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Nanozymes, synthetic nanomaterials that mimic the catalytic functions of natural
enzymes, have emerged as transformative technologies for biosensing,
diagnostics, and environmental monitoring. Since their introduction,
nanozymes have rapidly evolved with significant advancements in their design
and applications, particularly through the integration of machine learning (ML).
Machine learning (ML) has optimized nanozyme efficiency by predicting ideal
size, shape, and surface chemistry, reducing experimental time and resources.
This review explores the rapid advancements in nanozyme technology,
highlighting the role of ML in improving performance across various
bioapplications, including real-time monitoring and the development of
chemiluminescent, electrochemical and colorimetric sensors. We discuss the
evolution of different types of nanozymes, their catalytic mechanisms, and the
impact of ML on their property optimization. Furthermore, this review addresses
challenges related to data quality, scalability, and standardization, while
highlighting future directions for ML-driven nanozyme development. By
examining recent innovations, this review highlights the potential of
combining nanozymes with ML to drive the development of next-generation
diagnostic and detection technologies.
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1 Introduction

Nanozymes, a class of nanomaterials that mimic the catalytic activities of natural
enzymes, have revolutionized various scientific fields since their introduction (Gao and Yan,
2016; Wu et al., 2019). The concept of nanozymes was first coined in 2004, marking the
advent of a new frontier in nanotechnology (Wang et al., 2020; Wu et al., 2021a; Salvador-
Morales and Grodzinski, 2022). Subsequently, the field has witnessed significant milestones
such as the development of gold nanozymes in 2008, which opened new avenues for
mimicking enzyme functions (Wang et al., 2020; Liang and Yan, 2019). Further,
advancements in metal oxide nanozymes were recorded around 2010, demonstrating
applications in remediation and biosensors. Carbon-based nanozymes emerged in
2012 owing to their high catalytic efficiency (Wu et al., 2019; Wong et al., 2021). Such
developments illustrate the dynamic evolution of nanozyme technology and highlight its
growing importance in various applications. Due to their diverse catalytic properties,
nanozymes have become invaluable tools for developing biosensors and diagnostic
applications.

Among the different types of nanozymes, electrochemical nanozymes are known for
their ability to induce or enhance electrical signals, making them essential for biosensing
applications requiring high sensitivity and precision, including the detection of trace
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amounts of biomarkers in bodily fluids. Such nanozymes enable the
development of highly sensitive biosensors suitable for point-of-care
diagnostics and real-timemonitoring (Geng et al., 2022; Sharifi et al.,
2020). Alongside other types of nanozymes, chemiluminescent
nanozymes offer exceptional specificity and sensitivity, often
down to a single-molecule level, making them ideal for
environments where minimal background interference is crucial,
such as in complex biological matrices or in vivo imaging (Wu and
Qu, 2015; Roda et al., 2016).

Commercial biosensors based on nanozyme technologies
possess practical potential for real-world bioapplications (Yang
et al., 2015). With advancements in nanozyme technology,
biosensors have increasingly leveraged the unique properties of
colorimetric, electrochemical, and chemiluminescent nanozymes
for detecting a wide range of biological targets, from pathogens
to biomolecules, with high sensitivity, specificity, and versatility
(Wang et al., 2024; Wu et al., 2021b; Chen X. et al., 2022). Such a
multi-modal approach, combining visual, electrical, and
luminescent signals, ensures the suitability of nanozyme-based
biosensors to diverse applications, ranging from point-of-care
diagnostics to environmental monitoring (Liu X. et al., 2021;
Saleh and Hassan, 2023).

The advent of artificial intelligence (AI) has revolutionized
various fields, and integrating machine learning (ML) into
nanozyme-based bioapplications presents a significant leap
forward in the field (Mujtaba et al., 2021; Yoon et al., 2024a).
ML has the ability to process massive amounts of data and
classify complex patterns, which has been instrumental in
enhancing the functionality and applications of nanozymes in
biotechnology. However, despite these advancements, nanozyme
development still faces several challenges, including the need to
optimize catalytic efficiency, stability, and specificity for various

bioapplications. ML addresses these challenges by predicting
optimal nanozyme properties, reducing experimental time and
resource consumption, and enabling more precise tuning of their
catalytic activities. The initial steps towards their integration began
in the early 2010s, with predictive modeling used to better
understand and optimize nanozyme properties (Butler et al.,
2018). By 2020, ML became a key component in the real-time
monitoring and analysis of nanozyme activity, allowing highly
precise and dynamic bioapplications (Mou et al., 2022). The
convergence of ML and nanozyme technology has led to the
development of smart biosensors and diagnostic tools that can
adapt and respond to changing conditions in real time, greatly
enhancing their utility in medical diagnostics, environmental
monitoring, and other bioapplications (Pramanik et al., 2020;
Weerathunge et al., 2019; Xu L. et al., 2022), including the
development of more sophisticated diagnostic tools that provide
real-time feedback, adaption to complex biological environments,
and personalized medicine applications of ML-driven nanozymes
tailored to individual patient requirements (Cui et al., 2020). The
synergy between the two cutting-edge technologies holds great
promise for the future of biotechnology.

This article aims to review developments in nanozymes, their
bioapplications, and their integration with ML, as illustrated in
Figure 1. Since the inception of nanozymes in 2004, significant
milestones have been achieved, including the development of gold
nanozymes in 2008, pioneering the mimicry of natural enzymes, and
further advancements including metal oxide and carbon-based
nanozymes in 2010 and 2012, respectively (Manea et al., 2004; Li
et al., 2008; Wei and Wang, 2013; Sun et al., 2018). Such
developments have significantly promoted nanozyme
applications, particularly in biosensing and diagnostics. This
study highlights the increasing integration of ML with

FIGURE 1
Brief timeline of advancements in integrating machine learning with nanozyme technology.
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nanozyme-based bioapplications, a trend that began in the early
2010s with predictive modeling, and has since evolved into a critical
component of real-time monitoring and dynamic applications in
biotechnology (Noll and Henkel, 2020; Wagner and Rondinelli,
2016). With evolution in the synergy between nanozymes and ML,
further innovations are expected, leading to more sophisticated,
responsive, and personalized diagnostic tools that can adapt to
complex biological environments.

