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Irregularity measures tend to describe the complexity of networks. Chemical
graph theory is a branch of mathematical chemistry that has a significant impact
on the development of the chemical sciences. The study of irregularity indices
has recently become one of the most active research areas in chemical graph
theory. Irregularity indices help us to examine many chemical and biological
properties of chemical structures under study. In this article, we study the
irregularity indices of the octahedral and icosahedral networks. These
networks are used in crystallography, where the topology and structural
aspects are carrying some important facts to determine the properties of
large structures theoretically. Our results play an important role in pharmacy,
drug design, and many other applied areas. We also compared our results
graphically to conclude the irregularity with a change in the parameter of
structures.

KEYWORDS

irregularity indices, octahedral network, icosahedral network, computational
comparisons, complexity

Introduction

Network structure and the pattern in networks carry important facts relating to the
chemical properties. Because of the long molecular structure, the properties of some of these
networks can’t be easily determined. Metallic-organic frameworks are such large networks
whose symmetry and topology are incorporated in the bonding pattern and frequency of the
atoms, (Jiang et al., 2016), (Zhao Y. et al., 2016) and (Liu et al., 2016). An indirect way of
expressing the properties of these networks is through the use of topological index which
fundamentally rely on the topological pattern of these networks.

One useful kind of topological index is the irregularity indices, which determine the
complexity and degree of irregular patterns in the networks and graphs. These networks or
graphs can be representative models of some crystallographic structures or a polymer where
lines represent bonding patterns and vertices show atoms. Irregularity indices of fairly large
chemical structures, such as metal organic frameworks, are important not only for
characterization of structures but also for computing their physico-chemical properties,
which have been otherwise rather difficult to compute for such large networks of
importance in chemistry. In some of these networks, covalent fibers are weaved into
crystals, which why these networks are becoming increasingly interesting in recent years.

OPEN ACCESS

EDITED BY

Eugeny Alexandrov,
Samara State Medical University, Russia

REVIEWED BY

Chuanzhao Zhang,
Yangtze University, China
Savari Prabhu,
Rajalakshmi Engineering College, India

*CORRESPONDENCE

M. Mobeen Munir,
mmunir.math@pu.edu.pk

RECEIVED 23 August 2024
ACCEPTED 24 December 2024
PUBLISHED 17 January 2025

CITATION

Zhang X, ur Rehman HM and Munir MM (2025)
Computational measures of irregularity
molecular descriptors of octahedral and
icosahedral networks.
Front. Chem. 12:1485184.
doi: 10.3389/fchem.2024.1485184

COPYRIGHT

© 2025 Zhang, ur Rehman and Munir. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Chemistry frontiersin.org01

TYPE Original Research
PUBLISHED 17 January 2025
DOI 10.3389/fchem.2024.1485184

https://www.frontiersin.org/articles/10.3389/fchem.2024.1485184/full
https://www.frontiersin.org/articles/10.3389/fchem.2024.1485184/full
https://www.frontiersin.org/articles/10.3389/fchem.2024.1485184/full
https://www.frontiersin.org/articles/10.3389/fchem.2024.1485184/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fchem.2024.1485184&domain=pdf&date_stamp=2025-01-17
mailto:mmunir.math@pu.edu.pk
mailto:mmunir.math@pu.edu.pk
https://doi.org/10.3389/fchem.2024.1485184
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org/journals/chemistry#editorial-board
https://www.frontiersin.org/journals/chemistry#editorial-board
https://doi.org/10.3389/fchem.2024.1485184


Chemical graph theory is a thriving field with rich applications
in industry and pharmacy. Graphs are models of physical networks
described by two main sets of entities named as edges and vertices.
The number of edges incident to each vertex is termed the degree of
vertex. According to (Gutman and Polansky, 1986), a network or
graph is considered regular if every vertex has the same degree. But
until famous mathematician Paul Erdo€s stressed this in the study of
irregular graphs for the first time in history, irregular graphs were
unable to draw in the audience (Majcher and Michael, 1997). The
greatest size of irregularity in a network, as suggested by Collatz and
Sinogowitz (1957), was the subject of an open topic that he
presented. Subsequently, irregularity became so widely accepted
that a new class of topological indices emerged, which are now
called irregularity indices. The disparity of complex systems can be
predicted by these metrics. These systems have a number of well-
known topological characteristics, including self-similarity, scale-
freeness, network motifs, and small-worldness (Albert et al., 2000).
In summary, there is a stark difference between the power-law
degree distribution of complex networks and the regularity found in
randommodels such as the one put forth by Erdös and Rényi (1960).

