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Platform chemicals obtained from biomass will play an important role in chemical
industry. Already existing compounds or not yet established chemicals are
produced from this renewable feedstock. Using photochemical reactions as
sustainable method for the conversion of matter furthermore permits to
develop processes that are interesting from the ecological and economical
point of view. Furans or levoglucosenone are thus obtained from
carbohydrate containing biomass. Photochemical rearrangements,
photooxygenation reactions or photocatalytic radical reactions can be carried
out with such compounds. Also, sugars such pentoses or hexoses can be more
easily transformed into heterocyclic target compounds when such
photochemical reactions are used. Lignin is an important source for aromatic
compounds such as vanillin. Photocycloaddition of these compounds with
alkenes or the use light supported multicomponent reactions yield interesting
target molecules. Dyes, surfactants or compounds possessing a high degree of
molecular diversity and complexity have been synthesized with photochemical
key steps. Alkenes as platform chemicals are also produced by fermentation
processes, for example, with cyanobacteria using biological photosynthesis. Such
alkenes as well as terpenes may further be transformed in photochemical
reactions yielding, for example, precursors of jet fuels.
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Introduction

Sustainability play a key role for the development of mankind. In the case of chemical
industry, this has been recognized very early. More than 100 years ago, G. Ciamician has
published ideas about a non-polluting chemical industry based on photochemical and
enzymatic reactions for the production of biomass as it is done by green plants (Ciamician,
1912; Ciamician, 1908). In fact biological organisms using photosynthesis constitute the
biggest chemical industry with an annual production of 1.7 • 1011 t per year (Lichtenthaler
and Peters, 2004). Lignocellulose represents the major part of biomass (Shinde et al., 2020).
It is mainly composed of carbohydrates (C6 sugar based material such as celluloses or starch
and C5 sugar based material such as hemicelluloses) and on lignin which is an important
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source of aromatic compounds and an important source of platform
chemicals. Various criteria for sustainable or green chemistry have
been defined (Anastas and Kirchhoff, 2002). Approaching most
closely the methods of chemical production to those used by nature
is one of the strategies for a sustainable chemical industry. Another
one is the optimization of already existing processes in view to
reduce the environmental impact. This can be done, for example, by
diminishing waste formation, simplifying the production processes
by reducing the number of steps in multi-step syntheses or by using
renewable feedstock.

In this regard, biomass as renewable feedstock play an important
role. The molecular structure of biomass is different form
corresponding fossil carbon compounds (Shinde et al., 2020;
Wertz and Bédué, 2013; Barrault et al., 2018; Marion et al., 2017;
Ravelli and Samorì, 2021; Gallezot P., 2012; Behr and Seidensticker,
2018). For this reason, transformations or production processes can
be carried out and multi-step syntheses can be simplified which
makes them more competitive form the economic and ecological
point of view (Tietze, 1996; Groß et al., 2020). In the context of
academic research, a lot of syntheses have been published with much
more than 25 steps. Especially in the context of an industrial
application and the environmental impact, these research
approaches have been criticized (Tietze et al., 2000; Hudlicky,
1996; Tietze and Tietze, 2014). For example, when oxygen rich
compounds are needed, they should preferentially be produced from
carbohydrates because this renewable feedstock is oxygen rich
(Lichtenthaler and Peters, 2004; Lichtenthaler et al., 2006) and
the number of oxidation steps can be diminished (Levy and
Fügedi, 2006). In some corresponding multi-step syntheses with
fossil platform chemicals, complex chemo-, regio- or stereoselective
oxidations are involved which makes them less competitive. In
general, platform chemicals are key elements of the chemical
industry as far as the production of bulk products or fine
chemicals is concerned. The transformation of such compounds
originating from biomass under sustainable conditions is therefore
significant for the development of the chemical industry (Sheldon,
2014; Farmer et al., 2015; Shinde et al., 2020; Arias et al., 2020).

In the same context, organic photochemical reactions may be
discussed. Using such reactions, compounds or compound families
can be produced that are not or difficultly available by more
conventional methods of organic synthesis (Turro and Schuster,
1975; Hoffmann, 2008; Bach and Hehn, 2011; Kärkäs et al., 2016a;
Liu and Li, 2017; Zhu et al., 2024). This behavior is explained by the
fact that photochemical excitation changes the electronic
configuration of a molecule (Klán and Wirz, 2009). Many
photochemical reactions are carried out without additional
chemical reagents and activation of the starting compound
occurs only by absorption of a photon. In this context, the
photon is considered as a traceless reagent (Hoffmann, 2012;
Oelgemöller et al., 2007) These reactions now gain in interest in
the chemical industry (André et al., 1992; Braun et al., 1991; Bonfield
et al., 2020; Moschetta et al., 2024). Recent activities in the domain of
chemical engineering of photochemical reactions favor this interest
(Elliott et al., 2014; Oelgemöller, 2014; Loubière et al., 2016; Noël,
2017; Zondag et al., 2023) In the context, of sustainable chemistry, it
should also be mentioned that photochemical reactions can be
carried out with sunlight as a renewable energy source
(Oelgemöller, 2016). Some of such procedures are interesting in