2Nanozyme development and catalytic
mechanisms

2.1 Types of nanozymes

Nanozymes are engineered nanomaterials that emulate the
catalytic functions of natural enzymes, as shown in Figure 2.
They can be broadly classified into several types based on their
material composition (Huang et al., 2019). Metallic nanozymes,
including gold, silver, and platinum, are well known for their high
catalytic efficiency and stability (Lou-Franco et al., 2021). Metallic
nanozymes often exhibit strong enzyme-like activities owing to their
ability to easily donate or accept electrons during redox reactions,
which is crucial for mimicking enzymes such as oxidases,
peroxidases, and catalases. Such nanozymes are widely used in
biosensing and diagnostic applications because of their reliable
and stable catalytic properties (Wang et al., 2018). Metal oxide
nanozymes, including those based on iron, cerium, and manganese
oxides, are another key category (Liu Q. et al., 2021). Particularly,
such nanozymes are robust, multi-functional, and possess the ability
to simultaneously perform multiple types of catalytic reactions. For
example, cerium oxide nanozymes can switch between different
oxidation states, enabling them to mimic both catalase and
superoxide dismutase activities. Their robustness and multi-

functionality make them suitable for environmental applications
such as pollutant degradation and biosensor development (Meng
et al., 2020). Carbon-based nanozymes, including graphene, carbon
nanotubes, and carbon dots, represent a rapidly expanding category
owing to their high surface area, conductivity, and tunable catalytic
properties (Yang et al., 2020). Such nanozymes offer numerous
active sites and are easy to chemically modify for enhancing their
catalytic properties. Moreover, their excellent conductivity aids
electron transfer processes, which are essential for mimicking
peroxidase activity. Consequently, carbon-based nanozymes are
being increasingly used in biosensors, environmental remediation,
and energy-related applications (Li S. et al., 2019).

2.2 Catalytic mechanisms and factors
affecting catalytic activity

The catalytic mechanisms of nanozymes are influenced by several
nanoscale properties crucial to their functionality (Huang et al., 2019).
Size and shape are critical factors to determine the surface area
available for catalytic reactions and active site distributions (An
and Somorjai, 2012). Nanozymes of smaller sizes typically have a
higher surface-area-to-volume ratio, which enhances their interaction
with substrates, resulting in higher catalytic efficiency (Wang et al.,
2019). The composition of nanozymes, including specific metals or
metal oxides used, dictates the type of catalytic activity. Different
materials offer various enzyme-mimicking functions (Das et al., 2021).
For instance, platinum-based nanozymes are highly effective in
hydrogenation reactions, whereas gold-based nanozymes exhibit
excellent oxidase-like activity. The intrinsic properties of such
materials allow effective replication of specific enzymatic functions.
Additionally, surface chemistry plays a significant role in catalytic
performance, as the presence of functional groups or surface
modifications improve substrate binding and provide protection
against degradation (Jing et al., 2013). Surface modifications can be
tailored to improve the interactions between nanozymes and their
target substrate, thereby enhancing specificity and catalytic turnover.
For example, attaching specific ligands to the surface of a nanozyme
can help in selectively binding certain biomolecules, mimicking the
specificity of natural enzymes (Soares et al., 2021). The
aforementioned factors influence the stability and reactivity of
nanozymes. For example, a change in pH can alter the charge on
the nanozyme surfaces, affecting their interaction with substrates.
Similarly, temperature variation can affect the kinetic energy of a
system, thereby affecting the catalytic reaction rate.

2.3 Methods of nanozyme development and
limitations

Traditional nanozyme designs rely on empirical synthesis
methods including chemical reduction, sol-gel processes, and
hydrothermal synthesis (Chadha et al., 2022). However,
conventional methods often lack the precision required to control
nanoparticle size, shape, and composition. Consequently, the catalytic
properties of the synthesized nanozymes vary widely, making it
challenging to achieve consistent performance (Sun et al., 2018;
Singh, 2019). The empirical nature of such approaches makes

FIGURE 2
Types of nanozymes and their enzymatic functions.
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them time-consuming and resource-intensive, requiring extensive
experimentation to identify optimal synthesis conditions and
functional properties. The trial-and-error approach often leads to
inefficiencies, as researchers are required to test multiple variables
including reaction time, temperature, and precursor concentration to
fine-tune nanozyme properties. Moreover, traditional methods often
struggle to achieve high specificity and stability because nanozymes
typically do not match the substrate specificity of natural enzymes and
can suffer from aggregation, oxidation, or loss of activity over time.

To overcome such limitations, recent advancements have
focused on integrating computational approaches and ML into
design processes (Gupta et al., 2021). Modern strategies enable
more precise prediction of nanozyme properties by utilizing large
datasets to model and predict the effects of different synthesis
parameters on nanozyme performance. By leveraging data-driven

models, researchers can optimize the nanozyme characteristics more
efficiently, leading to the development of effective and stable
nanozymes with enhanced catalytic performance for a wide range
of bioapplications. New approaches not only accelerate the design
process but also improve the reproducibility and scalability of
nanozyme production.