An irregularity index is defined as a topological invariant that
vanishes for a regular graph but is non-zero for a non-regular graph.
Erdös declared, “The determination of extreme size of highly irregular
graphs of given order” to be an unresolved subject at the Second
Krakow Conference on Graph Theory (1994) (Chartrand et al., 1988).
Since then, irregular graphs and their degree of irregularity have
emerged as one of graph theory’s most fundamental open problems.
A graph is said to be perfect if each vertex has a different degree than the
others. The writers of (Behzad and Chartrand, 1947) established that no
graph is flawless. The graphs in between are known as quasi-perfect
graphs, because all but two vertices have distinct degrees (Majcher and
Michael, 1997). Indices are simplified ways of expressing anomalies,
(Horoldagva et al., 2016; Liu et al., 2014), conducted unique research on
these irregularity indices. The first such irregularity index was
established by Collatz and Sinogowitz (1957). Most of these indices
utilize the concept of edge imbalance, defined as imballuv = |du–dv|,
(Dorogovtsev andMendes, 2000; Krapivsky et al., 2000). The Albertson
index, AL(G), was introduced by Albertson in (Albertson, 1997) and is
defined as AL(G) = ∑

uv∈E|du − dv|. The irregularity indices IRL(G) and
IRLU(G) were introduced by Vukicevic and Gasparov, (Albert et al.,
2000), and are defined as IRL(G) � ∑uv∈E|ln du − ln dv|, and
IRLU(G) � ∑uv∈E

|du−dv |
min(du,dv). Recently, (Abdo et al., 2014), introduced

a new concept called the “total irregularity measure of a graph G,”
defined as Rt(G) � 1

2∑uv∈E|du − dv|, (Erdös and Rényi, 1960; Estrada
et al., 1998; Reti et al., 2018). Recently, Gutman et al. introduced the
IRF(G) irregularity index of the graph G, defined as IRF(G) = ∑

uv∈E(du −
dv)

2 (Bell, 1992). The Randić index is closely connected to an irregularity
measure, defined as (G) � ∑uv∈E(d−1/2u − d−1/2v )2 , (Albertson, 1997).
Further details on similar irregularity indices may be found in (Abdo
and Dimitrov, 2014a). These indices are defined as follows:
IRDIF(G) � ∑uv∈E|dudv − dv

du
|, IRLF(G) � ∑uv∈E

|du−dv |���
dudv

√ ,
IRLA(G) � 2∑uv∈E

|du−dv |
(du+dv), IRD1(G) � ∑uv∈Eln (1 + |du − dv|),

IRGA(G) � 2∑uv∈E ln
du+dv
2

���
dudv

√ , and IRD(G) � ∑uv∈E(d1/2u − d1/2v )2.
More information can be found in (Abdo and Dimitrov, 2014b;
Gutman, 2018; Hu et al., 2005; Li and Gutman, 2006). Recently,
(Zahid et al., 2019), calculated the irregularity indices for nanotubes.
(Gao et al., 2017; Gao et al., 2019). examined irregularity measurements
for different dendrimer architectures (Hussain et al., 2019a; Hussain

et al., 2019b). Estimated the irregularity indices for benzenoid systems,
nanostar dendrimers, and boron nanotubes. Furthermore, (Xie et al.,
2019), estimated these indices for fullerenes and polymer dendrimers.
Quiet recently, many new topological characterizations of several
chemical structures based on topological indices have been presented
along with various applications, (Zhang et al., 2024; Prabhu et al., 2023;
Prabhu et al., 2024; Govardhan et al., 2023; Saravanan et al., 2022).

This article examines the irregularity of well-known chemical
networks by computing the irregularity indices for octahedral and
icosahedral networks. Our goal is to determine which of these
networks exhibits greater irregularity. Specifically, we evaluate the
degree of irregularity in the octahedral network OTn and the
icosahedral network ISn. Figures 1–3 depict the molecular graphs
of the octahedral networks, while Figures 4–6 illustrate the
molecular graphs of the icosahedral networks. The motivation for
this study stems from previous findings that irregularity indices can
closely approximate properties such as entropy, standard enthalpy,
vaporization, and acentric factors of octane isomers (Abdo et al.,
2014). These figures display the molecular patterns and topologies of
the two networks under investigation.