the context of an industrial application. Organic photochemistry has
recently experienced a rebirth due to a wide range of work with
different kinds of photocatalysis (Michelin and Hoffmann, 2018a;
Michelin and Hoffmann, 2018b), especially photoredox catalysis
applied to organic synthesis must be mentioned here (König, 2020;
Stephenson et al., 2018; Marzo et al., 2018; Nicholls et al., 2016).
Photochemical reactions are also studied in the context of
depolymerization of biomass (Ouyang et al., 2022; Wu et al.,
2020; Chen et al., 2021; Rao et al., 2021; Nwosu et al., 2021).

Both approaches, the transformations of biomass or biomass
derived chemicals and the application of photochemical reactions
significantly extend the space of chemical structures (Gómez
Fernández and Hoffmann, 2023). The combination of these
approaches also opens perspectives for a sustainable chemical
industry. The present review deals with typical photochemical
transformations of corresponding platform chemicals. The
production of novel compounds is particularly focused.

Platform chemicals from
carbohydrates

Carbohydrates of carbohydrate based biopolymers are an
important source of furans and many other compounds (Guigo
et al., 2021; Mika et al., 2018). Furan compounds undergo easily
photooxygenation involving singlet oxygen (Gollnick and
Griesbeck, 1985; Montagnon et al., 2014; Montagnon et al.,
2016). Among various methods (Nardello-Rataj et al., 2016), the
photochemical production of singlet oxygen is a particularly
attractive one (Ghogare and Greer, 2016; Bartoschek et al., 2005).
In this case, the singlet species (Minaev, 2007; Schweitzer and
Schmidt, 2003; Mittal et al., 2020) is generated form triplet
oxygen by sensitization (Scheme 1). After photochemical
excitation to the singlet state, the sensitizer (sens) undergoes
intersystem crossing (isc) to the triplet state. Possessing the same
spin multiplicity as oxygen at its ground state an interaction of both
species is spin allowed. The sensitizer returns to its singlet ground
state while the oxygen is excited to its singlet state. As the singlet
energy of oxygen is relatively low (23 kcal mol−1), a large variety of
sensitizers are used such as almost all kinds of dyes, organic and
inorganic semiconductors, coordination compounds or
nanoparticles with corresponding properties.

Furfural 1 is a furan derivative that is easily obtained from
pentoses or hemicelluloses by dehydration (Zeitsch, 2000; Kabbour
et al., 2020; Martel et al., 2010; Jaswal et al., 2022). The
photooxygentation of this compound is very efficient and yields
5-hydroxy-2(5H)-furanone 2 (Scheme 2) (Schenck, 1953). The
reaction starts with the addition of singlet oxygen leading to the
endo peroxide 3 (Cottier et al., 1986). The reaction is often carried
out with alcohols as solvent, in particular methanol or ethanol which

SCHEME 1
Generation of singlet oxygen by triplet sensitization.
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attacks the endo peroxide intermediate 3 at the aldehyde function.
Hydroxyfuranone 2 is generated by release of a corresponding
formic ester 4.5-hydroxy-2(5H)-furanone 2 is also a platform
chemical (Esser et al., 1994; Badovskaja et al., 2021; Palai et al.,
2024). It is easily transformed into corresponding 5-alcoxy-2(5H)-
furanones like 5 or acyclic compounds such as 6 or 7 that are flexible
synthesis intermediates (Scharf and Janus, 1978). Hydroxyfuranone
2 was used, for example, in asymmetric synthesis (Marinković et al.,
2004; Feringa and de Jong, 1992; Moradei and Paquette, 2003;
Riguet, 2011). In this context, studies on chiral induction in
reactions of such furanones at their excited state should be
mentioned. Due to photochemical excitation, the structures
changes which also modify steric hindrance and relevant
stereoelectronic effects (Marinković et al., 2004; Hoffmann et al.,
1994; Hoffmann and Scharf, 1991; Bertrand et al., 1998; Fréneau
et al., 2016).

