and Faradic currents for these two probes,
suggesting the increased electroactive area and accelerated electron
transport ability of p-SPCE. Only charging currents for two probes are
shown at the SM@NH2-VMSF/p-SPCE, indicating that the SMs inside
the nanochannels can block the access of probes and the as-prepared
NH2-VMSF on the p-SPCE is intact. NH2-VMSF has many open
nanochannels, and its inner surface is rich in amino groups. Due to the
protonation of amino groups, NH2-VMSF/p-SPCE exhibits a positively
charged surface and electrostatic selectivity for the above two charged
probes. By comparing the Faradic currents obtained at the p-SPCE, the

Faradic currents for negatively charged Fe(CN)6
3− probe are

significantly enhanced, and the signals for positively charged
Ru(NH3)6

3+ probe are decreased. This result indicates that the NH2-
VMSF/p-SPCE with electrostatic effect has the ability to amplify
Fe(CN)6

3− signals in the following quantitative analysis study. The
above results confirm the successful fabrication of NH2-VMSF on the
p-SPCE and are similar to the previous reports (Etienne et al., 2009).

3.3 Characterization for the stepwise
construction of a BSA/Apt/GA/NH2-VMSF/
p-SPCE aptasensor

NH2-VMSF/p-SPCE is a good electrode interface that can support
the development of developing highly sensitive and disposable
biosensors. To examine the ability of BSA/Apt/GA/NH2-VMSF/
p-SPCE, CEA was used as a model and its corresponding CEA-
specific aptamer as a recognition element was immobilized on the
outer surface of NH2-VMSF/p-SPCE. The resulting BSA/Apt/GA/
NH2-VMSF/p-SPCE aptasensor is achieved by stepwise modification
of GA, Apt, and BSA (Scheme 1) and is characterized by CV and EIS
techniques. As shown in Figure 3, consequent modification of GA, Apt,
and BSA leads to decreased redox peak currents and enhanced
semicircle diameter corresponding to the charge transfer resistance,
which is due to the hindered diffusion of Fe(CN)6

3−/4− toward the
electrode. When BSA/Apt/GA/NH2-VMSF/p-SPCE is incubated with

FIGURE 2
TEM characterization of NH2-VMSF: top-view (A) and cross-sectional view (B). CV curves of bare SPCE, p-SPCE, SM@NH2-VMSF/p-SPCE, and NH2-
VMSF/p-SPCE in a 50 mM KHP solution containing 0.5 mM K3 [Fe(CN)6] (C) and Ru(NH3)6Cl3 (D). The scan rate in (C, D) is 50 mV/s.
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100 pg/mLCEA, further hindered diffusion for Fe(CN)6
3−/4− occurs and

suggests the potential of our proposed aptasensor for quantitative
determination of CEA.

3.4 Optimization of construction conditions
of BSA/Apt/GA/NH2-VMSF/p-SPCE

Experimental conditions for the construction of BSA/Apt/GA/
NH2-VMSF/p-SPCE can influence the analytical performance of
CEA. Therefore, incubation times for the CEA-specific aptamer and
target CEA were studied, and the results are shown in Figure 4. As
exhibited, anodic peak currents at the BSA/Apt/GA/NH2-VMSF/
p-SPCE aptasensor decrease with the increasing incubation time at
the beginning and subsequently tend to approach a plateau. The

equilibrium times for the CEA-specific aptamer and target CEA of
90 min and 60 min, respectively, are used in the following study.

3.5 Electrochemical detection of CEA using
the fabricated BSA/Apt/GA/NH2-VMSF/
p-SPCE aptasensor

The analytical performance of the BSA/Apt/GA/NH2-VMSF/
p-SPCE sensor for CEA detection was evaluated by the DPV method.
Several concentrations of CEAwere incubated at the BSA/Apt/GA/NH2-
VMSF/p-SPCE surface and tested in a 0.1 M KCl solution containing
1.25 mM Fe(CN)6

3−/4−. As revealed in Figure 5A, anodic peak currents of
Fe(CN)6

3−/4− gradually decline with an increase in CEA concentration. By
plotting the anodic peak current ratio (△I/I0, where △I refers to I − I0,

FIGURE 3
(A) CV curves of NH2-VMSF/p-SPCE, GA/NH2-VMSF/p-SPCE, Apt/GA/NH2-VMSF/p-SPCE, and BSA/Apt/GA/NH2-VMSF/p-SPCE before and after
incubation of 100 pg/mL CEA in a 0.1 M KCl solution containing 1.25 mM Fe(CN)6

3−/4−. The scan rate is 50mV/s. (B) EIS curves obtained from the different
electrodes in a 0.1 M KCl solution containing 2.5 mM Fe(CN)6

3−/4−. The frequency range for EIS measurements was from 0.1 Hz to 100 kHz, with a
perturbation amplitude of 5 mV.