Octahedral networks OTn

An octahedron graph, shown in Figure 1, is a polyhedral graph
corresponding to the skeleton of a platonic solid. This platonic graph
consists of 6 vertices and 12 edges. The analogs of this structure play
a vital role in the fields of reticular chemistry, which deals with the
synthesis and properties of metal-organic frameworks. The different
types of octahedral structures arise from the ways these octahedra
can be connected. A chain octahedral structure of dimension n
denoted as CHOn is obtained by arranging n octahedra linearly as
shown in Figure 2. The number of vertices and edges of CHOn are
5n + 1 and 12n, respectively. An octahedral sheet-like structure is a
ring of octahedral structures that are linked to other rings by sharing
corner vertices in a two-dimensional plane. An octahedral network
of dimension n is denoted by OTn, where n is the order of
circumscribing, as shown in Figure 3, The number of vertices
and edges in OTn with n ≥ 1 are 27n2 + 3n and 72n2, respectively.

Icosahedral networks ISn

An icosahedron graph is also a platonic graph, having 12 vertices
and 30 edges, as shown in Figure 4. The analogs of the frameworks

FIGURE 1
Structure of octahedron.
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considered here are also the backbones of recent materials of
reticular chemistry. The chain icosahedral framework of
dimension n is denoted by CHIn and is shown in Figure 5. It
has 11n + 1 number of vertices and 30n number of edges. The
icosahedral network is obtained from the octahedral network by
replacing all the octahedra with the icosahedra. An
n-dimensional icosahedral network is denoted by ISn is shown
in Figure 6. It has 63n2 + 3n number of vertices and 180n2 number
of edges. We discuss the irregularity indices of this network
as follows.

Main results

In this section, we present our main theoretical results. Here we
denote Γ = OTn be the octahedral network then.

Theorem 1

Let (Γ, x, y) be the graph of the octahedral networks OTn, then the
irregularity indices of (Γ, x, y) are.

1. IRDI(Γ, x, y) = 54n2

2. A(Γ, x, y) = 144n2

3. IR(Γ, x, y) = 24.953299n2

4. IRL(Γ, x, y) = 36n2

5. IRL(Γ, x, y) = 25.455844n2

6. IR(Γ, x, y) = 576n2

7. IRL(Γ, x, y) = 24n2

8. IRD1 = 57.939768n2

9. IR(Γ, x, y) = 0.772078n2

10. IRG(Γ, x, y) = 4.240189n2

11. IR(Γ, x, y) = 24.70649n2

12. IRR(Γ, x, y) = 72n2

In order to prove the above theorem, we have to consider
Figure 3. We can see that the edges of (Γ, x, y) admit the
following partition in Table 1.

FIGURE 2
Chain octahedral structure.

FIGURE 3
Octahedral network.

FIGURE 4
Structure of icosahedron.
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Now using Table 1 and the above definitions, we have:

1. IRDIF(G) � ∑
uv∈E

|dudv − dv
du
|

IRDIF Γ, x, y( ) � 18n2 + 12n( ) 4
4
− 4
4

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ + 36n2 8

4
− 4
8

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

+ 18n2 − 12n( ) 8
8
− 8
8

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

� 54n2

2. A(G) = ∑
uv∈E|du − dv|

A Γ, x, y( ) � 18n2 + 12n( ) 4− 4
∣∣∣∣ ∣∣∣∣ + 36n2 8− 4

∣∣∣∣ ∣∣∣∣
+ 18n2 − 12n( ) 8− 8

∣∣∣∣ ∣∣∣∣
� 144n2.

3. IR(G) = ∑
uv∈E|lndu − lndv|

IRL Γ, x, y( ) � 18n2 + 12n( ) ln 4 − ln 4| | + 36n2 ln 8 − ln 4| |
+ 18n2 − 12n( ) ln 8 − ln 8| |

� 36n2 ln 2 � 24.953299n2

4. IRLU(G) � ∑
uv∈E

|du−dv |
min(du,dv)

IRLU Γ, x, y( ) � 18n2 + 12n( ) 4 − 4| |
4

+ 36n2 8 − 4| |
4

+ 18n2 − 12n( ) 8 − 8| |
8

� 36n2

FIGURE 5
Structure of chain icosahedron.

FIGURE 6
Icosahedral network.

TABLE 1 Edge partition of Octahedral network OTn.