The photooxygenation of furfural can be carried out on large
scale in the laboratory. Recently, an experimental procedure for the
transformation of 100 g in 1.5 L of ethanol has been reported in
detail (Desvals et al., 2022). Large scale transformations for 40-L-
solutions have been carried out using sunlight (Esser et al., 1994). As

a recent example of an application to organic synthesis,
ethoxyfuranone 5 was transformed into a polymethine dye
(Scheme 3) (Desvals et al., 2022). In the presence of bromine, the
α-bromo derivative 8 is formed which leads to an increase of the
oxidation state in this position. Thus hydrolysis yields the
malondialdehyde intermediate 9 or its tautomer 10.
Condensation with thiobarbituric acid derivatives such as 11
yields oxonol dyes 12. The present synthesis enabled a physico-
chemical characterization of such dyes. These dyes play an
important role in the photometric detection and quantification of
enzyme activities (Unger, 1981; Nakashima et al., 1983) such as
pectinlyase (Nedjma et al., 2001). In such tests, the intermediates 9
and 10 are generated from corresponding metabolites.

Further applications to the synthesis of biodegradable
surfactants have been reported (Gassama et al., 2013; Gassama
et al., 2009; Yue and Queneau, 2022). Furanone derivatives are
interesting monomers for radical polymerization (Le Dot et al.,
2024). Nevertheless, they undergo difficultly homo-polymerization.
It was shown that copolymerization of alcoxyfuranones with
electron rich monomers such as enolethers is very efficient
(Poskonin et al., 1999; Lepage et al., 2023). The addition of

SCHEME 2
Photooxygenation of furfural 1 yields hydroxyfuranone 2 and related derivatives.

SCHEME 3
Synthesis of polymethine dyes of oxonol type starting with ethoxyfuranone 5 obtained from hydroxyfuranone 2.
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photochemically generated radicals (Hoffmann, 1994; Bertrand
et al., 2000a; Bertrand et al., 2000b; Harakat et al., 2006;
Hoffmann et al., 2006) to furanones using ketones as sensitizer
has been carried in continuous flow reactors (Yavorskyy et al., 2012;
Yavorskyy et al., 2011) or microreactors (Shvydkiv et al., 2010). This
reaction is suitable for the evaluation of different kinds of these
reactors (Shvydkiv et al., 2011; Oelgemöller et al., 2014). Similar
reactions have been carried out with inorganic semi-conductors as
sensitizer (Marinković and Hoffmann, 2001; Marinković and
Hoffmann, 2003; Marinković and Hoffmann, 2004).

As mentioned in previous paragraphs furans are obtained by
dehydration of carbohydrates (Takkellapati et al., 2018). The
efficiency of this process depends on the structure of the sugar
precursors. A corresponding dehydration sequence is efficient when
furanoses react, partly because these compounds contain the five
membered ring of furans. The equilibrium between a pyranose and
furanose formmust be shifted to the furanose. Glucose is amajor element
of biomass and its transformation by dehydration into the corresponding
hydroxymethylfurfural (HMF) and corresponding derivatives such as
2,5-furandicarboxylic acid or 2,5-diformylfuran is of high interest (for
selected reviews see: Yue andQueneau, 2022; van Putten et al., 2013; Hou
et al., 2021; Li, 2023; Post et al., 2023; de Vries, 2017; Al Ghatta and
Hallett, 2023; Zhang S. et al., 2023; Velty et al., 2022; Shinde and Rode,
2020; Lewkowski, 2001). The selective dehydration of a furanose moiety
in the presence of a pyranose structure has well been performed in the
case of isomaltulose (Scheme 4) (Lichtenthaler et al., 1993). This

disaccharide is produced by enzymatic isomerization of saccharose
(Hagen and Lorenz, 1957). The dehydration of isomaltulose yields
Glucosylmethylfurfural (GMF) 13. This compound is an interesting
synthesis intermediate for the preparation of numerous bioinspired
molecular structures (Tan et al., 2015). It should be pointed out that
such α-annomeric derivatives of glucose are difficultly available by
conventional synthesis techniques of carbohydrate chemistry (Levy
and Fügedi, 2006). For different proposes, protecting groups can be
introduced (14). In this case, the photooxygenation under conditions
previously described for the transformation of furfural yields two epimers
of hydroxyfuranone 15. After reduction, the two furanone derivatives 16
and 17 have been obtained (Jahjah et al., 2010). In the present case, a
study on stereoelectronic effect in photochemically induced hydrogen
atom transfer reactions (HAT) (Jahjah et al., 2010; Hoffmann, 2016;
Hoffmann, 2015; Hoffmann, 2017) was carried out. The photooxydation
conditions are compatible with the presence of a variety of functional
groups. Thus 5-(azidomethyl)furfural was transformed with a similar
reaction sequence into 5-aminolevolinic acid hydrochlorid that is a
natural herbicide (Mascal and Dutta, 2011). Hydroxymethyl
furanones also called hydroxymethyl butenolides are also valuable
synthons for a broader application to organic synthesis (Flourat et al.,
2020). Photooxygenation processes at the industrial scale are well known
(Rojahn and Warnecke, 1980; Turconi et al., 2014; Wau et al., 2021).