3 Integration of ML in nanozyme
development

3.1 Overview of ML techniques

Recently, ML is being increasingly integrated into nanozyme
design, offering powerful tools for predicting and optimizing

FIGURE 3
Overview of ML techniques: supervised, unsupervised, and reinforcement learning with data type distinctions.
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nanozyme properties (Chen et al., 2023). The integration of ML into
nanozyme research has revolutionized the field, enabling more
precise control of the design process and significant time
reduction for experimentation. By analyzing vast datasets, ML
models uncover complex relationships between nanozyme
characteristics and catalytic performances, which can be difficult
to discern using traditional methods. Different ML techniques such
as supervised, unsupervised, and reinforcement learning are applied
based on specific nanozyme or sensor requirements, as shown in
Figure 3. The effectiveness of these techniques is closely tied to the
methods used for signal collection (Chadha et al., 2022). Signal
collection plays a critical role in obtaining high-quality data, which is
essential for accurate ML predictions. For example, colorimetric
sensors collect optical signals based on visible color changes,
electrochemical sensors measure electrical signals, and
chemiluminescent sensors collect light emission signals. The
nature of the signal collected directly impacts how the data is
processed and the ML model applied (Gupta et al., 2021). The
application of machine learning techniques in nanozyme-based
sensors is highly dependent on the programming code used to
implement these techniques. Each ML method—supervised,
unsupervised, and reinforcement learning—requires a distinct
coding approach that impacts how sensor data is processed and
how samples are detected. For example, in supervised learning, the
programming code is primarily focused on training the model using
labeled datasets (Chen et al., 2023). The code typically includes steps
for loading data, preprocessing it (e.g., normalizing or encoding
features), training the model, and making predictions. In the case of
colorimetric sensors, this involves predicting the color change based
on input features such as concentration levels, with code that
handles both the training and evaluation phases efficiently.

Supervised learning uses labeled data and is particularly effective
for regression and classification tasks, predicting outcomes such as
catalytic efficiency, stability, and specificity of nanozymes (Li Y.
et al., 2023). Considering nanozyme design, supervised learning
algorithms can be trained on experimental data to predict the effects
of changes in synthesis conditions (including temperature, pH, and
reactant concentration) on the final nanozyme properties (Li Y.
et al., 2023; Zhuang et al., 2024). Such a predictive capability enables
researchers to fine-tune nanozyme characteristics before physical
synthesis, saving time and resources. Supervised learning is
especially useful for applications such as colorimetric sensors,
where precise detection and labeled data are readily available. In
contrast, unsupervised learning relies on code that can discover
patterns in unlabeled data, such as clustering or association rule
mining. For electrochemical sensors, the code is used to analyze
complex electrical signal data and group samples based on their
signal characteristics (Sun et al., 2018). This involves designing
algorithms that can process raw signals and cluster them into
meaningful groups without prior knowledge of the data structure.

Unsupervised learning, including clustering and association
techniques, identifies patterns within unlabeled data to discover
new nanozyme classes and understand their properties (Arya et al.,
2023; Ghahramani, 2003; Barlow, 1989). For instance, clustering
algorithms group nanozymes based on their catalytic behaviors or
structural features, revealing previously unrecognized relationships
that can lead to the development of novel nanozyme types. However,
association techniques can identify common features among high-

performance nanozymes and guide the synthesis of new variants
with enhanced functions. Unsupervised learning is particularly
effective for electrochemical sensors, where hidden patterns in
complex signal data can be uncovered and used to optimize
sensor performance.

Reinforcement learning requires code that facilitates interaction
between the model and its environment. In chemiluminescent
sensors, the code must simulate different sensor conditions and
adjust sensor parameters in real-time based on feedback from the
environment. The core of the reinforcement learning code involves
setting up the environment, defining a reward function, and
iterating through learning episodes to optimize performance.
Reinforcement learning optimizes processes by learning from
interactions, which is useful for refining synthesis conditions to
enhance nanozyme performance (Chen et al., 2023). During
nanozyme development, reinforcement learning can be applied to
iteratively improve synthesis protocols. By simulating different
synthesis scenarios and learning from obtained outcomes,
reinforcement learning algorithms can recommend optimal
pathways for producing nanozymes with the desired properties.
The approach is particularly valuable in dynamic and complex
systems where the best synthesis strategy may not be apparent
from initial conditions. Reinforcement learning is highly suitable for
chemiluminescent sensors, which require real-time performance
optimization, especially in fluctuating environments like in vivo
diagnostics or environmental monitoring.

The aforementioned methods are visually categorized in
Figure 3, illustrating their applications in handling both
continuous and categorical data and their relevance in nanozyme
research. For example, supervised learning works best for predicting
quantitative outcomes (continuous data), such as catalytic rates,
while unsupervised learning helps classify nanozymes into
functionality-based categories (categorical data). The choice of
ML technique and signal collection method are both essential for
ensuring accurate predictions, optimized nanozyme performance,
and reliable results across various bioapplications. By effectively
utilizing ML techniques, researchers can accelerate the discovery
and optimization of nanozymes, leading to more efficient and
sustainable solutions in various applications, including
biomedicine, environmental remediation, and industrial catalysis
(Ahmed et al., 2022; Ngwabebhoh and Yildiz, 2019).

3.2 Application of ML in predicting
nanozyme properties

ML is crucial for predicting key nanozyme characteristics
including catalytic activity, specificity, and environmental
stability. By processing large datasets, ML models can identify the
most influential factors affecting nanozyme performance such as
particle size, shape, and surface chemistry (Wei et al., 2022). The
ability to analyze complex and large-scale data allows researchers to
determine attributes that most significantly affect the efficiency and
functionality of nanozymes, providing valuable insights that guide
the design and optimization processes. For example, regression
models can predict the optimal conditions for catalytic reactions,
including ideal temperature, pH, and reactant concentration, to
achieve maximum efficiency (Flynn and Chang, 2024). Such models
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are essential for narrowing down the vast array of potential
experimental conditions to the most promising ones, thereby
saving time and reducing costs associated with trial-and-error
approaches. Conversely, classification models sort nanozymes
based on their functional categories, such as oxidase-like,
peroxidase-like, or catalase-like activities. Sorting helps to quickly
identify appropriate nanozymes for specific applications such as
biosensing or pollutant degradation (Li X. et al., 2019; Li X.
et al., 2023).