Number of edges (du, dv) Number of indices

(4, 4) 18n2 + 12n

(4, 8) 36n2

(8, 8) 18n2 − 12n
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5. IRLF(G) � ∑
uv∈E

|du−dv |���
dudv

√ ,

IRLF Γ, x, y( ) � 18n2 + 12n( ) 4 − 4| |�����
4 × 4

√ + 36n2 8 − 4| |�����
8 × 4

√

+ 18n2 − 12n( ) 8 − 8| |�����
8 × 8

√
� 25.455844n2

6. IR(G) = ∑
uv∈E(du − dv)

2

IR Γ, x, y( ) � 18n2 + 12n( ) 4 − 4( )2 + 36n2 8 − 4( )2
+ 18n2 − 12n( ) 8 − 8( )2

� 576n2.

7. IRLA(G) � 2 ∑
uv∈E

|du−dv |
(du+dv)

IRLA Γ, x, y( ) � 2 18n2 + 12n( ) 4 − 4| |
4 + 4

+ 36n2 8 − 4| |
8 + 4

+ 18n2 − 12n( ) 8 − 8| |
8 + 8

[ ]
� 24n2

8. IRD1(G) � ∑
uv∈E

ln (1 + |du − dv|)
IRD1 Γ, x, y( ) � 18n2 + 12n( ) ln 1 + 4 − 4| |( ) + 36n2 ln 1 + 8 − 4| |( )

+ 18n2 − 12n( ) ln 1 + 8 − 8| |( )
� 36n2 ln 5 � 57.9397648n2

9. IRA(G) � ∑
uv∈E

(d−1/2u − d−1/2v )2

IRA Γ, x, y( ) � 18n2 + 12n( ) 4−0.5 − 4−0.5( )2 + 36n2 8−0.5 − 4−0.5( )2
+ 18n2 − 12n( ) 8−0.5 − 8−0.5( )2

� 0.772078n2

10. IRGA(G) � 2 ∑
uv∈E

ln du+dv
2

���
dudv

√

IRGA Γ, x, y( ) � 2 18n2 + 12n( ) ln 4 + 4
2

�����
4 × 4

√ + 36n2 ln
8 + 4

2
�����
8 × 4

√[
+ 18n2 − 12n( ) ln 8 + 8

2
�����
8 × 8

√ ] � 4.240189 n2

11. IRB(G) � ∑
uv∈E

(du1/2 − dv
1/2)2

IRB Γ, x, y( ) � 18n2 + 12n( ) 41/2 − 41/2( )2 + 36n2 81/2 − 41/2( )2
+ 18n2 − 12n( ) 81/2 − 81/2( )2

� 24.70649n2

12. IRRt(G) � 1
2 ∑
uv∈E

|du − dv|

IRRt Γ, x, y( ) � 1
2

18n2 + 12n( ) 4 − 4| | + 36n2 8 − 4| |[
+ 18n2 − 12n( ) 8 − 8| |] � 72n2

Table 2 shows the values of these irregularity indices for some
test values of parameter n.

TABLE 2 Irregularity indices for Octahedral network OTn.

Irregularity indices n = 1 n = 2 n = 3 n = 4 n = 5

IRDIF(G) � ∑
uv∈E

|dudv − dv
du
| 54 216 486 864 1,350

AL(G) = ∑uv∈E|du − dv| 144 576 1,296 2,304 3,600

IRL(G) = ∑uv∈E|lndu − lndv| 24.953299 99.813196 224.579691 399.252784 623.832475

IRLU(G) � ∑
uv∈E

|du−dv |
min(du,dv ) 36 144 324 576 900

IRLF(G) � ∑
uv∈E

|du−dv |���
dudv

√ 25.455844 101.823376 229.102596 407.293504 636.3961

IRF(G) = ∑uv∈E(du − dv)
2 576 2,304 5,184 9,216 14,400

IRLA(G) � 2 ∑
uv∈E

|du−dv |
(du+dv) 24 96 216 384 600

IRD1 = ∑uv∈E ln{1 + |dv − dv|} 57.939768 231.759072 521.457912 927.036288 1,448.494200

IRA(G) � ∑
uv∈E

(d−1/2u − d−1/2v )2 0.772078 3.088312 6.948702 12.353248 19.30195

IRGA(G) � 2 ∑
uv∈E

ln du+dv
2

���
dudv

√ 4.240189 16.960756 38.161701 67.843024 106.004725

IRB(G) � ∑
uv∈E

(du1/2 − dv
1/2)2 24.70649 98.82596 222.35841 395.30384 617.66225

IRRt(G) � 1
2 ∑
uv∈E

|du − dv| 72 288 648 1,152 1800
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Theorem 2

