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Hepatocellular carcinoma (HCC) ranks as the fourth most common cause of
mortality globally among all cancer types. Programmed cell death (PCD) is a
crucial biological mechanism governing cancer progression, tumor expansion,
and metastatic dissemination. Furthermore, the tumor microenvironment (TME)
is critical in influencing overall survival (OS) and immune responses to
immunotherapeutic interventions. From a multi-omics perspective, the
combination of PCD and TME could help to predict the survival of HCC
patient survival and immunotherapy response. Our study analyzed variations in
the PCD- and TME-classifier used in the classification of HCC patients into two
subgroups: PCD high-TME low and PCD low-TME high. In the following step, we
compared the tumor somatic mutation (TMB), immunotherapy response, and
functional annotation of both groups of patients. Lastly, Western Blot (WB) were
conducted. The immunohistochemistry (IHC) was performed on the Human
Protein Atlas (HPA). In the PCD–TME classifier, 23 PCD-related genes and three
immune cell types were identified. Patients’ prognoses and responses to therapy
could be accurately predicted using this model. The findings of this study provide
a new instrument for the clinical management of HCC patients, and they
contribute to the development of accurate treatment strategies for these
patients.

KEYWORDS

tumor microenvironment, hepatocellular carcinoma, programmed cell death,
immunotherapy, prognosis

1 Introduction

HCC is responsible for more than 85% of liver malignancies and ranks as the fourth
most common cause of cancer-related mortality worldwide (Villanueva, 2019). In recent
decades, there has been a significant rise in the global incidence of HCC (Yang et al., 2019).
Following primary hepatic resection, patients diagnosed with HCC in China have a median
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survival of 47 months and a 5-year survival rate of 45%. However,
recurrence occurs in 54% of cases, leading to a 24% decrease in 5-
year survival and a reduction of 54 months in median survival
(Tabrizian et al., 2015). Although cancer immunotherapy has
significantly advanced cancer treatment, it is effective for only a
small subset of patients (Pinter et al., 2021). Consequently, there is a
significant focus on the identification of novel biomarkers for
prognosis and therapeutics. Nowadays, the prognosis for HCC is
on the basis of clinical classification (Satala et al., 2021) and staging
systems (Llovet et al., 1999), which consider factors such as lymph
node involvement, metastasis, and liver function. Because of the
high heterogeneity of tumors (Hung andWang, 2019), patients with
similar clinical characteristics often experience different outcomes.
It is essential to note that HCC is a heterogeneous tumor
characterized by a diverse array of oncogenic pathways (Llovet
et al., 2018). Therefore, it is imperative to conduct additional
thorough research and discover novel biomarkers to forecast the
prognosis and therapeutic of HCC patients effectively.

PCD plays a critical role in the development of organisms. Various
researchers have found Pyroptosis, Apoptosis, Autophagy, Ferroptosis,
Cuproptosis, Necroptosis, Alkaliptosis, Oxeiptosis, NETosis,
Parthanatos, Entotic, and Lysosome-dependent cell death are classical
pathways of cell death (Tang et al., 2019). Pyroptosis is triggered by the
activation of inflammatory caspases that bind to Gasdermin proteins,
forming pores in the plasma membrane and leading to cell death
(Kayagaki et al., 2015; Shi et al., 2015). In HCC, pyroptosis has
shown potential in enhancing anti-tumor immune responses, and
GSDME-mediated pyroptosis is being explored as a novel
therapeutic approach (Zhang et al., 2020). In contrast, apoptosis is a
non-inflammatory PCD pathway characterized by caspase activation,
resulting in cell shrinkage, nuclear fragmentation, andDNAdegradation
(Wyllie, 1987). Dysregulation of this process is a hallmark of cancer cells
(Hanahan and Weinberg, 2011). Cells often evade apoptosis by
overexpressing anti-apoptotic proteins like BCL-2. Targeting this
pathway with BCL-2 inhibitors is being explored to restore apoptotic
sensitivity in HCC (Carneiro and El-Deiry, 2020). Autophagy involves
the degradation of cellular components through the formation of
autophagosomes, which merge with lysosomes (Kroemer and Levine,
2008; Tasdemir et al., 2008). Ferroptosis is an iron-dependent form of
PCD that disrupts redox homeostasis (Ursini and Maiorino, 2020). It is
marked by mitochondrial membrane damage and iron accumulation
(Tang et al., 2021). Ferroptosis is being studied as a therapeutic target,
particularly in overcoming therapy resistance related to oxidative stress
and iron metabolism. Cuproptosis, caused by copper ions interacting
with thioketone proteins, leads to protein aggregation and cell death
(Tsvetkov et al., 2022). Necroptosis, distinct from conventional
apoptosis, is a pro-inflammatory form of cell death mediated by
RIPK1 and RIPK3, leading to MLKL-mediated membrane rupture
(Tanzer et al., 2017). Necroptosis is being investigated as a strategy
to enhance immune responses and combat tumor progression. As
research on programmed cell death continues to evolve, these
pathways present promising therapeutic targets for hepatocellular
carcinoma. By leveraging strategies to induce Pyroptosis, Ferroptosis,
and restore Apoptosis, and by further exploring the roles of Cuproptosis
and Necroptosis, innovative treatments may be developed to improve
patient outcomes and combat therapy resistance in HCC.

Over an extended period, PCD has been proven to be integral to
malignant tumor progression and metastasis. The development of

malignant tumor cells necessitates evading different types of cell
death mechanisms (Su et al., 2015; Chen et al., 2023). Nevertheless,
there remains a deficiency in the comprehensive understanding of
the correlation between PCD and HCC. Thus, it is imperative to
utilize array-based databases to pinpoint genes linked to survival in
order to forecast prognosis and inform individualized treatment
strategies (Wang et al., 2023). The purpose of our research is to
systematically construct a PCD-tumor microenvironment (TME)
classifier that combines PCD and TME for the aim of forecasting
prognosis and immunotherapy response. Our findings in this study
suggest that the integration of a PCD-TME classifier has the
potential to improve understanding of tumor-specific biology,
leading to significant implications for personalized treatment
strategies in clinical practice.

2 Materials and methods

2.1 Data sources and analysis platforms

The TCGA database (https://portal.gdc.cancer.gov) was utilized to
procure RNA sequencing and clinical information for 374 HCC
samples. Additionally, five single-cell RNA sequencing (scRNA) data
of HCC were downloaded from GSE242889 (Li et al., 2024) (https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi) to visualize PCD scores
within immune cells. External validation data was sourced from
ICGC-LIRI-JP (https://dcc.icgc.org/projects/LIRI-JP) and GSE10143
(Hoshida et al., 2008). Three analytical platforms were employed in
the comprehensive analysis. The Metascape online tool (https://
metascape.org/) was utilized for the analysis of functional annotations
(Zhou et al., 2019), while TIDE (http://tide.dfci.harvard.edu/) was
conducted for the prediction of immunotherapy responses (Jiang
et al., 2018). Additionally, Proteomaps (https://proteomaps.net/) was
performed to illustrate the composition of protein in each groups
(Liebermeister et al., 2014). Finally, the Human Protein Atlas (HPA)
(https://www.proteinatlas.org/) was consulted for immunohistochemical
(IHC) staining evaluation comparing healthy and HCC samples.

2.2 Data preprocessing

RNA-seq data normalization was performed utilizing the
“DESeq2” R package, while background correction and
normalization of microarray data were done by the “affy”
package. ScRNA-seq data was normalized by utilizing the
“NormalizeData” function within the “Seurat” package.

2.3 Quantification of PCDs and TME cells

PCD-associated genes were obtained from existing literature sources
(see Supplementary Table 1). Utilizing the CIBERSORT tool, a
deconvolution algorithm was employed to calculate 22 different
immune cell types using bulk-seq data (Chen et al., 2018). In order
to maintain consistency and accuracy in our gene expression data, we
adhered to standard preprocessing procedures for normalizing RNA-seq
and microarray data. The TME score was determined by calculating
enrichment scores generated by CIBERSORT.
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2.4 Establishment of the PCD score

We conducted univariate Cox regression analysis with bootstrap
resampling (1,000 iterations) to identify potential prognostic PCDs
related to OS in the TCGA-LIHC dataset. To further refine the
selection of prognostic PCDs, we employed the Least Absolute
Shrinkage and Selection Operator (LASSO) regression analysis
using the “glmnet” R package. A bootstrap algorithm
(resampling = 1,000) was employed in a multivariate Cox
regression analysis to identify the most correlated PCDs with
prognosis. To the stability of the results, we fixed the bootstrap
coefficient of each included PCD:

bootstrap coefficient � coefficient

bootstrap standard deviation

The PCD score was calculated using the formula below:

PCDSCORE � ∑
n

i�1
bootstrap coefficient included PCDi( )

× expression level includedPCDi( )

We used the median as a cutoff point for categorizing samples
into high- and low-score groups. The TCGA–LIHC cohort
investigated survival differences among two PCD score groups by
the “survival” package.