Sugars are considered as platform chemicals when they can be
transformed in only few steps into interesting target molecules
(Jäger and Minnaard, 2016). Due to the presence of numerous

SCHEME 4
Selective dehydration of a furanosyl moiety in the presence of a pyranosyl group in isomaltulose. Photooxygenation of the furan substituent.
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hydroxyl functions in these compounds, selective transformations
often need a laborious strategy using protecting groups (Levy and
Fügedi, 2006; Kocieński, 2005; Wuts, 2014). In this context, methods
are required that enables a selective transformation, for example, of a
single hydroxyl function into reactive a carbonyl group. A lot of
enzymes enable such transformations. Thus galactose oxidase
catalyzes the selective oxidation of the hydroxyl function in the
position 6 of galactose into the corresponding aldehyde (Ito et al.,

1991). Also artificial catalysts have been developed to imitate such
enzyme activities in the context of biomimetic transformations
(Pierre, 2000; Chaudhuri et al., 1999; Berkessel et al., 2005;
Thomas, 2007; Lewis and Tolman, 2004; Mirica et al., 2004).
Such an example is depicted in Scheme 5 (Gassama and
Hoffmann, 2008). The galactose oxidase catalyzes the oxidation
of compounds like 18 into the corresponding aldehydes 19. Such
products are in equilibrium with their half acetale forms 20 which
stabilizes these derivatives and consecutive transformations can be
envisaged. In the present case, the oxidation has been carried out
using Semmelhack reaction conditions (Semmelhack et al., 1984)
with CuCl and TEMPO (2,2,6,6-Tetramethylpiperidinyloxyl) as
catalysts and air as oxidant. These conditions are suitable for the
oxidation of primary alcohols (Ryland and Stahl, 2014). Under the
reported reaction conditions, the oxidation of the compounds such
as 21 or 24 was inefficient. However, when carried out under
irradiation with visible light, the reaction became efficient. A
further improvement was achieved when the reaction mixture
was subjected to a reductive amination. The resulting compounds
22 and 25 after deprotection and reductive amination yielded the
azepane derivatives 23 and 26. Such compounds possess interesting
pharmaceutical activities (Compain andMartin, 2007; Li et al., 2009;
Désiré et al., 2014). As the examples show, this strategy for the
synthesis of azepanes can be applied to a larger variety of hexoses
with different relative and absolute configuration while a
corresponding application of enzymes such as the galactose
oxidase is limited to particular stereoisomers. The mechanism
depicted in Scheme 6 has been suggested in which Cu(II) acts as
the oxidant of the alcohol species (27) (Dijksman et al., 2003). The

SCHEME 5
Synthesis of tetrahydroxyazepanes form glucose and mannose derivatives imitating galactose oxidase.

SCHEME 6
Mechanism of the Semmelhack reaction.
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resulting Cu(I) is reoxidized to Cu(II) by addition of TEMPO (28)
and the release of TEMPOH. The positive effect of irradiation with
visible light can be explained by the fact that the Cu-O bond is
weakened when such complexes are electronically excited via a
ligand to metal charge transfer (LMCT). Thus ligand exchange
steps in the mechanism are accelerated (Abderrazak et al., 2021).

Recently levoglucosenone became an interesting platform
chemical (Camp and Greatrex, 2022). It is obtained from
cellulose by pyrolysis under acidic conditions (Scheme 7) (De

bruyn et al., 2016; Halpern et al., 1973; He et al., 2017; Klepp
et al., 2020). This compound is now produced on industrial scale as
an intermediate in the production of Cyrene™, a biobased aprotic
dipolar solvent (Sherwood et al., 2014; Citarella et al., 2022). A
relatively high number of functional groups are located on a small
enantiopure compound. Thus levoglucosenone is an interesting
synthon for asymmetric synthesis (Comba et al., 2018; Awad
et al., 2006; Sarotti et al., 2012; Tsai et al., 2018). It can also be
transformed into other platform chemicals such as furanones (Diot-

SCHEME 7
Levoglucosenone as an intermediate in the production of Cyrene™.

SCHEME 8
The photochemical reactivity of levoglucosenone is dominated by a Norrish type I reaction.

SCHEME 9
Photocatalytic reactions with tetrabutylammonium decatungstate (TBADT).
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Néant et al., 2018; Bonneau et al., 2018). Also Cyrene™, is used as
synthon in organic synthesis (Stini et al., 2022).