Clustering techniques group nanozymes with similar properties,
thereby facilitating the discovery of new variants with enhanced
capabilities (Ai et al., 2022). For instance, clustering can reveal
subgroups of nanozymes that share unique catalytic properties,
which may not be immediately apparent through conventional
analysis. By studying the clusters, researchers can identify
common features that contribute to high performance and use
the knowledge to design new nanozymes with improved
functionalities. The predictive power accelerates process
development, enabling efficient and better suited nanozyme
designs for specific applications. Ultimately, the integration of
ML into nanozyme research not only accelerates the discovery of
new nanozyme variants but also enhances their performance in real-
world applications, ranging from environmental remediation to
advanced medical diagnostics. By leveraging the power of ML,
researchers can push the boundaries of nanozymes for obtaining
innovative solutions in various fields.

3.3 Case studies of ML-assisted nanozyme
development

Several case studies have highlighted the effectiveness of ML in
improving nanozyme designs. For instance, supervised learning has
been used to enhance the catalytic activity of metal oxide nanozymes
by predicting the influence of factors, such as size and surface area
(Xu D. et al., 2022). In such studies, ML models have successfully
identified optimal nanoparticle dimensions and surface
characteristics that maximize catalytic efficiency, allowing for the
fine-tuning of nanozyme properties to meet specific functional
requirements. Another study has applied clustering and
regression models to optimize the stability of gold nanozymes
under varying pH and temperature conditions, resulting in more
robust biosensors (Sun et al., 2021). Such ML-driven approaches
have been particularly effective in identifying the precise
environmental conditions that gold nanozymes can withstand,
ensuring their stability and prolonged activity under challenging
conditions including those found in biological or environmental
samples. Thus, directly contributions have led to the development of
reliable and durable biosensors.

Additionally, reinforcement learning has been employed to fine-
tune synthesis parameters for carbon-based nanozymes to achieve
optimal performance (Lewandowska et al., 2021). Particularly,
reinforcement learning models have been adept at iteratively
adjusting synthesis variables such as reaction time, temperature,
and precursor concentrations, learning from each outcome to
progressively improve nanozyme performance (Kulkarni et al.,
2022). Thus, significant enhancements in the catalytic capabilities
and stabilities of carbon-based nanozymes have been recorded,

making them more effective for environmental remediation and
energy conversion applications. The examples depicted in Figure 3
demonstrate the creation of more efficient, stable, and application-
specific nanozymes using ML-based approaches. By integrating ML
into the design process, researchers can precisely control nanozyme
properties and tailor them to meet the specific requirements of
diverse applications. The success of the aforementioned case studies
underscores the transformative impact of ML on nanozyme
research, offering a powerful tool for innovation in this field
(Zheng et al., 2024; Cao et al., 2023).

Incorporating ML into nanozyme design represents a significant
advancement, enabling the development of more targeted and
effective nanozymes for use in diverse fields, such as
biotechnology, medicine, and environmental science. As ML
techniques continue to evolve, their applications in nanozyme
research are expected to expand, driving further innovation and
specialization in this rapidly growing field. The ongoing
development of ML algorithms, coupled with increasing
computational power, is expected to likely produce more
sophisticated and efficient nanozyme designs, paving the way for
groundbreaking advancements across multiple scientific and
industrial domains.

4 Recent advances in nanozyme with
ML application

4.1 Colorimetric sensors andML applications

Recently, significant progresses have been made in the
development of nanozyme-based colorimetric sensors,
particularly through the integration of ML techniques. The
innovations have expanded the capabilities of biosensing,
diagnostics, and environmental monitoring, highlighting the
potential of combining nanotechnology with computational
approaches. The application of ML to sensors has enhanced their
ability to process complex colorimetric data, such as RGB values,
thereby enabling more precise detection and quantification of
analytes in various environments. For instance, in studies
involving the detection of cisplatin (Cis-Pt) at parts per billion
(ppb) levels, as shown in Figure 4A, colorimetric changes have been
accurately measured and correlated with cis-Pt concentration,
demonstrating the sensitivity of the system (Yang et al., 2022).
Table 1 provides an overview of various nanozyme-based
colorimetric reactions, summarizing their associated colorimetric
reactions, color spaces utilized, ML methods applied, and
corresponding limits of detection (LOD). The concise
compilation highlights the integration of ML techniques for
enhancing the sensitivity and specificity of nanozyme-based
diagnostic and monitoring applications in different fields.

In 2022, (Huang et al., 2022) introduced a deep learning-assisted
method employing Fe₃O₄ nanoparticles for real-time visualization
and recognition of complex information within latent fingerprints
(Huang et al., 2022). The method significantly enhanced the
accuracy and depth of fingerprint analysis, demonstrating the
powerful impact of combining ML with nanozyme technology in
forensic science. The ability to analyze complex patterns with high
precision underscores the potential of ML-driven nanozymes for
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improving forensic diagnostics. Such advancements were mirrored
by Mastronardi et al. (2022), who developed a fast colorimetric test
to detect cisplatin in biological samples (Mastronardi et al., 2022).
Their study demonstrated the capability of ML models to process
colorimetric data obtained from a series of reactions, where changes
in the intensity of the blue color were directly related to the cisplatin
concentration, enabling the precise monitoring of drug levels, as
shown in Figure 4B. In another notable advancement, Lu et al., in
(2022) developed a metal-nanoparticle-supported nanozyme-based
colorimetric sensor array aimed at the precise identification of oral
bacteria and proteins (Lu et al., 2022a). Their innovation provided a
robust platform for oral health diagnostics, allowing accurate
detection of bacterial species and protein markers associated with

dental diseases. They highlighted the growing role of nanozyme-
based sensors in clinical diagnostics, particularly under conditions
requiring rapid and precise detection.