Let ISn be the Icosahedral network, which we denote by Γ. The
irregularity indices of Γ are as follows:

1. IRDI(Γ, x, y) = 81n2 − 9n
2. A(Γ, x, y) = 270n2 − 30n
3. IR(Γ, x, y) = 37.429938n2 − 4.158883n
4. IRL(Γ, x, y) = 54n2 − 6n
5. IRL(Γ, x, y) = 38.183778n2 − 4.242641n
6. IR(Γ, x, y) = 1350n2 − 150n
7. IRL(Γ, x, y) = 36n2 − 4n
8. IRD1 = 96.7550 n2 - 10.75056 n
9. IR(Γ, x, y) = 0.926494n2 − 0.102944n
10. IRG(Γ, x, y) = 114.5513 n̂2 - 12.72792 n
11. IR(Γ, x, y) = 46.32468n2 − 5.14719n
12. IRR(Γ, x, y) = 135n2 − 15n

To prove the above theorem, we must consider Figure 6. As
shown, the edges admit the following partition, presented in Table 3.

Now using Table 3 and the above definitions, we have:

1. IRDIF(G) � ∑
uv∈E

|dudv − dv
du
|

IRDIF Γ, x, y( ) � 108n2 + 18n( ) 5
5
− 5
5

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ + 54n2 − 6n( ) 10

5
− 5
10

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

+ 18n2 − 12n( ) 10
10

− 10
10

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

� 81n2 − 9n.

2. A(G) = ∑
uv∈E|du − dv|

A Γ, x, y( ) � 108n2 + 18n( ) 5 − 5| | + 54n2 − 6n( ) 10 − 5| |
+ 18n2 − 12n( ) 10 − 10| |

� 270n2 − 30n.

3. IRL (G) = ∑
uv∈E|lndu − lndv|

IRL Γ, x, y( ) � 108n2 + 18n( ) ln 5 − ln 5| | + 54n2 − 6n( ) ln 10 − ln 5| |
+ 18n2 − 12n( ) ln 10 − ln 10| |

� 37.429938n2 − 4.158883n.

4. IRLU(G) � ∑
uv∈E

|du−dv |
min(du,dv)

IRLU Γ, x, y( ) � 108n2 + 18n( ) 5 − 5| |
5

+ 54n2 − 6n( ) 10 − 5| |
5

+ 18n2 − 12n( ) 10 − 10| |
10

� 54n2 − 6n.

5. IRLF(G) � ∑
uv∈E

|du−dv |���
dudv

√

TABLE 3 Edge partition of Icosahedral network ISn.

Number of edges (du, dv) Number of indices

(5, 5) 108n2 + 18n

(5,10) 54n2 − 6n

(10, 10) 18n2 − 12n

TABLE 4 Irregularity indices for Isosahedral network ISn.

Irregularity indices n = 1 n = 2 n = 3 n = 4 n = 5

IRDIF(G) � ∑
uv∈E

|dudv − dv
du
| 72 306 702 1,260 1,980

AL(G) = ∑uv∈E|du − dv| 240 1,020 2,340 4,200 6,600

IRL(G) = ∑uv∈E|lndu − lndv| 33.271056 141.40198 324.392796 582.24348 914.954040

IRLU(G) � ∑
uv∈E

|du−dv |
min(du,dv ) 48 204 468 840 1,320

IRLF(G) � ∑
uv∈E

|du−dv |���
dudv

√ 33.941136 144.249828 330.926076 593.969880 933.381240

IRF(G) = ∑uv∈E(du − dv)
2 1,200 5,100 11,700 21,000 33,000

IRLA(G) � 2 ∑
uv∈E

|du−dv |
(du+dv) 32.000016 136.000068 312.000156 560.000280 880.000440

IRD1 = ∑uv∈E ln{1 + |dv − dv|} 86.004432 365.518836 838.543212 1,505.07756 2,365.1218

IRA(G) � ∑
uv∈E

(d−1/2u − d−1/2v )2 0.823536 3.500028 8.029476 14.411880 22.647240

IRGA(G) � 2 ∑
uv∈E

ln du+dv
2

���
dudv

√ 2.826768 12.013764 27.560988 49.468440 77.736120

IRB(G) � ∑
uv∈E

(du1/2 − dv
1/2)2 41.177472 175.004256 401.480352 720.736120 1,132.380480

IRRt(G) � 1
2 ∑
uv∈E

|du − dv| 120 510 1,170 2,100 3,300
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IRLF Γ, x, y( ) � 108n2 + 18n( ) 5 − 5| |�����
5 × 5

√ + 54n2 − 6n( )( ) 10 − 5| |������
10 × 5

√

+ 18n2 − 12n( ) 10 − 10| |�������
10 × 10

√
� 38.18377 n2-4.242641 n.