Hitherto, only few photochemical reactions with
levoglucosenone have been reported. When levoglucosenone 29 is
electronically excited by light absorption, a Norrish type I reaction
occurs yielding the diradical intermediate 30 (Scheme 8) (Yamada
andMatsumoto, 1992). Rearrangement yields the ketene 31which is
trapped by an alcohol leading to the corresponding ester 32. Trans-

substituted alkenes 33 and 34 are also formed, most probably via
sensitization. Similar steps are often observed in Norrish type I
reactions (Bohne, 1995; Majhi, 2021). In this transformation,
alkenes with an interesting substitution pattern are obtained.

However, the complex bicyclic structure is destroyed and the
chiral information is lost. In this context photocatalysis with light of
longer wavelengths enables photochemical transformations. Under
such reaction conditions, a catalytic system absorbs light while the

SCHEME 10
Addition of a variety of photochemically generated radicals to levoglucosenone 29.

SCHEME 11
Unusual regioselectivity in the reaction of cyclopentanone 36 to levoglucosenone 29. Addition of cyrene™ 37 to levoglucosenone 29.
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substrate remains at its ground state. Tungstates such as
tetrabutylammonium decatungstate (TBADT) are capable of
generating radical species (Scheme 9) (Tanielian, 1998; Ravelli
et al., 2016; Hong and Indurmuddam, 2024). Such intermediates
can be generated by hydrogen atom transfer (HAT) in different
ways. In the present context, two processes are often discussed: (a)
The proton and the electron are transferred simultaneously or (b)
the electron is transferred first and the proton follows (Hoffmann,
2016; Hoffmann, 2015). In a more general context, these processes
are part of proton-coupled electron transfer (PCET) (Hoffmann,
2017; Miller et al., 2016; Murray et al., 2022; Tyburski et al., 2021).
Also single electron transfer (SET) is observed with these catalysts.

The reaction conditions are particularly mild so that also complex
polyfunctional substrates such as morphine derivatives can be
selectively transformed (Gorbachev et al., 2022).

Using TBADT as photocatalyst, a variety of radical species were
generated and added to levoglucosenone 29 (Scheme 10) (Lefebvre
et al., 2022). Thus adducts with alkanes (35a, 35b, 35c or 35d) have
been obtained. The addition of formamidyl radicals (35e) was
particularly efficient. Cyclic ethers (35f) have also been added. A
large number of acyl radicals generated from corresponding
aldehyde precursors have been added. Adducts with
benzaldehyde derivatives (35g and 35h) have been synthesized.
Also heterocyclic aldehydes (35i or 35j) and aliphatic aldehydes
(35k) have been added. The photosensitization with TBADT of the
radical addition is generally efficient in the transformation of
aromatic aldehydes (Raviola et al., 2019; Qiao et al., 2022). Some
recent works particularly deals with reactions of furfural (Nielsen
et al., 2024). The radical addition occurred stereospecifically anti
with respect to the (CH2-O)-bridge in levoglucosenone. An energy
difference of the transition states for both diastereotopic attacks of
the radical intermediates of 5 kcal•mol−1 was calculated. The high
stereoselectivity qualifies the reaction for application to asymmetric
synthesis. The particular regioselectivity of the radical addition was
observed in the case of cyclopentanone 36 (Scheme 11) (Lefebvre
et al., 2022). One should expect the formation of a radical species in
the α position of the cyclic ketone due to an increased stability by a
mesomeric effect in the resulting intermediate. However, the
reaction took place in the β position yielding adduct 35l. This
observation has been explained by the fact that at the transition
state (TS) of the hydrogen atom transfer (HAT) step, a positive
partial charge is generated at the hydrogen donor partner. In the case
of cyclopentanone 36 this is favorable for a reaction in the β position.
Detailed investigations of the stereo- and regioelectronic effects in
this step have been carried out (Okada et al., 2014; Yamada et al.,
2017; Ravelli et al., 2018; Roberts, 1999). The regio and
stereoselectivity of such reactions are very high. In the addition
of cyrene™ 37, only two isomers of 32 possible products have been
isolated. The hydrogen atom transfer from the β-position of 37,
yields the highly symmetric adduct 35m. The reaction at the (CH2-
O)-bridge of 37 yields the adduct 35n. The reaction mechanism for
the addition of cyclopentanone is presented in Scheme 12. After

SCHEME 12
Mechanism of the TBADT photocatalyzed addition
cyclopentanone 36 to levoglucosenone 29.

SCHEME 13
Three types of photocycloadditions of electronically excited benzene derivatives with alkenes.