2.5 Establishment of the TME score

The TME score was determined by quantifying the presence of
immune cells in 22 subtypes of HCC utilizing the CIBERSORT
algorithm. Subsequent survival analysis was conducted for
individual patients based on the immune cell infiltration,
Prognostic immune cells have been identified as those
demonstrating differential overall survival rates among various
subgroups. Additionally, the prognostic immune cells’ bootstrap
coefficient was computed through multivariate Cox regression
analysis (resampling = 1,000). The TME score was defined as:

TMESCORE � ∑
n

i�1
bootstrap coefficient prognostic immune celli( )

× infiltration level prognostic immune celli( )

Patients were categorized into two subgroups, TME low and
TME high, based on their median TME score. This stratification was
done in order to conduct a survival analysis and evaluate differences
in OS between the two subgroups. Subsequently, the PCD–TME
classifier was formulated by integrating the PCD and TME scores.
Within the study, patients with HCC were segregated into four
distinct subgroups according to their PCD and TME scores: PCD
high-TME low, PCD low-TME low, PCD high-TME high, and PCD
low-TME high. To simplify the PCD-TME classifier for clinical
application, PCD high-TME high and PCD low-TME low were
amalgamated into a single category labeled as Mixed due to their less
divergence. The study proceeded with a survival analysis to examine
variations in OS across the three groups. Following this, the
“timeROC” and “survivalROC” R packages were applied to
evaluate the efficacy of the PCD-TME classifier by determining

the area under the curve (AUC) of receiver operating characteristic
(ROC) curves at 1-, 3-, and 5-year time points.

2.6 Independence and robustness of the
PCD–TME classifier

We performed survival analysis in the TCGA-LIHC cohort to
examine variations in OS among subgroups. The PCD-TME classifier
was evaluated for its potential as an autonomous prognostic indicator
for hepatocellular carcinoma (HCC) within the TCGA-LIHC through
Cox regression analyses. Additionally, the findings of this study were
corroborated through validation in the ICGC-LIRI-JP.

2.7 Enrichment analysis of the
PCD–TME classifier

Gene set enrichment analyses (GSEA) were carried out to identify
pathways linked to low PCD-high TME and high PCD-low TME.
Genes with comparable expression profiles were clustered using
weighted gene co-expression network analysis (WGCNA)
(Costanzo et al., 2016; Giulietti et al., 2016) through an
unsupervised analysis approach. Subsequently, a Metascape
analysis was conducted to visually represent the enrichment results
for the genes that were identified as key modules by WGCNA.

2.8 Analysis of TMB, KEGG pathways, and
functional annotations

An effective anti-tumor immune response can be initiated
through tumor mutational burden (TMB) (Meléndez et al.,
2018), leading to prolonged clinical outcomes. TMB levels were
compared among subgroups by calculating individual TMB scores
for samples in the TCGA-LIHC cohort using established
methodologies. Subsequently, hub genes exhibiting differences
among high PCD-low TME and low PCD-high TME were
identified and analyzed. TMB scores for each tumor were also
computed following established protocols. The differential gene
expression analysis was utilized by the R package of “limma.”
Furthermore, Proteomaps were constructed utilizing a web-based
tool. The R package “clusterProfiler” was employed to conduct the
analysis of the Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways across all cohorts (Liebermeister et al., 2014).

2.9 Analysis of scRNA-sequencing
PCD-TME scores

In the analysis of scRNA sequencing, cells were filtered based on
the criteria of detecting between 300 and 5,000 genes, with
mitochondrial genes accounting for less than 30% of the total.
Data normalization was performed using the LogNormalize
method, and the top 2,000 most variable genes were identified
for downstream analysis. Dimensionality reduction was
conducted using Principal Component Analysis (PCA), and the
first 20 components were used to cluster cells. Batch effects were
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corrected using the Harmony algorithm. The “inferCNV” package
was used to identify malignant cells. Additionally, intercellular
communication patterns were elucidated using the
“CellChat” package.

2.10 Western blot analysis

Following the quantification of protein concentration, the protein
sample underwent electrophoretic separation on 12% SDS−PAGE
gels and subsequent transfer onto 0.45-mm PVDF membranes
(Millipore). Subsequently, the membranes were subjected to
incubation with HTRA2 Antibody (AF1855, Beyotime) at 4°C
overnight, followed by HRP-conjugated secondary antibodies
(AS014, ABclonal). The primary antibody was diluted at a ratio of
1:1,000, while the secondary antibody was diluted at a ratio of 1:3,000.
Finally, images were captured using a ChemiDoc Imaging System
(Bio-Rad, United States), and quantitative analysis was performed
using ImageJ. Student’s t-test was used for data comparisons between
JHH-7 HCC cells and L-O2 normal liver cells.

2.11 Quantitative real-time PCR

Total RNAwas extracted from JHH-7 HCC cells and L-O2 normal
liver cells using the RNA Isolation Kit (R0017M, Beyotime). RNA
quantity and concentration were measured using a NanoDrop
2000 spectrophotometer (Thermo Scientific, United States). Reverse
transcription of total RNA to cDNA was performed using the
BeyoRT™ III M-MLV Reverse Transcriptase Kit (D7176M,
Beyotime). Quantitative real-time PCR (qRT-PCR) was then
conducted using the Taq Pro Universal SYBR qPCR Master Mix Kit
(Vazyme, China). The cycling threshold (Ct) for HTRA2 was recorded,
and the relative expression of HTRA2 mRNA was calculated using the
2−ΔΔCTmethod, with appropriate controls. The primers used in the qRT-
PCR protocol are listed in Supplementary Table 2.

2.12 Statistical analysis

Statistical analyses were performed with various methods,
including Cox regression analyses, log-rank tests, Wilcoxon rank-
sum tests, Student’s t-tests, and Fisher’s exact tests in R 4.1.1.
Multiple testing correction was implemented using the
Bonferroni method for comparisons involving multiple groups.
Statistical significance was set at p < 0.05 unless specially
indicated. *P < 0.05; **P < 0.01; ***P < 0.001.

3 Results

3.1 Construction of the PCD score in
TCGA-LIHC

The schematic illustration of the overall research, as shown in
Figure 1, involved the evaluation of 374 HCC samples from TCGA-
LIHCC to develop a method for indicating PCD expression. Through
an initial screening of difference genes (DEGs) and prognostic genes

using univariate Cox analysis and a bootstrapping algorithm, a total of
461 prognostic PCDs were identified (Supplementary Table 3).
Figure 2A presents the heatmap illustrating the top 20 prognostic
PCDs that are up-regulated in HCC. To ascertain the most robust
prognostic genes among the candidates, LASSO regression analysis was
utilized to determine their risk prediction contributions, as illustrated in
Figures 2B, C. Multivariate Cox analysis identified 23 PCD-related
genes that significantly influenced PCD scores, as depicted in Figure 2E.
Subsequently, patients in the TCGA-LIHC cohort were stratified into
two groups on the basis of their PCD scores. Statistical analysis
indicated that patients with lower PCD scores performed more
favorable clinical outcomes, whereas those with higher PCD scores
experienced poorer outcomes (Figure 2D). Furthermore, GSEA
revealed a potential distinction between the PCD subgroups,
suggesting that tumors characterized by a high PCD phenotype are
more proliferative (Figure 2F) and all the enrichment score results could
be assessed by Supplementary Table 4. A PCD score was developed to
forecast the prognosis of the patients with HCC in this section, and the
underlying function of PCD molecules in HCC.

3.2 Building the TME score in TCGA-LIHC

An immune cell signature was derived from the transcriptomes
of 22 immune cells utilizing the CIBERSORT algorithm. Six distinct
immune cell types were identified based on their optimal cutoff
values, demonstrating their protective roles in OS. These immune
cell types consist of resting memory CD4+ T cells, CD8+ T cells,
activated NK cells, naïve B cells, resting mast cells, and
M1 macrophages (Figures 3A–F). Figure 3G displays the
multivariate Cox analysis of immune cells. It was observed that
patients with high TME scores had significantly longer survival
compared to those with low TME scores, in contrast to the PCD
score, as shown in Figure 3H. Furthermore, Figure 3I presents a
correlation analysis demonstrating the association between immune
infiltration and PCD expression. The complement system is a group
of proteins that promote the removal of microorganisms and
damaged cells by antibodies and phagocytes, and it enhances
(complements) antibody- and cell-mediated immune mechanisms
through a series of cascading reactions, which was enriched in the
TME high groups (Figure 3J). The result of the GSEA analysis of
TME scores is available in Supplementary Table 5. TME scores and
elucidation of the relationship between immune cells and PCD were
established in this section.