FIGURE 4
(A) Anodic peak currents obtained from DPV curves at GA/NH2-VMSF/p-SPCE after incubation with 0.1 μM CEA-specific aptamer under various
times in a 0.1 M KCl solution containing 1.25mM Fe(CN)6

3−/4−. (B) Anodic peak currents obtained fromDPV curves at the BSA/Apt/GA/NH2-VMSF/p-SPCE
aptasensor after incubation with 10 pg/mL CEA under various times in a 0.1 M KCl solution containing 1.25 mM Fe(CN)6

3−/4−. Error bars represent the
standard deviation (SD) values of the results measured in three parallel experiments.
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and I and I0 denote the anodic peak current in the presence and absence
of CEA, respectively.) against the logarithm of the CEA concentration, a
wide linear range of 100 fg/mL to 100 ng/mL is obtained. The
corresponding linear regression equation is △I/I0 = 0.086 log CCEA

(pg/mL) + 0.1674 (R2 = 0.997). The smallest discernible DPV signal is
obtained by subtracting the standard deviation from the average anodic
peak current of three-time blank signals, which is named I, and is
substituted into the above linear regression equation to calculate the limit
of detection (LOD). The LOD forCEA is estimated to be 24 fg/mL, which
is lower than those of electrochemical sensors shown in Table 1 and
demonstrates an excellent disposable and sensitive aptasensor.

The selectivity, reproducibility, and stability of our fabricated BSA/
Apt/GA/NH2-VMSF/p-SPCE sensorwere also verified, and the data are
shown in Figures 5B–D. As presented in Figure 5B, PSA, CA19-9,
CA125, and AFP were tested by a BSA/Apt/GA/NH2-VMSF/p-SPCE
sensor in a 0.1 M KCl solution containing 1.25 mM Fe(CN)6

3−/4−,
respectively. The anodic peak current variations were compared with
those of CEA and a mixture consisting of CEA and these four potential
interfering species. The results indicate that the magnitude of anodic

peak currents obtained at the BSA/Apt/GA/NH2-VMSF/p-SPCE
remains unchanged in the presence of these four interfering species,
implying that the proposed aptasensor enables the selective detection of
CEA. Seven parallel BSA/Apt/GA/NH2-VMSF/p-SPCE aptasensors
were used to detect 0.1 ng/mL CEA, displaying comparable
electrochemical current variation and showing a good reproducibility
of the as-prepared aptasensor (Figure 5C). The prepared BSA/Apt/GA/
NH2-VMSF/p-SPCE without any solution was placed at 4°C and used
to detect 0.1 ng/mL CEA on different days. Figure 5D shows that the
BSA/Apt/GA/NH2-VMSF/p-SPCE aptasensor had excellent stability
for the detection of 0.1 ng/mL CEA within 7 days.

3.6 Detection of CEA in human
serum samples

The fabricated BSA/Apt/GA/NH2-VMSF/p-SPCE aptasensor
was applied to detect CEA in human serum samples. After
simple dilution treatment and the addition of a series of CEA

FIGURE 5
(A) DPV curves obtained from the BSA/Apt/GA/NH2-VMSF/p-SPCE aptasensor in a 0.1 M KCl solution containing 1.25 mM Fe(CN)6

3−/4− and various
concentrations of CEA ranging from 100 fg/mL to 100 ng/mL. The inset is the corresponding calibration curve between △I/I0 and the logarithm of the
CEA concentration. (B) Relative ratio (I/I0) of anodic peak currents at the BSA/Apt/GA/NH2-VMSF/p-SPCE aptasensor in a 0.1 M KCl solution containing
1.25 mM Fe(CN)6

3−/4− before (I0) and after (I) incubation with PSA (10 ng/mL), CA19-9 (10 U/mL), CA125 (1 mU/mL), AFP (10 ng/mL), CEA (0.1 ng/mL),
or their mixture. (C) Reproducibility of the BSA/Apt/GA/NH2-VMSF/p-SPCE aptasensor. Peak current of the DPV anode obtained from seven parallel BSA/
Apt/GA/NH2-VMSF/p-SPCE aptasensors in a 0.1 M KCl solution containing 1.25 mM Fe(CN)6