Frontiers in Chemistry frontiersin.org08

Hoffmann et al. 10.3389/fchem.2024.1485354

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2024.1485354


excitation of the decatungstate, a hydrogen atom is transferred from
the cyclopentanone to the photocatalyst yielding the radial
intermediate 38. After addition of the latter to levoglucosenone
29, the electrophilic oxoallyl radical 39 is formed. In the final step, a
hydrogen atom is transferred from the reduced photocatalyst species
40 to the intermediate 39 yielding the final product 35l. In this step,
the photocatalyst is regenerated.

Platform chemicals from lignin

Lignin is an important renewable source of aromatic
compounds, especially of phenol derivatives (Farmer et al., 2015;
Argyropoulos et al., 2023; Heitner et al., 2010; Zhang and Wang,
2022). However, depolymerization of this complex material for the
production of aromatic compounds is challenging (Subbotina et al.,

SCHEME 14
Intramolecular photocycloaddition of vanillin derivatives. Products result from an initial [2+3] or [2+2] photocycloaddition.

SCHEME 15
Mechanisms for the formation of complex molecules resulting from initial [2+3] or [2+2] photocycloaddition. These reactions occur at the
singlet state.
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2021; Li et al., 2024; Zhang C. et al., 2023; Zhou et al., 2022). Among
other methods, also photochemical, especially photocatalytic
reactions are investigated in this context (Li et al., 2016; Zakzeski
et al., 2010; Rinaldi et al., 2016; Kärkäs et al., 2016b; Magallanes et al.,
2019; Zhang, 2018; Das and König, 2018; Niguyen et al., 2020). Very
often, such reactions have been carried out with model compounds.
Vanillin is one of the monomers which is currently produced from
lignin on the industrial scale (Backa et al., 2012; Bjørsvik and
Liguori, 2002; Fache et al., 2016; Araújo et al., 2010; Nayak
et al., 2023).

Concerning photochemical transformations, the reactivity of
electronically excited aromatic compounds is significantly different
from their ground state reactivity. At the ground state, these
compounds possess aromatic character. At the excited state
(Franck Conton state) they are anti-aromatic (Rosenberg et al.,
2014; Yan et al., 2023). Consequently, they become particularly
reactive. In contrast to many ground state reactions, photochemical
reactions are characterized by a high tendency to avoid the aromatic
stabilization in the final products. This property is particularly
interesting for application to organic synthesis since a high
degree of molecular complexity is generated in such reactions
(Hoffmann et al., 2016). The photochemical cycloadditions of
electronically excited aromatic compounds with alkenes are
typical examples (Hoffmann, 2012; Remy and Bochet, 2016;
Hoffmann, 2004). Generally, three types of such reactions are
observed with benzene derivatives (Scheme 13) (Cornelisse, 1993;
Cornelisse et al., 2001). The [2+2] and the [2+3] photocycloaddition

are often observed as competing reactions. The product ratios often
depend on the substitution pattern or the redoxpotentials of the
reaction partners (McCullough, 1987; Müller and Mattay, 1993;
Desvals and Hoffmann, 2023). While the [2+3] was often applied to
the synthesis of complex compounds (Hoffmann, 2012; Remy and
Bochet, 2016; Desvals and Hoffmann, 2023; Wender et al., 1990; De
Keukeleire and He, 1993; Streit and Bochet, 2011; Hoffmann et al.,
2005; Zhang et al., 2020), the [2+2] photocycloaddition is only
recently and in systematic way applied to organic synthesis (Gilbert
and Bach, 2023; Proessdorf et al., 2022). In the case of the [2+3]
photocycloaddition and its application to the synthesis of natural
products, it was shown that the efficiency is improved when the
reaction is carried out under continuous flow conditions, which
open perspectives for large-scale transformations (Alshammari
et al., 2024). The [2+4] cycloaddition is less frequently observed
in such transformations.

In this context, intamolecular photocycloadditions of vanillin
derivatives have been investigated. When compounds such as
41 – the aldehyde group was transformed into a nitrile
function – are irradiated at λ = 300 nm, two types of products
are formed (Scheme 14) (Desvals et al., 2021). The linear triquinane
derivatives 43 and the corresponding angular derivatives 42 result
from a [2+3] cycloaddition while tricyclic cyclobutene compounds
44 and 45 result from an initial [2+2] cycloaddition followed by
thermal and photochemical rearrangements. Also, angular (44) and
linear regioisomers (45) for this compound family are formed. The
product ratio depends on the substitution pattern. In the case of the