3.3 Establishment of the PCD–TME classifier

In light of the aforementioned research, the inquiry arose as to
whether a PCD-TME classifier could be developed through the
integration of PCD and TME scores. This amalgamation yielded
three distinct subgroups: PCD high-TME low, PCD low-TME high
and Mixed. A notable disparity in prognosis was observed between
the PCD-TME classifier and the TCGA-LIHC cohort, as illustrated
in Figure 4A. In contrast to the other two groups, samples in the
subgroup characterized by PCD low-TME high exhibit a more
favorable prognosis. The time-dependent ROC curves were
applied to predict the capability of the PCD-TME classifier. The
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AUC values were 0.747 for 1 year, 0.757 for 3 years, and 0.766 for
5 years, as depicted in Figure 4B. WGCNA was performed to
investigate gene variations among these subgroups in order to
elucidate significant differences in survival outcomes. The “pink”
and “blue” modules were identified as having the most pronounced
variations between PCD low-TME high and PCD high-TME low
cohorts, as illustrated in Figures 4C, D. All genes corresponding to
the “pink” and “blue” modules were subjected to functional
annotation using the Metascape. Enrichment analysis indicated

significant enrichment of cell cycle-related pathways in the PCD
high-TME low group, whereas tissue development-related pathways
were predominantly found in the PCD low-TME high group
(Figures 4E, F). We also tested the PCD-TME classifiers by the R
package of “fgsea,” which shows a similar result (Supplementary
Figure 1). A PCD-TME classifier was developed in this section by
integrating PCD and TME scores, and further investigation was
conducted to explore the functional distinctions between the
two subgroups.

FIGURE 1
The schematic diagram illustrates the creation and comprehensive assessment of the PCD-TME classifier.
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3.4 Association between PCD-TME classifier
and clinical features

Figures 5A, B illustrate that the PCD-TME classifier performed a
statistically significant association with OS in HCC patients, as
indicated by a hazard ratio (HR) of 1.97, a 95% confidence
interval (CI) of 1.51–2.6, and a P-value of less than 0.001, as
determined through multivariate Cox analysis. It suggests that
PCD-TME classifiers serve as independent prognostic markers for
HCC patients. Furthermore, the PCD-TME classifiers demonstrated
considerable predictive efficacy across various demographic and
clinical factors, including gender, age, stage, and tumor grade, as
depicted in Figures 5C–F. Within the ICGC-LIRI-JP dataset, the
PCD-TME classifier was confirmed as a significant risk factor in
hepatocellular carcinoma (HCC) (Figure 5G). Furthermore, we
elucidated the correlation between the PCD-TME classifier and
various clinical characters and validated the PCD-TME classifier in
an independent cohort within this section.

3.5 Differential patterns of TMB and
immunotherapy response prediction

This study investigated somatic alterations within the PCD-
TME classifiers, with TCGA-LIHC identifying the 20 most frequent
variant mutations (Figures 6A, B). Variations in TMB landscapes
were observed between the two subgroups. TP53, TTN, CTNNB1,
MUC16, and PCLO were among the top five mutations in the PCD
high-TME low group, while CTNNB1, TTN, MUC16, ALB, and
PCLO were among the top five in the PCD low-TME high
group. Somatic mutations were more prevalent in the PCD low-
TME high group compared to those shown in Figures 6A, B.
Figure 6C demonstrates a notable distinction in TMB within the
PCD-TME classifier. It has been established in previous research
that CTNNB1 ranks among the proto-oncogenes exhibiting the
highest mutation frequency in hepatocellular carcinomas (22%),
with over half of hepatoblastomas presenting CTNNB1 mutations
(Cleary et al., 2013; Harding et al., 2019; Nakagawa et al., 2019;

FIGURE 2
The development of the PCD score in the TCGA-LIHC cohort. (A) The heatmap displays the top 20 prognostic genes and DEGs selected for PCD
score establishment. (B) The determination of the optimal value of λ for the LASSO analysis. (C) LASSO regression was used to analyze the coefficient
profiling of 23 genes within the TCGA-LIH group. (D) K–M survival analysis for HCC patients divided into the low- and high-score groups using PCD
scores. (E) The forest plot illustrates the results of a multivariate Cox analysis conducted on the genes included in the study. (F) The top enriched
signaling pathway in the PCD high subgroup according to GSEA analysis.
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Nakagawa and Shibata, 2013; Senni et al., 2019; Zucman-Rossi et al.,
2015). The levels of CTNNB1 expression exhibited variability across
the PCD-TME classifiers, as illustrated in Figure 6D. Notably, the
subgroup characterized by PCD high-TME low exhibited a
significantly elevated incidence of CTNNB1 mutation. Previous
research has indicated that patients exhibiting low levels of
CTNNB1 expression experienced longer survival durations in
contrast to those with high CTNNB1 expression levels, which is
consistent with our findings (Figure 6E). A comprehensive
examination was conducted utilizing Kaplan-Meier curves in

conjunction with CTNNB1 and PCD-TME subgroups. Notably,
the classifier demonstrated the ability to discern patients with more
favorable prognoses within the subset of individuals harboring
CTNNB1 mutations (Figure 6F). These results suggest that the
PCD-TME classifier exhibits heightened sensitivity in patient
stratification and can effectively pinpoint improved prognostic
outcomes in individuals with CTNNB1 mutations. Our hypothesis
posited that the PCD-TME classifier could effectively forecast
clinical responses in immunotherapy patients due to differences
in immune statuses and tumor mutational burdens. To investigate

FIGURE 3
Creation of the TME score and correlation analysis. (A–F) K–M survival analysis of HCC patients in low- and high-risk immune cells. (G) The forest
plot displays a multivariate Cox analysis of immune cells. (H) K–M survival analysis of HCC patients in the TME high-and low-score groups. (I) Correlation
analysis reveals the association between the components of PCD and TME scores. (J) GSEA detects phenotype variations in the TME high subgroup.
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this hypothesis, the TIDE algorithm was employed to predict
responses to immunotherapy. Among patients with HCC who
exhibited positive responses to immune checkpoint blockade (ICB)
therapy, PCD scores were found to be significantly lower
(Figure 6G). Additionally, the Proteomap tool was utilized to
visually elucidate the potential mechanism through which the
PCD-TME classifier predicts immunotherapy responses. As
depicted in Figures 6H, I, Proteomap patterns exhibited striking
similarities between individuals with PCD low-TME high levels, as
well as those who responded favorably to immunotherapy.
Furthermore, a notable resemblance was noted between the
PCD high-TME low subgroup and the immunotherapy
nonresponder (Supplementary Figure 2). In conclusion, these

findings imply that a pretreatment PCD-TME signature could
serve as a potential indicator of the patient’s tumor immune
microenvironment, thereby aiding in the prediction of their
therapeutic response.

3.6 Single-cell verification of
PCD-TME scores

Additionally, the validity of the PCD score was confirmed through
single-cell transcriptomic analysis. Following quality control, a total of
19 cell clusters (Supplementary Figure 3) were identified from five
samples. Subsequently, ten distinct cell types (Malignant, Macrophage,

FIGURE 4
Establishment of the PCD–TME classifier. (A) K–M survival analysis for PCD low-TME high, PCD high-TME low and Mixed subgroups. (B) The time-
dependent ROC curves show the predictive accuracy of the PCD-TME classifier. (C)Genemodules fromWGCNA reveal distinct clusters in three groups.
(D) A dendrogram showing gene clusters grouped by similarity into modules. (E, F) The top 20 annotations were gathered for the PCD high-TME low
group and the PCD low-TME high group.
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Endothelial, T/NK, Monocyte, Fibroblast, Plasma, DC, B cells, and
Mast) were distinguished using marker genes (Figure 7A). The
“AddModuleScore” function was utilized to compute PCD scores
for individual cells, indicating that immune cells (Macrophages,
Monocytes, and Mast Cells) displayed elevated PCD scores (Figures
7B, C). The examination of intercellular communication among
immune cells was conducted to assess the potential impact of PCD
status on their functionality. Macrophages were specifically chosen for
further analysis based on the results depicted in Figure 7C. Figure 7D
depicts the extent of interactions and the intensity of intercellular
communication. Figure 7E shows that immune cells (macrophages)
with a high expression of PCD are more likely to activate intercellular
signaling with malignant cells. These findings highlight the pivotal role
of PCD in modulating immune cell interactions, particularly
macrophage-driven communication with malignant cells, suggesting
PCD status may influence tumor-immune dynamics.