In 2024, (Wan et al., 2024) leveraged ML-accelerated high-
throughput computational screening to identify bimetallic
nanoparticles with peroxidase-like activity (Wan et al., 2024).
Using ML, They significantly streamlined the discovery process,
reducing the time and resources required to identify highly active
nanozymes. Their study exemplified the synergy between
computational techniques and nanotechnology, offering a model
for more efficient discovery and development of functional
nanozymes. Building on these advancements, (Dang et al., 2022)
constructed a Ni-CoMoO4 heterostructure with strong Ni–O–Co

FIGURE 4
Integration of gold nanoparticles and carbon nanotube-based nanozymes in colorimetric and electrochemical sensors. (A) Schematic of gold
nanoparticle-based colorimetric pathogen detection systems. Adapted with permission (Yang et al., 2022) copyright 2022, MDPI. (B) Colorimetric
detection of cisplatin at ppb levels using nanocatalyst-enhanced assays. Adapted with permission (Mastronardi et al., 2022), copyright 2022, MDPI. (C)
Multi-walled carbon nanotube-N-doped graphene nanohybrid for electrochemical sensing and energy storage applications. Adapted with
permission (Xue et al., 2020), copyright 2020, American Chemical Society.
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bonds to enhance multi-functional nanozyme activity (Dang et al.,
2022). The heterostructure demonstrated improved catalytic
performance, particularly in environmental applications such as
pollutant degradation. They highlighted the potential of tailored

nanostructures to boost the efficiency and applicability of
nanozymes in diverse bioapplications.

To further expand the scope of nanozyme applications, Sun Q.
et al. (2023) developed a Mo single-atom nanozyme anchored on a

TABLE 1 Overview of nanozyme-based colorimetric reactions integrated with machine learning for advanced diagnostic and monitoring applications.

Nanozyme type Colorimetric
reaction

Color
space

Application Machine
learning method

LOD Ref.

PtNPs Oxidation Reaction RGB Point-of-care (POC) testing K-Nearest Neighbors
(KNN)
Dynamic Time
Warping (DTW)

0.0154 μM Mastronardi
et al. (2022)

Fe-N-C single-atom
nanozyme (SAN)

Oxidation Reaction RGB Point-of-care (POC)
testing, Environmental
monitoring

Linear Discriminant
Analysis (LDA),
Hierarchical Clustering
Analysis (HCA)

0.5 μM Shen et al.
(2022)

h-PB NPs Oxidation Reaction RGB Point-of-care (POC) testing Artificial Neural
Network (ANN)

0.0126 μM Yu et al. (2022)

Ni/CoMoO4 Oxidation Reaction RGB, HSV Clinical diagnostics,
Environmental monitoring

Support Vector
Machine (SVM)

0.33 μM Dang et al.
(2022)

Metal-nanoparticle-
supported nanozymes
(MNNs)

Oxidation Reaction RGB Clinical diagnostics Principal Component
Analysis (PCA),
Hierarchical Clustering
Analysis (HCA)

− Lu et al. (2022a)

Fe3O4 NPs Oxidation Reaction RGB Clinical diagnostics,
Forensic investigations

Multi-channel
convolutional neural
network (MC-CNN)

1 μM Huang et al.
(2022)

Co3O4/CoFe2O4 hollow
nanocubes (HNCs)

Oxidation Reaction RGB, HSV Clinical diagnostics,
Environmental monitoring

YOLO v3 0.015 μM Jiang et al.
(2023)

CuO/Fe2O3 heterojunction
nanoparticles

Oxidation Reaction RGB, HSV Point-of-care (POC)
testing, Environmental
monitoring

YOLO v3 28 μM, 0.69 μM Sun M. et al.
(2023)

MOF-818 Oxidation Reaction HSV Point-of-care (POC) testing YOLO v3 9.02 μM, 0.05305 μM,
0.8 μM, 0.00076 μM

Yu et al. (2023)

GMP-Cu, ASP-Cu Oxidation Reaction CIE L*a*b* Food safety monitoring Partial Least Squares
Discriminant Analysis
(PLS-DA)
Linear Discriminant
Analysis (LDA),
Hierarchical Cluster
Analysis (HCA)

5 μM Yang et al.
(2024)

Au NPs@apt Oxidation Reaction RGB Point-of-care (POC)
testing, Food safety
monitoring

Linear Discriminant
Analysis (LDA)

1,000 CFU/mL,
10 CFU/mL

Li et al. (2024)

NH2-MIL-88B (Fe, Ni) Oxidation Reaction RGB, HSV Point-of-care (POC)
testing, Food safety
monitoring

YOLO v3 0.182 μM, 0.0668 μM Zhang et al.
(2024b)

Bimetallic nickel-cobalt
selenides (Ni₀₇₅Co₀₂₅Se)

Oxidation Reaction RGB Biomedical diagnostics,
Environmental monitoring,
Safety screening

Artificial Neural
Network (ANN)

5 μM Lian et al.
(2024)

Iron oxide nanoparticles
(IONPs)

Oxidation Reaction RGB Dental diagnostics Linear Discriminant
Analysis (LDA)

68 CFU/mL Zhang et al.
(2024a)

Au@Ag, Ir@Pd Oxidation Reaction RGB Biosensing, Disease
treatment, Environmental
management

CatBoost Algorithm − Wan et al.
(2024)

Fe-N-C, single-atom
nanozymes (SANs), Fe-N-C-
urea SANs

Oxidation Reaction RGB Dental diagnostics Linear Discriminant
Analysis (LDA),
Hierarchical Cluster
Analysis (HCA)

68 CFU/mL Zhang L. et al.
(2024)
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TABLE 2 Overview of nanozyme-based electrochemical reactions integrated with machine learning for advanced detection technologies and
bioapplications.