SCHEME 16
Photocatalytic radical addition to an imine (58) as key step in a three component reaction with vanillin 53.
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[2+3] adducts, the linear isomer 43 absorbs light at λ = 300 nm.
Consequently, this compound is transformed into the angular
isomer 42. It was also shown that the product ratio depends on
the spin multiplicity of the electronically excited benzene moiety.
Reactions depicted in Scheme 14 are singlet processes. Reactions at
the triplet state are sensitized transformations in which triplet
energy is transferred to the aromatic substrate. These reactions
are less efficient and different isomers only resulting from initial
[2+2] photocycloaddition followed by thermal and photochemical
rearrangements are isolated. Reaction mechanisms of the singlet
reactions of vanillin derivatives are depicted in Scheme 15. In the
case of the main products resulting from a [2+3] cycloaddition, the
alkene is added at the 1,3 positions of the photochemically excited
benzene moiety and the intermediate 47 is generated. Due to the
singlet multiplicity and the presence of polar substituents – the
methoxy and the cyano group – this intermediate possesses
zwitterionic character. Charge combination may occur in two
ways. Path a yields the angular isomer 48 and path b generates
the linear isomer 49. In the case of an initial [2+2]
photocycloaddition in positions 1 and 2, the primary adduct 50
undergoes electrocyclic ring opening in a thermal disrotatory
process involving 6 electrons and yielding the cyclooctatriene
intermediate 51. A photochemical disrotarory involving
4 electrons yields the final product 52. In this case, only the
angular isomer is generated. It must be pointed out that such
pericyclic reactions steps are reversible. In the case of
photochemical reactions, often photostationary equilibria are
involved. For example, primary [2+2] adducts such as 50 also
absorbs light and cycloreversion or retrocycloaddition may
become efficient. In these cases, no photochemical conversion is
observed under standard conditions. Primary photocycloadducts
can be trapped, for example, by an acid catalyzed reaction and the
photostationary equilibrium is displaced towards the product site
and photoproducts can be isolated (Hoffmann and Pete, 1995;
Hoffmann and Pete, 1997; Hoffmann et al., 2002; Hoffmann,
2002). Such conditions extend the scope of these reactions and
further application to organic synthesis are envisaged. For example,
rigidified dopamine analogues (Verrat et al., 2000; Verrat, 2000) or
compounds possessing the of 5,5-dialkylcyclohexane-1,3-dione core
structure of a herbicide family (Hoffmann and Pete, 2001) have been
synthesized with this reactions as a key step.

Photochemical reactions have been carried out also with
hydrazones or oximes and related compounds derived from
aromatic aldehydes (Latrache and Hoffmann, 2021). Thus oximes
of vanillin and related compounds derived from lignin are
transformed into corresponding oximes. Under photochemical
conditions, they are transformed into nitriles (Ban et al., 2019;
Joy et al., 2022). Condensation of vanillin and or syringaldehyde
with Meldrum’s acid yields UV-A and blue light filters (Peyrot et al.,
2020). Such compounds possessing a phenol moiety have also
radical trapping properties. Therefore, they are particularly safe
compared to established sunscreen compounds.

Aromatic aldehydes are suitable synthons for organic synthesis.
An enormous number of syntheses with these compounds are
reported, among them multi component reactions (Dömling
et al., 2012; Nazeri et al., 2020). In a three component
photocatalyzed reaction, vanillin 53 reacts with aniline 54 and
tetrahydrofurane (THF) 55 yielding compound 56 (Scheme 16)

(Pillitteri et al., 2021). As previously explained radical
intermediates 57 are generated from THF 55 using
photocatalysis with TBADT (Tanielian, 1998; Ravelli et al.,
2016; Hong and Indurmuddam, 2024). Imine intermediates are
formed by condensation of vanillin 53 with aniline 54. The alkyl
radical 57 selectively adds to the imine 58 leading to the
intermediate 59. The latter is reduced by hydrogen atom
transfer from the photocatalyst. In this step, the final product
56 is formed and the catalyst is regenerated.

Platform chemicals from
biotechnology

Most of the biomass contains oxygen rich compounds. On the
other hand, traditionally chemical industry uses huge quantities of
oxygen-free compounds such as alkenes as platform chemicals.
Although several compounds, for example, terpenes or natural
rubber are synthesized by plants, biotechnological processes are
developed to produce alkenes on large scale (Lee et al., 2019;
Wilson et al., 2018; van Leeuwen et al., 2012; Saaret et al., 2021).
The transformation of oxygen rich biomass derived platform
chemicals to alkenes is systematically studied (Nakagawa
et al., 2023).