3.7 Clinical validation of PCD-related gene

To further investigate potential PCD-related genes involved
in regulating HCC development, the GEO dataset GSE10143 was
utilized for cross-DEG analysis. Our findings reveal a significant
upregulation of HTRA2 in HCC tissues compared to adjacent
paracancerous, as illustrated in Figure 8A. Consistent results
were achieved via WB, thereby validating the observed
differential expression of HTRA2 within the overlapping
DEGs (Figure 8B). The results of qRT-PCRT performed on
L-O2 normal liver cells and JHH-7 HCC cells also show the
similar results suggested by the crossed DEGs (Figure 8C). The
HPA database was used to examine HTRA2 protein expression
at the protein level. In the HPA database, there is a relatively high
expression of HTRA2 in HCC when compared to
normal (Figure 8D).

FIGURE 5
Association between PCD-TME classifier and clinical features. (A) A forest plot of univariate analysis demonstrates that the PCD-TME classifier exhibits
superior predictive efficacy compared to clinical parameters. (B) A forest plot analysis of multivariate data indicates that the PCD-TME classifier serves as an
independent prognostic factor for patients with HCC. (C–F) The K–Mcurves of the simplifiedPCD-TME classifier demonstrate substantial discriminatory ability
across various demographic factors, including gender, tumor grade, stage, and age. (G) Validation of the PCD-TME classifier in the ICGC-LIRI-JP cohort.
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4 Discussion

Recent studies on PCDs and their interaction with the TME have
contributed to a deeper comprehension of their pivotal roles in
cancer prognosis and the development of treatment approaches.
However, a limited number of studies incorporate multi-omics data
to predict response rates to immunotherapy and OS in relation to
PCDs and the TME. Our comprehensive study extensively
investigated the crosstalk between PCDs and the TME by
integrating diverse HCC datasets. The PCD–TME classifier,
developed as a result of this study, has demonstrated significant
efficacy in predicting OS and responses in HCC patients.

The subgroup characterized by PCD low-TME high demonstrated
the most favorable prognosis. Additionally, the prognostic efficacy of
the classifier was validated in an external independent dataset,
suggesting its potential applicability to HCC patients. Shared
characteristics may exist in the immunotherapy response of PCDs

and TMEs. In our study, 23 PCD-related genes were included in our
risk signature, such as Ras Homolog Enriched in Brain (RHEB),
Sequestosome 1 (SQSTM1), Solute Carrier Family 7 Member 11
(SLC7A11), Microtubule-Associated Protein Tau (MAPT), Matrix
Metallopeptidase 1 (MMP1), and HtrA Serine Peptidase 2
(HTRA2). These genes have been extensively investigated, with
RHEB identified as a direct activator of mTORC1 (mTOR complex
1) (Yang et al., 2017). The mTOR pathway is a crucial regulatory
pathway found in various cancer types, affecting proliferation and
survival (Soave et al., 2016). Elevated levels of RHEB or abnormal
activation of themTORC1 signal pathway have been linked to increased
tumor proliferation (Maiuri et al., 2009). Furthermore,
mTORC1 activation suppresses autophagy, a cellular process
involved in self-degradation and recycling. In tumor cells, autophagy
inhibition hinders the cells’ ability to protect themselves through this
pathway in response to nutrient starvation, ultimately facilitating tumor
cell survival and growth (Chen et al., 2012; Maiuri et al., 2009). RHEB

FIGURE 6
Differential patterns of TMB and immunotherapy response prediction (A, B) The OncoPrint illustrates the presence of significant mutation genes in
the comparison between PCD high-TME low (A) and PCD low-TME high (B) groups. (C) The difference of TMB in the PCD-TME classifier. (D)Comparison
of CTNNB1 expression in the PCD-TME classifier. (E) K–M survival analysis of HCC patients with or without CTNNB1 gene mutation. (F) K–M survival
analysis of HCC patients divided by CTNNB1 mutation status and PCD-TME classifier. (G) Comparing PCD scores in patients with varying responses
to ICB immunotherapy. (H, I) Protromaps of functional analysis in the PCD low-TME high (H) and ICB immunotherapy (I).
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has been found to impact the tumor microenvironment by modulating
the mTORC1 signaling pathway. Activation of mTORC1 has been
shown to stimulate angiogenesis, leading to increased nutrient and
oxygen supply to tumors (Advani, 2010). Moreover,
mTORC1 regulates immune cell function and influences tumor
immune evasion (Ekshyyan et al., 2013). Currently, the development
of therapeutics targeting RHEB or the mTORC1 signaling pathway is a
significant focus in anticancer research. For instance, compounds like
rapamycin and its derivatives have demonstrated efficacy in inhibiting
tumor growth by targeting mTORC1 activity, making them promising
candidates for cancer treatment (Xu et al., 2020). SQSTM1, also referred
to as Sequestosome 1 or p62, serves as a crucial adapter protein in the
process of autophagy by binding to ubiquitinated proteins and directing
them to the autophagosome for degradation (Deng et al., 2020).
Moreover, SQSTM1 can modulate the cellular response to oxidative
stress and bolster the antioxidant capabilities of the cell through its

interaction with NRF2 (Shi et al., 2022). Additionally, SQSTM1 is
implicated in the regulation of various signaling pathways, such as NF-
KB and mTOR, which have profound effects on cell proliferation,
survival, and inflammatory reactions (Liu et al., 2022; Sultana et al.,
2021). It also regulates the mitochondria-mediated apoptosis pathway,
inhibiting apoptosis and promoting tumor cell survival and drug
resistance (Gao et al., 2017). In the TME, SQSTM1 regulates the
function of tumor-associated macrophages, affects immune escape
and inflammatory responses in tumors, and promotes malignant
invasion and metastasis by regulating extracellular matrix (ECM)
degradation (Qi et al., 2021). The significance of MAPT in tumor
progression is primarily demonstrated through its influence on
cytoskeletal regulation (Papin and Paganetti, 2020). MAPT
modulates cell morphology, migration, and division by stabilizing
microtubule structure (Sferra et al., 2020). Dysregulation or
mutation of MAPT can result in cytoskeletal reorganization, thereby

FIGURE 7
Verification of PCD-TME scores at single-cell level. (A) UMAP plot for identification of 10 types of cells in GSE242889. (B, C) Visualization of PCD
scores at the single-cell level through the utilization of feature plots and violin plots. (D) The quantification of interactions for the analysis of intercellular
communication. (E) The activation of the cell signaling pathway is compromised by the division of macrophages as indicated by the PCD score.

Frontiers in Chemistry frontiersin.org11

Liu et al. 10.3389/fchem.2024.1484310

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2024.1484310


promoting enhancedmigration and invasiveness of tumor cells (Wesley
et al., 2021). Research has found a correlation between MAPT
expression levels and tumor aggressiveness in specific cancers, such
as breast and prostate cancer (Ma et al., 2020). NQO1, functioning as an
antioxidant enzyme, is a cellular defense against oxidative stress and
mitigation of oxidative damage through the reduction of oxidized
quinones to non-toxic hydroquinones (Tejchman et al., 2021).
Elevated levels of NQO1 in tumor cells bolster the antioxidant
capabilities of cells, thereby fostering tumor cell survival in adverse
conditions (Ross and Siegel, 2021). Furthermore, NQO1 is implicated in
cellularmetabolism and signal transduction pathways, impacting tumor
cell proliferation and PCD. SLC7A11 primarily influences tumor cell
viability by modulating the cellular response to oxidative stress (Yan
et al., 2023). SLC7A11, as the light chain subunit of system Xc-,
facilitates the transport of extracellular cysteine into the cell and
glutamate out of the cell (Dahlmanns et al., 2023). Cysteine serves
as a precursor for the synthesis of glutathione (GSH), an essential

intracellular antioxidant. Through the promotion of GSH synthesis,
SLC7A11 aids tumor cells in resisting oxidative stress and cytotoxicity
induced by chemotherapeutic drugs, thereby facilitating tumor cell
proliferation and survival (Zhao et al., 2022). Furthermore, elevated
expression of SLC7A11 has been linked to increased aggressiveness and
drug resistance in various types of cancers (Sun et al., 2022).
MMP1 facilitates tumor cell invasion and metastasis predominantly
by ECM degradation, particularly collagen and other ECM
components, thereby enabling tumor cells to breach the basement
membrane and infiltrate adjacent tissues (Winkler et al., 2020).
Moreover, MMP1 can stimulate tumor cell proliferation and
angiogenesis by liberating growth factors and cytokines from the
ECM, thereby enhancing the availability of oxygen and nutrients to
malignant (Al-Ostoot et al., 2021). HTRA2, a member of the
hyperthermia-requiring family of serine proteases localized in
mitochondria (Vande Walle et al., 2008), was initially believed to be
a heat-shock-induced serine protease inEscherichia coli. However, it has