3−/4− after incubation with CEA. I0 and I are anodic peak
currents obtained on the first aptasensor and other aptasensors. (D) Stability of the BSA/Apt/GA/NH2-VMSF/p-SPCE aptasensor. The prepared BSA/Apt/
GA/NH2-VMSF/p-SPCE was placed at 4°C and used to detect 0.1 ng/mL CEA on different days. I0 and I are anodic peak currents obtained on the first day
and other days. The error bars represent the SD of three measurements using three parallel electrodes.
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samples with known concentrations, artificial human serum samples
were obtained and measured by our BSA/Apt/GA/NH2-VMSF/
p-SPCE aptasensor. As shown in Table 2, the detected
concentrations (found) by BSA/Apt/GA/NH2-VMSF/p-SPCE
aptasensor are comparable to those known spiked concentrations
(added), exhibiting satisfactory recoveries and relative standard
deviation (RSD) values.

4 Conclusion

In summary, NH2-VMSF/p-SPCE, combining a tailored rigid
skeleton and an electroactive sensing substrate, was used for the
design of disposable gate electrochemical aptasnsor. The
electrochemical polarization procedure of SPCE can generate
plentiful oxygen-containing groups to promote the stability of
NH2-VMSF on p-SPCE and improve the catalytic ability for
enhanced electroanalytical performance. The CEA-specific
aptamer anchored on the external surface of NH2-VMSF/
p-SPCE acts as the gatekeeper and then specifically recognizes
the target CEA, resulting in the impeded ingress of Fe(CN)6

3−/4−

and thereby enabling the quantitative analysis of CEA. A wide
detection range (100 fg/mL to 100 ng/mL) and a low limit of
detection (24 fg/mL) were demonstrated by this gated
electrochemical aptasensor based on the NH2-VMSF/p-SPCE.
Note that such an aptasensor can be used at least three times in
the same sample before being disposed of. Moreover, analysis of
CEA in spiked human serum samples is satisfied, which extends
the biological applications of disposable NH2-VMSF/p-SPCE and
allows the detection of various analytes by modulating the
biological recognition species.
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TABLE 1 Analytical performance of our BSA/Apt/GA/NH2-VMSF/p-SPCE aptasensor and other electrochemical sensors for CEA detection.

Material Method Liner range (pg/mL) LOD (pg/mL) Ref.

dsDNA/MXC-Fe3O4-Ru/MGE DPV 1–106 0.62 Yang et al. (2022)

GNRs-aptamer/CEA/BSA/anti-CEA-GO/GCE SWV 0.1–104 0.05 Si et al. (2017)

hybrid DNA/CEA-H1/BSA/MCH/H2/AuE DPV 10–105 0.84 Niu et al. (2022)

pβ-pep/PANI/GCE DPV 10–3−103 3.3 × 10−4 Zhao et al. (2023)

Apt/MCH/cpDNA2/AuE DPV 2 × 103–4.5 × 104 240 Zhai et al. (2021)

HRP@ConA/CEA/MCH-Apt/AuE DPV 5 × 103–4 × 104 3.4 × 103 Wang et al. (2018)

BSA/Apt/GA/NH2-VMSF/p-SPCE DPV 0.1–105 0.024 This work

dsDNA, double-stranded DNA; cpDNA, chloroplast DNA; MXC, carboxyl functionalized 2D nanomaterial MXene; MGE, magnetic gold electrode; GNRs, gold nanorods; GO, graphene oxide;

GCE, glassy carbon electrode; H1, hairpin probe 1; MCH, 6-mercapto-1-hexanol; H2, hairpin probe 2; AuE, Au electrode; pβ-pep, peptide containing unnatural β-homoserine; PANI, polymer

polyaniline; cpDNA2, capture DNA; HRP, horseradish peroxidase; ConA, concanavalin A.

TABLE 2 Determination of CEA in human serum samples.

Sample Added (ng/mL) Found (ng/mL) Recovery (%) RSD (%, n = 3)

Seruma 0.00100 0.00107 107 2.1

0.100 0.0962 96.2 2.7

10.0 9.96 99.6 1.1

aHuman serum samples are diluted by a factor of 50 using PBS (0.01 M, pH 7.4). The diluted concentrations of CEA are shown in the table.
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