FIGURE 1
Cyanobacterial terpenoid pathway (green) and genetic
modifications favoring the production of isoprene (blue). CBB,
Calvin–Benson–Bassham; TCA, tricarboxylic acid; Pyr, pyruvate; G3P,
glyceraldehyde-3-phosphate; MEP, methylerythritol-4-
phosphate; IPP, isopentenyl-pyrophosphate; DMAPP, dimethylallyl-
pyrophosphate; CfDXS, 1-deoxy-d-xylulose-5-phosphate synthase
from Coleus forskohlii; sIDI, IPP/DMAPP isomerase from
Synechocystis sp. PCC 6803; EgIspS, isoprene synthase from
Eucalyptus globulus [Adapted form ref. Rana et al. (2022)].
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Recently, a process was developed for the production of C10

cycloalkanes which fulfill requirements of jet fuels (Rana et al.,
2022). A photobiological transformation is followed by a
photochemical reaction. Using photosynthesis, the cyanobacterium
Synechocystis transforms CO2 into terpenes. In order to favor the
production of isoprene, genetic modifications have been carried out
(Figure 1). Such methods enable the non-farming production of
biomass. Photosensitized dimerization of isoprene 60 yielded a
variety of [2+2] 61, 62 and 63, [2+4] 64 and 65 and [4+4]
cycloadducts 66 and 67 (Scheme 17) (Rana et al., 2022). The
reaction was first carried out with benzophenone as sensitizer
(Hammond et al., 1963). It was found that the product ratio
depends on the triplet energy of the sensitizer (Liu et al., 1965). In
the present study, the reaction was further optimized by using the
dinaphthylketone 68 as sensitizer. Various other ketones were less
efficient. Although, this ketone absorbs light close to the visible
domain, its triplet energy is still high enough to excite isoprene 60
to the triplet state by energy transfer. Using a particular setup in which
the mixture of isoprene 60 and the sensitizer 68 (0.1 mol%) was kept
in a sealed fluorinated ethylene propylene tube, cooled to ~10°C and
irradiated at (λ = 365 nm) the mixture of dimers was obtained with
89% yield (120 ml scale, product quantum yield Φ = 0.91). The
reaction was also carried out with solar irradiation or irradiation with
a sunlight simulator. A detailed computational investigation of the
reaction mechanismwas carried out (Vajravel et al., 2023). In order to
get the jet fuel compounds, the product mixture of the photoreaction
was hydrogenated using Pd/C as catalyst. Similar reaction conditions
have been studied for the photodimerization and cross dimerization of
various terpenes (Cid Gomes et al., 2023). The [2+2]
photocycloaddition as key step for the production of jet fuels was
also studied with furfural derived compounds (Lebedeva et al., 2024)
or with terpenes (Xie et al., 2019). It should be pointed out the present
process as a combination of photobiological and a photochemical
transformation perfectly corresponds to the requirement of a
sustainable chemical industry as discussed by Ciamician (1912),

Ciamician (1908) and others more than 100 years ago. This event
can be considered as the beginning of green or sustainable chemistry
(Albini and Fagnoni, 2004; Albini and Fagnoni, 2008).

Conclusion

Platform chemicals play a central role in chemical industry. In
the context of sustainable chemistry, new concepts of their
production and transformation are essential. In this context,
photochemical reactions play an important role. Existing or new
platforms can be produced from biomass as renewable feedstock. As
biomass possesses particular structure elements that are less
common in fossil feedstock based platform compounds, this
material offers numerous accesses to new innovative starting
compounds for many domains of chemical industry. Thus
carbohydrate based, oxygen rich biomass is transformed into
furans. These heterocyclic aromatic compounds are used as
starting compounds in many syntheses. The photooxygenation of
furans yields interesting synthesis intermediates that are themselves
suitable platform chemicals. Furthermore, photooxygenation of
furans can easily be carried out on the industustrial scale or on
large scale using sunlight as renewable energy source. Recently, an
efficient process for the industrial production of levoglucosenone by
pyrolysis from cellulose containing biomass has been developed.
This compound is an intermediate for the mass production of the
agro-solvent cyrene™. Photochemical or photocatalytic transformations
of this compound open new perspectives for the valorization of
this compound in the chemical or pharmaceutical industry.
Carbohydrates such as hexoses or pentoses can also more
directly be transformed, for instance, into heterocyclic targets.
Photochemical reactions play a key role in sustainable chemistry
and in organic synthesis. They enable the access to compounds that
are not or difficultly available with more conventional methods of
organic synthesis. Many original transformations can be carried

SCHEME 17
Photosensitized dimerization of isoprene 60 using triplet sensitization with the dinaphthylketon 68.
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out without chemical activation and the photon is considered as a
traceless reagent. A more consequent application of these reaction
conditions to the transformation of biomass derived platform
chemicals efficiently contributes to a sustainable chemical
industry as it was described by G. Ciamician more than
hundred years ago. In this regard recently, fermentation
processes based on the photosynthesis have been developed for
the industrial production of alkenes such as isoprene. Using
photochemical reactions of these compounds or several other
terpenes for the further production of targets represents a very
innovative concept for a sustainable industry as it has been shown
for the production of jet fuels.
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