FIGURE 8
Application of GEO filtration to identify DEGs associated with PCD and subsequent validation. (A) The volcano plot depicting the DEGs associated
with PCD intersected by the TCGA-LIHC and GSE10143. (B)Western blotting was used tomeasure the expression of HTRA in JHH-7 HCC cells and L-O2
normal liver cells. (C) qRT-PCR of HTRA2 gene expression in JHH-7 HCC cells and L-O2 normal liver cells. (D) The protein expression levels of HTRA2 in
HCC and normal tissue were analyzed using data from the HPA database.
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since been recognized as a pro-apoptotic protein of the mitochondrion,
playing a role in the regulation of mitochondrial homeostasis (Xu et al.,
2018). Many researches have indicated the involvement of HTRA2 in
the pathogenesis of various cancers, like ovarian, breast, colorectal, and
prostate cancers (Wang and Nie, 2021). Recent research has
demonstrated the possibilities of plasma HTRA2 as a clinical
diagnostic biomarker for gastric cancer (Rosochowicz et al., 2024).
The role of HTRA2 in inducing apoptosis in hepatocellular carcinoma
is contingent upon its expression levels (Feng et al., 2023). Furthermore,
HTRA2 has been implicated in the suppression of hepatocellular
carcinoma cell proliferation through its interaction with astrocystin
(Ding et al., 2017). The upregulation of HTRA2 within the tumor
microenvironment of hepatocellular carcinoma warrants further
exploration, as supported by analysis of the GEO dataset and
examination of clinical tissue specimens in our investigation.

In the alternate segment of the classifier, the TME score is
deemed significant in combating cancer. This particular model has
recognized CD4+ T cells, CD8+ T cells, resting mast cells, naive
B cells, activated NK cells, and M1 macrophages as protectors of the
HCC TME. The anti-tumor efficacy of memory CD4 cells, CD8 cells,
naive B cells, activated NK cells, and M1 macrophage cells has been
validated across various cancer types. Nevertheless, limited research
has been performed on the involvement of resting mast cells in the
HCC tumor microenvironment. A large-scale study involving
245 patients with HCC found higher levels of mast cell
infiltration in HCC samples and better OS after surgery resection
(Lin et al., 2013). Researchers also found PT CD117+mast cells were
significantly related to longer OS in patients with colorectal liver
metastases (Giuşcă et al., 2015). Rohr-Udilova et al. (2018) reported
a greater density of mast cells in the adjacent tissue of HCC; however,
only the density of intra-tumoral mast cells was found to be
associated with a reduced risk of recurrence. The study shows
that mast cells are largely inactive in HCC (Giuşcă et al., 2015).
Since activation of mast cells by IgE is thought to prevent the
development of cancer, deactivation of mast cells could lead to
immune escape, thereby promoting tumor growth (Rohr-Udilova
et al., 2018). Mast cells serve as regulators of immune effector cells,
making them a promising target for immunotherapy. Their
abundance and immobility in the liver and tumors, along with
their relative radioresistance and resistance to chemotherapeutic
agents compared to other rapidly dividing immune cells, make mast
cells an attractive target for therapeutic intervention.

Utilizing the PCD–TME classification system, a novel
prognostic signature was developed. The best prognosis and
response to immune checkpoint blockade treatment were
observed within the cohort of HCC patients categorized as PCD
low-TME high. Time-dependent ROC curves were used to validate
the sensitivity and specificity of this risk signature, highlighting
PCD-TME as an independent prognostic factor. Integrating the
PCD-TME classifier can potentially improve the precision of
molecular subtyping and treatment approaches in clinical
practice. Furthermore, the application of bulk-seq following
surgical intervention is feasible. Gene expression data could be
utilized to derive PCD and TME scores, aiding in the
classification of patients into distinct PCD-TME subgroups for
the prediction of overall survival and response to
immunotherapy. However, our study is constrained by
limitations, including the reliance on retrospective datasets from

public databases introduces inherent biases, such as variability in
clinicopathologic characteristics, sample handling, and sequencing
technologies across different cohorts. These variations may affect the
generalizability of our findings and the robustness of the PCD-TME
classifier. Additionally, selection bias could arise due to the inclusion
criteria for patients in these databases, which may not represent the
full diversity of HCC cases in clinical settings. This could skew the
prognostic significance of the PCD-TME signature and limit its
applicability across broader patient populations. To overcome these
limitations and strengthen the clinical relevance of our findings,
large-scale, randomized, multicenter prospective trials are necessary.
These trials would help validate the prognostic accuracy of the PCD-
TME classifier and confirm its utility in predicting patient outcomes
and response to immunotherapy. Additionally, experimental
validation of key prognosis-related genes identified in our study
should be conducted in preclinical models, such as in vitro cell lines
and in vivo animal studies. This approach would provide further
mechanistic insights into how PCD and TME interact to drive tumor
progression and response to treatment. Overall, while our study
provides a promising framework for integrating PCD-TME into
clinical practice, further research is essential to validate its
prognostic potential and refine its application in precision oncology.

Cancer immunotherapy has emerged as a significant treatment
modality for various cancers, leading to notable complete and
enduring responses. However, the efficacy of this therapy is
constrained by the restricted immune activation against tumor-
specific antigens, resulting in a limited response rate among patients
with specific cancer types. Therefore, the identification of alternative
therapeutic targets is imperative in advancing cancer treatment
strategies. This study demonstrates a significant association
between the PCD-TME classifier and the prognosis of the
patients with HCC. Consequently, our research offers a novel
therapeutic strategy for HCC treatment, with potential
implications for the advancement of cancer therapies.

5 Conclusion

Based on our study findings, the integration of tumor
microenvironment landscape signatures and programmed cell
death markers shows promise in enhancing prognostic accuracy
and predicting immunotherapy response in individuals diagnosed
with HCC. This methodology could prove to be a valuable asset for
prognostic assessment and risk stratification of HCC patients within
clinical settings.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be directed
to the corresponding author.

Ethics statement

Ethical approval was not required for the studies on humans in
accordance with the local legislation and institutional

Frontiers in Chemistry frontiersin.org13

Liu et al. 10.3389/fchem.2024.1484310

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2024.1484310


requirements because only commercially available established cell
lines were used.

Author contributions

WL: Writing–review and editing, Writing–original draft. YH:
Writing–review and editing, Writing–original draft. YX:
Writing–review and editing, Writing–original draft. XG:
Writing–review and editing, Writing–original draft. YZ:
Writing–review and editing, Writing–original draft. SF:
Writing–review and editing, Writing–original draft. YG:
Writing–review and editing, Writing–original draft. SZ:
Writing–review and editing, Writing–original draft.

Funding

The author(s) declare that no financial support was
received for the research, authorship, and/or publication of
this article.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fchem.2024.1484310/
full#supplementary-material

References

Advani, S. H. (2010). Targeting mTOR pathway: a new concept in cancer
therapy. Indian J. Med. Paediatr. Oncol. 31 (4), 132–136. doi:10.4103/0971-
5851.76197

Al-Ostoot, F. H., Salah, S., Khamees, H. A., and Khanum, S. A. (2021). Tumor
angiogenesis: current challenges and therapeutic opportunities. Cancer Treat. Res.
Commun. 28, 100422. doi:10.1016/j.ctarc.2021.100422

Carneiro, B. A., and El-Deiry, W. S. (2020). Targeting apoptosis in cancer therapy.
Nat. Rev. Clin. Oncol. 17 (7), 395–417. doi:10.1038/s41571-020-0341-y

Chen, B., Khodadoust, M. S., Liu, C. L., Newman, A. M., and Alizadeh, A. A. (2018).
Profiling tumor infiltrating immune cells with CIBERSORT. Methods Mol. Biol. 1711,
243–259. doi:10.1007/978-1-4939-7493-1_12

Chen, T., Wang, J., Tang, R., Huang, Y., Zhao, Q., and Yao, Y. (2023). An amphiphilic
[2]biphenyl-extended pillar[6]arene: synthesis, controllable self-assembly in water and
application in cell-imaging. Chin. Chem. Lett. 34 (8), 108088. doi:10.1016/j.cclet.2022.
108088

Chen, W., Ma, T., Shen, X. N., Xia, X. F., Xu, G. D., Bai, X. L., et al. (2012).
Macrophage-induced tumor angiogenesis is regulated by the TSC2-mTOR pathway.
Cancer Res. 72 (6), 1363–1372. doi:10.1158/0008-5472.CAN-11-2684

Cleary, S. P., Jeck, W. R., Zhao, X., Chen, K., Selitsky, S. R., Savich, G. L., et al. (2013).
Identification of driver genes in hepatocellular carcinoma by exome sequencing.
Hepatology 58 (5), 1693–1702. doi:10.1002/hep.26540