Nanozyme type Electrochemical
reaction

Detection
technology

Application Machine
learning
method

LOD Ref.

MoS2-MWCNTs Electrocatalytic oxidation of
carbendazim (CBZ)

Cyclic voltammetry (CV),
Differential pulse
voltammetry (DPV)

Detection of CBZ
residues in edible agro-
products

Artificial Neural
Network (ANN)

0.0074 μM Zhu
et al.
(2020)

MWCNT-NGr/PEDOT:
PSS nanohybrid

Oxidation of amaranth (AM) Cyclic voltammetry (CV),
Differential pulse
voltammetry (DPV)

Medical diagnostics,
Environmental
monitoring,
Supercapacitors

Genetic Algorithm-
Artificial Neural
Network (GA-ANN)

0.015 μM Xue
et al.
(2020)

Aptamer-modified
C3N4 nanosheets (Apt/
C3N4 NSs)

Oxidation of oPD to DAP
catalyzed by the Apt/
C3N4 NSs

Nanozyme Sensor Array,
Ratiometric Fluorescence
Detection, Solvent-
Mediated Signal
Amplification

Non-invasive cancer
diagnosis

Linear Discriminant
Analysis (LDA),
Hierarchical Clustering
Analysis (HCA)

2.5 ×
10³ particles/
mL

Liu X.
et al.
(2021)

Silver nanoparticles
(AgNPs) decorated
phosphorene (black
phosphorus, BP)

Electrocatalytic oxidation of
8-hydroxy-2′-
deoxyguanosine (8-OHdG)

Electrochemical sensing
using linear sweep
voltammetry (LSV)

Non-invasive medical
diagnostics, Monitoring
oxidative stress-related
diseases

Artificial Neural
Network (ANN)

0.2 μM Sheng
et al.
(2021)

Amorphous molybdenum
sulfide (a-MoSx)

Redox process of baicalin Cyclic voltammetry (CV),
Differential pulse
voltammetry (DPV)

Medical diagnostics Least Squares Support
Vector Machine
(LSSVM), Artificial
Neural Network (ANN)

0.002 μM Rao
et al.
(2021)

Graphene-like titanium
carbide (Ti2C) Mxene, Au-
Ag nanoshuttles (NSs)

Oxidation of
carbendazim (CBZ)

SERS detection, Cyclic
voltammetry (CV),
Differential pulse
voltammetry (DPV)

Detection of ultra-trace
amounts of
carbendazim (CBZ)
residues

Artificial Neural
Network (ANN),
Support Vector
Machine (SVM),
Relevance Vector
Machines (RVM)

0.01 μM Zhu
et al.
(2021a)

Flexible 3D porous
graphene nanozyme

Oxidation of xanthine and
hypoxanthine

Differential pulse
voltammetry (DPV)

Detecting the levels of
XT and HX, which are
indicators of fish
spoilage

Artificial Neural
Network (ANN)

0.26 μM,
0.18 μM

Zhu
et al.
(2021b)

Nanocomposite of black
phosphorene (BP) with
single-walled carbon
nanohorns (SWCNH)

Oxidation of 5-
hydroxytryptamine (5-HT)

BP-IL-SWCNH modified
glassy carbon
electrode (GCE)

Monitoring
neurotransmitter levels

Artificial Neural
Network (ANN)

0.1 μM Zhu
et al.
(2021c)

Nanohybrid of
phosphorene (BP) and
Ti3C2 MXene

Oxidation of α-naphthalene
acetic acid (NAA)

Linear Sweep
Voltammetry (LSV)

Environmental
monitoring

Artificial Neural
Network (ANN)

0.0016 μM Zhu
et al.
(2021d)

AgNPs/MWCNTs/GO
nanohybrid

Oxidation of benomyl (BN) Differential pulse
voltammetry (DPV)

Food safety monitoring Support Vector
Machine (SVM), Least
Square Support Vector
Machine (LS-SVM)

0.0139 μM Xu B.
et al.
(2022)

Carbonized metal–organic
framework (C-ZIF-67)

Electrochemical oxidation
of NA

Cyclic voltammetry (CV),
Square Wave
Voltammetry (SWV),
Electrochemical
Impedance
Spectroscopy (EIS)

Electrochemical
detection of
niclosamide (NA) in
agricultural products

Artificial Neural
Network (ANN)

0.0003 μM Lu et al.
(2022b)

Cu@Cu2O (CC), Cu@
Cu2O@Pd (CCP), Cu@
Cu2O@PdAu (CCPA)

Catalytic oxidation of
hydrogen peroxide (H2O2)

Sensor array using the
synthesized nanozymes
(CC, CCP, CCPA)

Cosmetic safety
monitoring

k-nearest
neighbors (k-NN)

0.982 μM Chen Y.
et al.
(2022)

Zn-Co metal-organic
framework (MOF),
Ti3C2 Mxene, Fe3O4-
magnetic graphene oxide
(Fe3O4-MGO) nanohybrid

Electrocatalytic oxidation of
mycophenolic acid (MPA)

Electrochemical
impedance spectroscopy,
Voltametric methods

Food safety monitoring Artificial Neural
Network (ANN)

0.021 μM Ge et al.
(2022)

(Continued on following page)
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2D N-doped carbon film (Sun Q. et al., 2023). The system
was designed to visually monitor choline levels and evaluate
intracellular reactive oxygen species (ROS) generation,
thereby providing new insights into the catalytic mechanisms
of nanozymes and their roles in cellular processes. They
illustrated the dual diagnostic and therapeutic potential of
nanozymes, particularly in monitoring and influencing
cellular activity. Similarly, Zhang L. et al. (2024) introduced an
enhanced “electronic tongue” based on a DNA-encoded
nanozyme sensor array for the discrimination and elimination
of dental bacteria (Zhang L. et al., 2024). The innovation
represented a significant advancement in dental diagnostics,
and offered a powerful tool for identifying and
targeting pathogenic bacteria in the oral cavity. The
integration of DNA technology with nanozyme sensors
underscored the interdisciplinary nature of modern
biosensing approaches by blending molecular biology
with nanotechnology. Yang et al. (2022) provided a
comprehensive summary of recent progress in colorimetric
sensors based on gold nanoparticles for pathogen detection
(Yang et al., 2022).