6. IR(G) = ∑
uv∈E(du − dv)2

IR Γ, x, y( ) � 108n2 + 18n( ) 5 − 5( )2 + 54n2 − 6n( ) 10 − 5( )2
+ 18n2 − 12n( ) 10 − 10( )2

� 1350n2 − 150n.

7. IRLA(G) � 2 ∑
uv∈E

|du−dv |
(du+dv)

IRLA Γ, x, y( ) � 2 108n2 + 18n( ) 5 − 5| |
5 + 5

+ 54n2 − 6n( ) 10 − 5| |
10 + 5

[
+ 18n2 − 12n( ) 10 − 10| |

10 + 10
] � 36n2 − 4n.

8. IRD1(G) � ∑
uv∈E

ln(1 + |du − dv|)
IRD1 Γ, x, y( ) � 108n2 + 18n( ) ln 1 + 5 − 5| |( )

+ 54n2 − 6n( ) ln 1 + 10 − 5| |( )
+ 18n2 − 12n( ) ln 1 + 10 − 10| |( )

� 54n2 − 6n( ) ln 6 � 96.7550 n2 - 10.75056 n.

9. IRA(G) � ∑
uv∈E

(d−1/2u − d−1/2v )2

IRA Γ, x, y( ) � 108n2 + 18n( ) 5−0.5 − 5( )2
+ 54n2 − 6n( ) 10−0.5 − 5−0.5( )2
+ 18n2 − 12n( ) 10−0.5 − 10−0.5( )2

� 0.926494n2 − 0.102944n.

10. IRGA(G) � 2 ∑
uv∈E

ln du+dv
2

���
dudv

√

IRGA Γ, x, y( ) � 2 108n2 + 18n( ) ln 5 + 5
2

�����
5 × 5

√( ) + 54n2 − 6n( )[
ln

10 + 5
2

������
10 × 5

√( ) + 18n2 − 12n( ) ln 10 + 10
2

�������
10 × 10

√( )]
� 4.240189 n2.

11. IRB(G) � ∑
uv∈E

(du1/2 − dv
1/2)2

IRB Γ, x, y( ) � 108n2 + 18n( ) 51/2 − 51/2( )2
+ 54n2 − 6n( ) 101/2 − 51/2( )2
+ 18n2 − 12n( ) 101/2 − 101/2( )2

� 46.32468n2 − 5.14719n.

12. IRRt(G) �12 ∑
uv∈E

|du − dv|

IRRt Γ, x, y( ) � 1
2

108n2 + 18n( ) 5 − 5| | + 54n2 − 6n( ) 10 − 5| |[
+ 18n2 − 12n( ) 10 − 10| |] � 135n2 − 15n.

Table 4 shows the values of these irregularity indices for some
test values of parameter n.

Graphical analysis, discussions and
conclusion

In this part, we conclude our findings of the irregularity indices
for these three structures. We use red and blue colors for OTn and
ISn, respectively. From Figure 7, it is evident that ISn. is highly
irregular than OTn.

Here we have analyzed the irregularity on the basis of IRDIF.
Choosing different irregularity measure, results can vary.
However, their graphs can be constructed by any software
and results can be analyzed with ease. It is clear from the
theorem 1 that all irregularity measures are quadratic so they
increase rather quickly. Similarly, the same quadratics are
obtained so we conclude that the behavior of all irregularity
indices behave similarly so we have only plotted a single
irregularity measure.

In this article, we investigated the irregularity measures of
various octahedral structures, computing closed forms for many
of these indices. The structural dependencies of these measures
were analyzed through the provided graphs. These insights can be
utilized to control and predict the physical and chemical
properties of these networks. Additionally, the results offer a
foundation for the development of new, complex networks
and structure.
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FIGURE 7
Graphs of irregularity Index IRDIF.
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