Costanzo, M., VanderSluis, B., Koch, E. N., Baryshnikova, A., Pons, C., Tan, G., et al.
(2016). A global genetic interaction network maps a wiring diagram of cellular function.
Science 353 (6306), aaf1420. doi:10.1126/science.aaf1420

Dahlmanns, M., Dahlmanns, J. K., Savaskan, N., Steiner, H. H., and Yakubov, E.
(2023). Glial glutamate transporter-mediated plasticity: system xc

-/xCT/SLC7A11 and
EAAT1/2 in brain diseases. Front. Biosci. (Landmark Ed). 28 (3), 57. doi:10.31083/j.
fbl2803057

Deng, Z., Lim, J., Wang, Q., Purtell, K., Wu, S., Palomo, G. M., et al. (2020). ALS-
FTLD-linked mutations of SQSTM1/p62 disrupt selective autophagy and NFE2L2/
NRF2 anti-oxidative stress pathway. Autophagy 16 (5), 917–931. doi:10.1080/15548627.
2019.1644076

Ding, Y., Wang, B., Chen, X., Zhou, Y., and Ge, J. (2017). Staurosporine suppresses
survival of HepG2 cancer cells through Omi/HtrA2-mediated inhibition of PI3K/Akt
signaling pathway. Tumour Biol. 39 (3), 101042831769431. doi:10.1177/
1010428317694317

Ekshyyan, O., Moore-Medlin, T. N., Raley, M. C., Sonavane, K., Rong, X., Brodt, M.
A., et al. (2013). Anti-lymphangiogenic properties of mTOR inhibitors in head and neck
squamous cell carcinoma experimental models. BMC Cancer 13, 320. doi:10.1186/1471-
2407-13-320

Feng, L., Li, Z., Xiong, Y., Yan, T., Fu, C., Zeng, Q., et al. (2023). HtrA2 independently
predicts poor prognosis and correlates with immune cell infiltration in hepatocellular
carcinoma. J. Oncol. 2023, 1–17. doi:10.1155/2023/4067418

Gao, J., Deng, Y., Yin, C., Liu, Y., Zhang, W., Shi, J., et al. (2017). Icariside II, a novel
phosphodiesterase 5 inhibitor, protects against H2O2-induced PC12 cells death by
inhibiting mitochondria-mediated autophagy. J. Cell Mol. Med. 21 (2), 375–386. doi:10.
1111/jcmm.12971

Giulietti, M., Occhipinti, G., Principato, G., and Piva, F. (2016). Weighted gene co-
expression network analysis reveals key genes involved in pancreatic ductal
adenocarcinoma development. Cell Oncol. 39 (4), 379–388. doi:10.1007/s13402-016-
0283-7

Giuşcă, S. E., Căruntu, I. D., Cîmpean, A. M., Avadanei, R. E., Balica, A. R., Jitariu, A.
A., et al. (2015). Tryptase-positive and CD117 positive mast cells correlate with survival
in patients with liver metastasis. Anticancer Res. 35 (10), 5325–5331.

Hanahan, D., and Weinberg, R. A. (2011). Hallmarks of cancer: the next generation.
Cell 144 (5), 646–674. doi:10.1016/j.cell.2011.02.013

Harding, J. J., Nandakumar, S., Armenia, J., Khalil, D. N., Albano, M., Ly, M., et al.
(2019). Prospective genotyping of hepatocellular carcinoma: clinical implications of
next-generation sequencing for matching patients to targeted and immune therapies.
Clin. Cancer Res. 25 (7), 2116–2126. doi:10.1158/1078-0432.CCR-18-2293

Hoshida, Y., Villanueva, A., Kobayashi, M., Peix, J., Chiang, D. Y., Camargo, A., et al.
(2008). Gene expression in fixed tissues and outcome in hepatocellular carcinoma. N.
Engl. J. Med. 359 (19), 1995–2004. doi:10.1056/NEJMoa0804525

Hung, M. H., and Wang, X. W. (2019). “Molecular alterations and heterogeneity in
hepatocellular carcinoma,” in Hepatocellular carcinoma: translational precision
medicine approaches. Editor Y. Hoshida (Cham (CH): Humana Press), 293–316.
doi:10.1007/978-3-030-21540-8_14

Jiang, P., Gu, S., Pan, D., Fu, J., Sahu, A., Hu, X., et al. (2018). Signatures of T cell
dysfunction and exclusion predict cancer immunotherapy response. Nat. Med. 24 (10),
1550–1558. doi:10.1038/s41591-018-0136-1

Kayagaki, N., Stowe, I. B., Lee, B. L., O’Rourke, K., Anderson, K., Warming, S., et al.
(2015). Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling.
Nature 526 (7575), 666–671. doi:10.1038/nature15541

Kroemer, G., and Levine, B. (2008). Autophagic cell death: the story of a misnomer.
Nat. Rev. Mol. Cell Biol. 9 (12), 1004–1010. doi:10.1038/nrm2529

Li, K., Zhang, R., Wen, F., Zhao, Y., Meng, F., Li, Q., et al. (2024). Single-cell
dissection of the multicellular ecosystem and molecular features underlying
microvascular invasion in HCC. Hepatology 79 (6), 1293–1309. doi:10.1097/HEP.
0000000000000673

Liebermeister, W., Noor, E., Flamholz, A., Davidi, D., Bernhardt, J., and Milo, R.
(2014). Visual account of protein investment in cellular functions. Proc. Natl. Acad. Sci.
U. S. A. 111 (23), 8488–8493. doi:10.1073/pnas.1314810111

Lin, S. Z., Chen, K. J., Xu, Z. Y., Chen, H., Zhou, L., Xie, H. Y., et al. (2013). Prediction
of recurrence and survival in hepatocellular carcinoma based on two Coxmodels mainly
determined by FoxP3+ regulatory T cells. Cancer Prev. Res. 6 (6), 594–602. doi:10.1158/
1940-6207.CAPR-12-0379

Frontiers in Chemistry frontiersin.org14

Liu et al. 10.3389/fchem.2024.1484310

https://www.frontiersin.org/articles/10.3389/fchem.2024.1484310/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fchem.2024.1484310/full#supplementary-material
https://doi.org/10.4103/0971-5851.76197
https://doi.org/10.4103/0971-5851.76197
https://doi.org/10.1016/j.ctarc.2021.100422
https://doi.org/10.1038/s41571-020-0341-y
https://doi.org/10.1007/978-1-4939-7493-1_12
https://doi.org/10.1016/j.cclet.2022.108088
https://doi.org/10.1016/j.cclet.2022.108088
https://doi.org/10.1158/0008-5472.CAN-11-2684
https://doi.org/10.1002/hep.26540
https://doi.org/10.1126/science.aaf1420
https://doi.org/10.31083/j.fbl2803057
https://doi.org/10.31083/j.fbl2803057
https://doi.org/10.1080/15548627.2019.1644076
https://doi.org/10.1080/15548627.2019.1644076
https://doi.org/10.1177/1010428317694317
https://doi.org/10.1177/1010428317694317
https://doi.org/10.1186/1471-2407-13-320
https://doi.org/10.1186/1471-2407-13-320
https://doi.org/10.1155/2023/4067418
https://doi.org/10.1111/jcmm.12971
https://doi.org/10.1111/jcmm.12971
https://doi.org/10.1007/s13402-016-0283-7
https://doi.org/10.1007/s13402-016-0283-7
https://doi.org/10.1016/j.cell.2011.02.013
https://doi.org/10.1158/1078-0432.CCR-18-2293
https://doi.org/10.1056/NEJMoa0804525
https://doi.org/10.1007/978-3-030-21540-8_14
https://doi.org/10.1038/s41591-018-0136-1
https://doi.org/10.1038/nature15541
https://doi.org/10.1038/nrm2529
https://doi.org/10.1097/HEP.0000000000000673
https://doi.org/10.1097/HEP.0000000000000673
https://doi.org/10.1073/pnas.1314810111
https://doi.org/10.1158/1940-6207.CAPR-12-0379
https://doi.org/10.1158/1940-6207.CAPR-12-0379
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2024.1484310


Liu, K., Qiu, D., Liang, X., Huang, Y., Wang, Y., Jia, X., et al. (2022). Lipotoxicity-
induced STING1 activation stimulates MTORC1 and restricts hepatic lipophagy.
Autophagy 18 (4), 860–876. doi:10.1080/15548627.2021.1961072

Llovet, J. M., Brú, C., and Bruix, J. (1999). Prognosis of hepatocellular carcinoma: the
BCLC staging classification. Semin. Liver Dis. 19 (3), 329–338. doi:10.1055/s-2007-
1007122