4.2 Integration of nanozymes with ML for
advanced bioapplications

The integration of nanozymes with ML represents a
transformative approach in advanced bioapplications that
combines the unique catalytic properties of nanozymes with the
predictive and analytical power of ML algorithms. The synergy has
the potential to significantly enhance sensitivity, specificity, and
overall performance of biosensing and therapeutic platforms. By
leveraging the strengths of both technologies, researchers are
focusing on developing innovative solutions that not only
improve the detection of critical biomarkers, but also enable
more effective treatment and environmental remediation. This
section explores recent advancements in the field, highlighting
key studies that have demonstrated the potential of combining
nanozymes with ML for cutting-edge bioapplications. Table 2
provides a concise overview of various nanozyme-based
electrochemical reactions, summarizing their associated
electrochemical reactions, detection technologies, applications,
ML methods, and limits of detection (LOD). The table highlights
the integration of ML techniques for enhancing the performance

TABLE 2 (Continued) Overview of nanozyme-based electrochemical reactions integrated with machine learning for advanced detection technologies and
bioapplications.

Nanozyme type Electrochemical
reaction

Detection
technology

Application Machine
learning
method

LOD Ref.

Graphene-like
molybdenum selenide
(MoSe2-BC)

Oxidation of hesperetin (HP) Differential pulse
voltammetry (DPV)

Food safety monitoring,
Environmental
management

Least Squares Support
Vector Machine
(LS-SVM)

0.002 μM Rao
et al.
(2022)

Co3O4-CoFe2O4 hollow
nanocube

Catalysis of redox reactions Deep-learning-assisted
smartphone biosensing
platform

Environmental
monitoring

YOLO v3 0.18 μM,
0.015 μM,
8.84 μg mL−1

Jiang
et al.
(2023)

NiCo-MOF, Silver
nanoparticles (AgNPs)

Nonenzymatic oxidation of
glucose

Cyclic voltammetry (CV) Assessing the
fermentation process
and ensuring product
quality in liquor
brewing

Back-Propagation
Artificial Neural
Network (BP-ANN)

2.3 μM Ma et al.
(2023)

HNT/BP-AgNPs Oxidation-Reduction
processes

Electrochemical sensor
that integrates a screen-
printed carbon electrode
(SPCE)

Monitoring the safety of
food products

Back Propagation
Artificial Neural
Network with Genetic
Algorithm (BP-ANN-
GA), Least Squares
Support Vector
Machine (LS-SVM),
Artificial Neural
Network (ANN)

0.3 μM Ge et al.
(2023)

Phosphorene nanozyme Oxidase-like reaction Differential pulse
voltammetry (DPV)

Monitoring drug
residues in livestock

Back Propagation
Artificial Neural
Network with Genetic
Algorithm (BP-ANN-
GA), Least Squares
Support Vector
Machine (LS-SVM),
Radial Basis Function
(RBF), Extreme
Learning
Machine (ELM)

0.0032 μM Xiong
et al.
(2023)

Single-atom nanozymes
(SANs), Single-atom
catalysts (SACs)

Carbon dioxide
electroreduction (CO2 ER)

Density Functional
Theory (DFT)

Environmental
protection

Ensemble boosting,
Random Forest
Regression (RFR)

− Sun and
Liu
(2024)
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and specificity of nanozyme-based detection systems across
various fields.

In 2021, (Liu M.-X. et al.,) developed a nanozyme sensor array
that utilized a sovent-driven approach for enhanced signal
amplification in the ultrasensitive detection of exosomal
protein, which are crucial biomarkers for cancer identification
(Liu M.-X. et al., 2021). Their innovative approach demonstrated
exceptional sensitivity and specificity, making it a promising tool
for early cancer diagnosis. They underscored the potential of
nanozymes for improving the detection of low-abundance
biomarkers, which is essential for timely and accurate disease
diagnosis. As shown in Figure 4C, Xue et al. (2020) introduced
a multi-walled carbon nanotube-N-doped graphene (MWCNT-
NGr) nanohybrid integrated with poly (3,4-
ethylenedioxythiophene): poly (styrenesulfonate) (PEDOT) for
electrochemical applications (Xue et al., 2020). The nanohybrid
was specifically designed for intelligent sensors and
supercapacitors, and exhibited enhanced electrochemical
performance owing to the synergistic effects of the materials.
Xue et al. highlighted the potential of combining carbon-based
nanomaterials with conducting polymers to improve the efficiency
and functionality of electrochemical biosensors and energy storage
devices. Similarly, Sheng et al. (2021) introduced a stable
nanosilver-decorated phosphorene nanozyme combined with
phosphorus-doped porous carbon microspheres (Sheng et al.,
2021). Their system was specifically designed for the intelligent
sensing of 8-hydroxy-2′-deoxyguanosine, a biomarker associated
with oxidative DNA damage often linked to cancer. The
integration of nanosilver and phosphorene provided enhanced
catalytic activity and stability, marking a significant advancement
in cancer detection technology. They illustrated improvements to
the performance of biosensors by combining different
nanomaterials, particularly in challenging biological
environments.