Llovet, J. M., Montal, R., Sia, D., and Finn, R. S. (2018). Molecular therapies and
precision medicine for hepatocellular carcinoma. Nat. Rev. Clin. Oncol. 15 (10),
599–616. doi:10.1038/s41571-018-0073-4

Ma, J., Gnanasekar, A., Lee, A., Li, W. T., Haas, M., Wang-Rodriguez, J., et al. (2020).
Influence of intratumor microbiome on clinical outcome and immune processes in
prostate cancer. Cancers 12 (9), 2524. doi:10.3390/cancers12092524

Maiuri, M. C., Tasdemir, E., Criollo, A., Morselli, E., Vicencio, J. M., Carnuccio, R.,
et al. (2009). Control of autophagy by oncogenes and tumor suppressor genes. Cell
Death Differ. 16 (1), 87–93. doi:10.1038/cdd.2008.131

Meléndez, B., Van Campenhout, C., Rorive, S., Remmelink, M., Salmon, I., and
D’Haene, N. (2018). Methods of measurement for tumor mutational burden in tumor
tissue. Transl. Lung Cancer Res. 7 (6), 661–667. doi:10.21037/tlcr.2018.08.02

Nakagawa, H., Fujita, M., and Fujimoto, A. (2019). Genome sequencing analysis of
liver cancer for precision medicine. Semin. Cancer Biol. 55, 120–127. doi:10.1016/j.
semcancer.2018.03.004

Nakagawa, H., and Shibata, T. (2013). Comprehensive genome sequencing of the liver
cancer genome. Cancer Lett. 340 (2), 234–240. doi:10.1016/j.canlet.2012.10.035

Papin, S., and Paganetti, P. (2020). Emerging evidences for an implication of the
neurodegeneration-associated protein TAU in cancer. Brain Sci. 10 (11), 862. doi:10.
3390/brainsci10110862

Pinter, M., Scheiner, B., and Peck-Radosavljevic, M. (2021). Immunotherapy for
advanced hepatocellular carcinoma: a focus on special subgroups. Gut 70 (1), 204–214.
doi:10.1136/gutjnl-2020-321702

Qi, J. L., He, J. R., Liu, C. B., Jin, S. M., Yang, X., Bai, H. M., et al. (2021). SQSTM1/
p62 regulate breast cancer progression and metastasis by inducing cell cycle arrest and
regulating immune cell infiltration. Genes Dis. 9 (5), 1332–1344. doi:10.1016/j.gendis.
2021.03.008

Rohr-Udilova, N., Klinglmüller, F., Schulte-Hermann, R., Stift, J., Herac, M.,
Salzmann, M., et al. (2018). Deviations of the immune cell landscape between
healthy liver and hepatocellular carcinoma. Sci. Rep. 8 (1), 6220. doi:10.1038/
s41598-018-24437-5

Rosochowicz, M. A., Kulcenty, K., and Suchorska, W. M. (2024). Exploring the role of
HtrA family genes in cancer: a systematic review.Mol. Diagn. Ther. 28, 347–377. doi:10.
1007/s40291-024-00712-2

Ross, D., and Siegel, D. (2021). The diverse functionality of NQO1 and its roles in
redox control. Redox Biol. 41, 101950. doi:10.1016/j.redox.2021.101950

Satala, C. B., Jung, I., Kobori, L., Kovacs, Z., Fodor, D., Szodorai, R., et al. (2021).
Benefits of the 8th American joint committee on cancer system for hepatocellular
carcinoma staging. J. Gastrointest. Cancer 52 (1), 243–248. doi:10.1007/s12029-020-
00394-z

Senni, N., Savall, M., Cabrerizo Granados, D., Alves-Guerra, M. C., Sartor, C.,
Lagoutte, I., et al. (2019). β-catenin-activated hepatocellular carcinomas are addicted
to fatty acids. Gut 68 (2), 322–334. doi:10.1136/gutjnl-2017-315448

Sferra, A., Nicita, F., and Bertini, E. (2020). Microtubule dysfunction: a common
feature of neurodegenerative diseases. Int. J. Mol. Sci. 21 (19), 7354. doi:10.3390/
ijms21197354

Shi, J., Zhao, Y., Wang, K., Shi, X., Wang, Y., Huang, H., et al. (2015). Cleavage of
GSDMD by inflammatory caspases determines pyroptotic cell death.Nature 526 (7575),
660–665. doi:10.1038/nature15514

Shi, Q., Jin, X., Zhang, P., Li, Q., Lv, Z., Ding, Y., et al. (2022). SPOP mutations
promote p62/SQSTM1-dependent autophagy and Nrf2 activation in prostate cancer.
Cell Death Differ. 29 (6), 1228–1239. doi:10.1038/s41418-021-00913-w

Soave, D. F., Miguel, M. P., Tomé, F. D., de Menezes, L. B., Alo Nagib, P. R., and Celes,
M. R. (2016). The fate of the tumor in the hands of microenvironment: role of TAMs
and mTOR pathway. Mediat. Inflamm. 2016, 1–7. doi:10.1155/2016/8910520

Su, Z., Yang, Z., Xu, Y., Chen, Y., and Yu, Q. (2015). Apoptosis, autophagy, necroptosis,
and cancer metastasis. Mol. Cancer 14, 48. doi:10.1186/s12943-015-0321-5

Sultana, M. A., Cluning, C., Kwong, W. S., Polain, N., Pavlos, N. J., Ratajczak, T., et al.
(2021). The SQSTM1/p62UBA domain regulates Ajuba localisation, degradation and NF-
κB signalling function. Plos One 16 (11), e0259556. doi:10.1371/journal.pone.0259556

Sun, S., Guo, C., Gao, T., Ma, D., Su, X., Pang, Q., et al. (2022). Hypoxia enhances glioma
resistance to sulfasalazine-induced ferroptosis by upregulating SLC7A11 via PI3K/AKT/
HIF-1α Axis. Oxid. Med. Cell. Longev. 2022, 1–22. doi:10.1155/2022/7862430

Tabrizian, P., Jibara, G., Shrager, B., Schwartz, M., and Roayaie, S. (2015). Recurrence
of hepatocellular cancer after resection: patterns, treatments, and prognosis. Ann. Surg.
261 (5), 947–955. doi:10.1097/SLA.0000000000000710

Tang, D., Chen, X., Kang, R., and Kroemer, G. (2021). Ferroptosis: molecular
mechanisms and health implications. Cell Res. 31 (2), 107–125. doi:10.1038/s41422-
020-00441-1

Tang, D., Kang, R., Berghe, T. V., Vandenabeele, P., and Kroemer, G. (2019). The
molecular machinery of regulated cell death. Cell Res. 29 (5), 347–364. doi:10.1038/
s41422-019-0164-5

Tanzer, M. C., Khan, N., Rickard, J. A., Etemadi, N., Lalaoui, N., Spall, S. K., et al.
(2017). Combination of IAP antagonist and IFNγ activates novel caspase-10- and
RIPK1-dependent cell death pathways. Cell Death Differ. 24 (3), 481–491. doi:10.1038/
cdd.2016.147

Tasdemir, E., Galluzzi, L., Maiuri, M. C., Criollo, A., Vitale, I., Hangen, E., et al.
(2008). Methods for assessing autophagy and autophagic cell death.Methods Mol. Biol.
445, 29–76. doi:10.1007/978-1-59745-157-4_3

Tejchman, K., Kotfis, K., and Sieńko, J. (2021). Biomarkers and mechanisms of
oxidative stress—last 20 years of research with an emphasis on kidney damage and renal
transplantation. Int. J. Mol. Sci. 22 (15), 8010. doi:10.3390/ijms22158010

Tsvetkov, P., Coy, S., Petrova, B., Dreishpoon, M., Verma, A., Abdusamad, M., et al.
(2022). Erratum for the Research Article Copper induces cell death by targeting
lipoylated TCA cycle proteins. Science 376 (6591), eabq4855. doi:10.1126/science.
abq4855

Ursini, F., and Maiorino, M. (2020). Lipid peroxidation and ferroptosis: the role of
GSH and GPx4. Free Radic. Biol. Med. 152, 175–185. doi:10.1016/j.freeradbiomed.2020.
02.027

Vande Walle, L., Lamkanfi, M., and Vandenabeele, P. (2008). The mitochondrial
serine protease HtrA2/Omi: an overview. Cell Death Differ. 15 (3), 453–460. doi:10.
1038/sj.cdd.4402291

Villanueva, A. (2019). Hepatocellular carcinoma. N. Engl. J. Med. 380 (15),
1450–1462. doi:10.1056/NEJMra1713263

Wang, Y., and Nie, G. (2021). Overview of human HtrA family proteases and their
distinctive physiological roles and unique involvement in diseases, especially cancer and
pregnancy complications. Int. J. Mol. Sci. 22 (19), 10756. doi:10.3390/ijms221910756

Wang, Y., Zhong, H., Yang, J., Yao, Y., and Li, L. (2023). Solvents/photo/pillar[5]arene
triple responsive morphology and luminescence transformation from an amphiphilic
dicyanostilbene-functionalized thiophene. Chin. Chem. Lett. 34 (12), 108452. doi:10.
1016/j.cclet.2023.108452

Wesley, T., Berzins, S., Kannourakis, G., and Ahmed, N. (2021). The attributes of
plakins in cancer and disease: perspectives on ovarian cancer progression,
chemoresistance and recurrence. Cell Commun. Signal. 19 (1), 55. doi:10.1186/
s12964-021-00726-x

Winkler, J., Abisoye-Ogunniyan, A., Metcalf, K. J., and Werb, Z. (2020). Concepts of
extracellular matrix remodelling in tumour progression and metastasis. Nat. Commun.
11 (1), 5120. doi:10.1038/s41467-020-18794-x

Wyllie, A. H. (1987). Apoptosis: cell death in tissue regulation. J. Pathol. 153 (4),
313–316. doi:10.1002/path.1711530404

Xu, J., Jiao, K., Liu, X., Sun, Q.,Wang, K., Xu, H., et al. (2018). Omi/HtrA2 participates
in age-related autophagic deficiency in rat liver. Aging Dis. 9 (6), 1031–1042. doi:10.
14336/AD.2018.0221

Xu, Z., Han, X., Ou, D., Liu, T., Li, Z., Jiang, G., et al. (2020). Targeting PI3K/AKT/
mTOR-mediated autophagy for tumor therapy. Appl. Microbiol. Biotechnol. 104 (2),
575–587. doi:10.1007/s00253-019-10257-8

Yan, Y., Teng, H., Hang, Q., Kondiparthi, L., Lei, G., Horbath, A., et al. (2023).
SLC7A11 expression level dictates differential responses to oxidative stress in cancer
cells. Nat. Commun. 14 (1), 3673. doi:10.1038/s41467-023-39401-9

Yang, H., Jiang, X., Li, B., Yang, H. J., Miller, M., Yang, A., et al. (2017). Mechanisms of
mTORC1 activation by RHEB and inhibition by PRAS40. Nature 552 (7685), 368–373.
doi:10.1038/nature25023

Yang, J. D., Hainaut, P., Gores, G. J., Amadou, A., Plymoth, A., and Roberts, L. R.
(2019). A global view of hepatocellular carcinoma: trends, risk, prevention and
management. Nat. Rev. Gastroenterol. Hepatol. 16 (10), 589–604. doi:10.1038/
s41575-019-0186-y

Zhang, Z., Zhang, Y., Xia, S., Kong, Q., Li, S., Liu, X., et al. (2020). Gasdermin E
suppresses tumour growth by activating anti-tumour immunity. Nature 579 (7799),
415–420. doi:10.1038/s41586-020-2071-9

Zhao, L., Zhou, X., Xie, F., Zhang, L., Yan, H., Huang, J., et al. (2022). Ferroptosis in
cancer and cancer immunotherapy. Cancer Commun. 42 (2), 88–116. doi:10.1002/cac2.
12250

Zhou, Y., Zhou, B., Pache, L., Chang, M., Khodabakhshi, A. H., Tanaseichuk, O., et al.
(2019). Metascape provides a biologist-oriented resource for the analysis of systems-
level datasets. Nat. Commun. 10 (1), 1523. doi:10.1038/s41467-019-09234-6

Zucman-Rossi, J., Villanueva, A., Nault, J. C., and Llovet, J. M. (2015). Genetic
landscape and biomarkers of hepatocellular carcinoma. Gastroenterology 149 (5),
1226–1239.e4. doi:10.1053/j.gastro.2015.05.061

Frontiers in Chemistry frontiersin.org15

Liu et al. 10.3389/fchem.2024.1484310

https://doi.org/10.1080/15548627.2021.1961072
https://doi.org/10.1055/s-2007-1007122
https://doi.org/10.1055/s-2007-1007122
https://doi.org/10.1038/s41571-018-0073-4
https://doi.org/10.3390/cancers12092524
https://doi.org/10.1038/cdd.2008.131
https://doi.org/10.21037/tlcr.2018.08.02
https://doi.org/10.1016/j.semcancer.2018.03.004
https://doi.org/10.1016/j.semcancer.2018.03.004
https://doi.org/10.1016/j.canlet.2012.10.035
https://doi.org/10.3390/brainsci10110862
https://doi.org/10.3390/brainsci10110862
https://doi.org/10.1136/gutjnl-2020-321702
https://doi.org/10.1016/j.gendis.2021.03.008
https://doi.org/10.1016/j.gendis.2021.03.008
https://doi.org/10.1038/s41598-018-24437-5
https://doi.org/10.1038/s41598-018-24437-5
https://doi.org/10.1007/s40291-024-00712-2
https://doi.org/10.1007/s40291-024-00712-2
https://doi.org/10.1016/j.redox.2021.101950
https://doi.org/10.1007/s12029-020-00394-z
https://doi.org/10.1007/s12029-020-00394-z
https://doi.org/10.1136/gutjnl-2017-315448
https://doi.org/10.3390/ijms21197354
https://doi.org/10.3390/ijms21197354
https://doi.org/10.1038/nature15514
https://doi.org/10.1038/s41418-021-00913-w
https://doi.org/10.1155/2016/8910520
https://doi.org/10.1186/s12943-015-0321-5
https://doi.org/10.1371/journal.pone.0259556
https://doi.org/10.1155/2022/7862430
https://doi.org/10.1097/SLA.0000000000000710
https://doi.org/10.1038/s41422-020-00441-1
https://doi.org/10.1038/s41422-020-00441-1
https://doi.org/10.1038/s41422-019-0164-5
https://doi.org/10.1038/s41422-019-0164-5
https://doi.org/10.1038/cdd.2016.147
https://doi.org/10.1038/cdd.2016.147
https://doi.org/10.1007/978-1-59745-157-4_3
https://doi.org/10.3390/ijms22158010
https://doi.org/10.1126/science.abq4855
https://doi.org/10.1126/science.abq4855
https://doi.org/10.1016/j.freeradbiomed.2020.02.027
https://doi.org/10.1016/j.freeradbiomed.2020.02.027
https://doi.org/10.1038/sj.cdd.4402291
https://doi.org/10.1038/sj.cdd.4402291
https://doi.org/10.1056/NEJMra1713263
https://doi.org/10.3390/ijms221910756
https://doi.org/10.1016/j.cclet.2023.108452
https://doi.org/10.1016/j.cclet.2023.108452
https://doi.org/10.1186/s12964-021-00726-x
https://doi.org/10.1186/s12964-021-00726-x
https://doi.org/10.1038/s41467-020-18794-x
https://doi.org/10.1002/path.1711530404
https://doi.org/10.14336/AD.2018.0221
https://doi.org/10.14336/AD.2018.0221
https://doi.org/10.1007/s00253-019-10257-8
https://doi.org/10.1038/s41467-023-39401-9
https://doi.org/10.1038/nature25023
https://doi.org/10.1038/s41575-019-0186-y
https://doi.org/10.1038/s41575-019-0186-y
https://doi.org/10.1038/s41586-020-2071-9
https://doi.org/10.1002/cac2.12250
https://doi.org/10.1002/cac2.12250
https://doi.org/10.1038/s41467-019-09234-6
https://doi.org/10.1053/j.gastro.2015.05.061
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2024.1484310

	The combined signatures of programmed cell death and immune landscape provide a prognostic and therapeutic biomarker in the ...
	1 Introduction
	2 Materials and methods
	2.1 Data sources and analysis platforms
	2.2 Data preprocessing
	2.3 Quantification of PCDs and TME cells
	2.4 Establishment of the PCD score
	2.5 Establishment of the TME score
	2.6 Independence and robustness of the PCD–TME classifier
	2.7 Enrichment analysis of the PCD–TME classifier
	2.8 Analysis of TMB, KEGG pathways, and functional annotations
	2.9 Analysis of scRNA-sequencing PCD-TME scores
	2.10 Western blot analysis
	2.11 Quantitative real-time PCR
	2.12 Statistical analysis

	3 Results
	3.1 Construction of the PCD score in TCGA-LIHC
	3.2 Building the TME score in TCGA-LIHC
	3.3 Establishment of the PCD–TME classifier
	3.4 Association between PCD-TME classifier and clinical features
	3.5 Differential patterns of TMB and immunotherapy response prediction
	3.6 Single-cell verification of PCD-TME scores
	3.7 Clinical validation of PCD-related gene

	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