Further, Rao et al. (2021) focused on the green synthesis of an
amorphous molybdenum sulfide nanocomposite with biochar
microspheres (Rao et al., 2021). The composite was used in a
voltammetric sensing platform that exhibited high sensitivity and
selectivity for baicalin, a compound with important
pharmacological effects. Wang highlighted the potential of
using eco-friendly materials to develop advanced biosensors,
which are increasingly important for sustainable technology
development. Liu Q. et al. (2021) explored the therapeutic
applications of nanozymes by developing Au-ZnO-based Trojan
nanogenerators activated by ultrasound for targeted
electrostimulation and enhanced catalytic therapy for tumors
(Ma et al., 2021). Their study presented a novel integration of
nanozyme technology with therapeutic applications, offering new
avenues for cancer treatment by improving the efficacy of catalytic
therapies. They demonstrated the versatility of nanozymes not
only as diagnostic tools, but also as active agents in therapeutic
interventions.

In 2022, (Xu B. et al., 2022) developed a Ni-CoMoO4
heterostructure featuring robust Ni–O–Co bonds to enhance
multi-functional nanozyme activity (Xu B. et al., 2022). The
heterostructure exhibited enhanced catalytic performance,
particularly in environmental applications such as pollutant
degradation. Chen et al. showcased the potential of nanozymes

in addressing environmental challenges and highlighted their
role in environmental remediation. Finally, (Lu X. et al., 2022)
explored the synergy between ML and nanozyme technology by
developing a ML strategy to optimize the performance of
electrochemical sensors and supercapacitors using carbonized
metal-organic frameworks (MOFs) (Lu X. et al., 2022). The
application of ML algorithms significantly improved the
sensitivity and accuracy of the sensors, demonstrating the
powerful role that ML could play in refining and enhancing
nanozyme-based systems. They indicated the growing trend
toward integrating computational approaches with
nanotechnology to achieve better performance and more
precise control over sensor characteristics.

5 Challenges and future perspectives

Recent advancements in nanozyme-based detection
technologies, particularly the integration of ML, have shown
great promise for clinical and environmental applications.
However, several challenges must be addressed to fully realize
their potential. One of the primary challenges is to ensure the
quality and robustness of the data used in ML models. The
success of ML-driven diagnostic tools depends heavily on the
diversity, accuracy, and relevance of training data (Park et al.,
2023; Leem et al., 2022). Comprehensive datasets that accurately
represent real-world conditions are crucial for effective
generalization of ML models across different scenarios. Without
high-quality data, these models may produce inconsistent or
inaccurate predictions, limiting their reliability in clinical
diagnostics or environmental monitoring (Yoon et al., 2024a;
Jeon et al., 2022a). Therefore, the development of extensive, high-
quality datasets is essential for the advancement of ML-integrated
nanozyme technology.

Another significant challenge involves scaling up the
production of nanozyme-based technologies, while
maintaining consistent quality and performance (Ai et al.,
2022; Singh et al., 2023). Transitioning from laboratory-scale
synthesis to commercial production presents difficulties in
ensuring that each nanozyme system meets the stringent
quality standards. Additionally, incorporating sophisticated
ML algorithms into these technologies in a cost-effective
manner is crucial for their widespread adoption (Lowe et al.,
2022; Zeebaree, 2024). Overcoming the challenges related to
scalability and cost-effectiveness is critical for the successful
commercialization of nanozyme-based technologies.
Furthermore, the lack of standardized protocols for the
synthesis, testing, and validation of nanozyme-based detection
methods poses a challenge to their broader adoption. Establishing
standardized methods is vital to ensure reproducibility across
studies and applications (Jeon H.-J. et al., 2022; Jeon et al., 2021;
Park et al., 2021). Standardization would also facilitate
comparisons between research groups and streamline the
regulatory approval process, which is necessary for the
commercial deployment of these technologies.

Looking towards the future, specific areas of research should
focus on improving data quality, scalability, and standardization in
nanozyme technologies. The integration of ML with nanozyme
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technology offers immense potential to enhance the accuracy,
efficiency, and applicability of both colorimetric and
electrochemical detection systems across various bioapplications
(Qian et al., 2022). In the context of colorimetric detection,
advanced image-processing techniques, such as color correction,
normalization, and transformation are necessary to standardize and
improve the accuracy of detection across different devices. ML, with
its ability to analyze complex datasets, can significantly enhance the
precision and reliability of these systems by learning from data and
adapting to various conditions.

Similarly, in the field of electrochemical detection, ML can
optimize the interpretation of complex electrochemical signals,
thereby improving the sensitivity and specificity of these
methods. Techniques such as cyclic voltammetry and differential
pulse voltammetry, when integrated with ML algorithms like
artificial neural networks (ANNs) and support vector machines
(SVMs), can be fine-tuned to detect trace amounts of analytes with
higher accuracy (Kurani et al., 2023; Ragab et al., 2019). The
approach can be particularly useful in applications such as
environmental monitoring and non-invasive medical diagnostics,
where detecting low concentrations of substances is critical.
Furthermore, the potential of optical hyperspectral imaging (HSI)
to obtain more detailed spectral information beyond the primary
RGB colors represents a promising avenue for improving both
colorimetric detection methods (Jeon et al., 2022b; Yoon et al.,
2024b). Recent advancements have made it possible to implement
low-cost hyperspectral imaging techniques on smartphones, thereby
enhancing the accuracy of glucose detection and other
bioapplication analyses.

In summary, future research should focus on addressing key
challenges, including data quality, scalability, and standardization,
while exploring new ML-driven advancements in detection
technologies. By overcoming these challenges, the field can move
towards the development of powerful, precise, and accessible
diagnostic tools that have wide-ranging clinical and
environmental applications. The continued integration of
nanozymes with machine learning will likely drive further
innovations, leading to more precise, reliable, and widely
available detection technologies that can be applied across a
range of clinical and environmental settings.
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