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As ionic liquids (ILs) continue to be prepared, there is a growing need to develop
theoretical methods for predicting the properties of ILs, such as gas solubility. In
this work, different strategies were employed to obtain the solubility of CO2 and
N2, where a conductor-like screening model for real solvents (COSMO-RS) was
used as the basis. First, experimental data on the solubility of CO2 and N2 in ILs
were collected. Then, the solubility of CO2 and N2 in ILs was predicted using
COSMO-RS based on the structures of cations, anions, and gases. To further
improve the performance of COSMO-RS, two options were used, i.e., the
polynomial expression to correct the COSMO-RS results and the combination
of COSMO-RS and machine learning algorithms (eXtreme Gradient Boosting,
XGBoost) to develop a hybrid model. The results show that the COSMO-RS with
correction can significantly improve the prediction of CO2 solubility, and the
corresponding average absolute relative deviation (AARD) is decreased from
43.4% to 11.9%. In contrast, such an option cannot improve that of the N2

dataset. Instead, the results obtained from coupling machine learning
algorithms with the COSMO-RS model agree well with the experimental
results, with an AARD of 0.94% for the solubility of CO2 and an average
absolute deviation (AAD) of 0.15% for the solubility of N2.
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1 Introduction

Since the dawn of the industrial revolution, the rising consumption of fossil fuels has
caused a significant increase in atmospheric carbon dioxide (CO2) levels. The worldwide
atmospheric CO2 levels have increased from an average of 280 parts per million (ppm) in
the late 18th century to 414 ppm by the year 2021 (Cheng et al., 2022). As a consequence,
this rise has triggered numerous environmental challenges, such as global warming and the
acidification of oceans. Mitigating CO2 emissions is thus crucial. Meanwhile, CO2 serves as
an inexpensive, non-toxic, and abundant C1-feedstock, and it can be converted into
alcohols, ethers, acids, and various other value-added chemicals. Therefore, CO2 capture
and utilization via conversion is one of the effective strategies to mitigate CO2 emission and
produce carbon-based chemicals.
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Among different CO2 conversion methods, the electrochemical
CO2 reduction reaction (eCO2RR) stands out as an appealing
strategy to convert renewable electricity, together with CO2, into
fuels and feedstocks in the form of chemical bonds (Vasileff et al.,
2018). Notably, the electrochemical synthesis of compounds with
C-N bonds, such as urea, amide, and amino acids, from CO2 and N2

as well as their derivatives is gaining recognition as a viable and
sustainable approach (Chen et al., 2020a; Jouny et al., 2019).
Additionally, nitrogen (N2), comprising 78% of the atmospheric
air, is a highly appealing source of nitrogen. Consequently, the
electrocatalytic N2 reduction reaction (NRR) for ammonia
production has attracted substantial attention for its advantages
in energy conservation and environmental sustainability. Despite
considerable progress, the low solubility of CO2 and N2 in water and
conventional electrolyte solutions leads to low efficiency of the
aforementioned reactions, thus hindering its development and
application (Chen et al., 2021; Ren et al., 2021). Hence, for both
eCO2RR with C-N coupling and NRR mentioned above, enhancing
the solubility of CO2 and N2 is a vital prerequisite for the subsequent
conversion reaction.

For eCO2RR and NRR, the gas solubility can be adjusted by
developing novel electrolytes. Ionic liquids (ILs) are a type of organic
salt that remains liquid at or near room temperature and consists of
cations and anions. As a kind of green medium, they possess many
outstanding characteristics, such as flexible tunability, high ionic
conductivity, and wide electrochemical window. ILs have been
extensively studied and shown great potential in many fields,
such as electrocatalytic conversion, over the past decade. For
example, the work by Chen et al. demonstrated that the faradaic
efficiency (FE) and current density in 0.5 M [Bmim] PF6/MeCN for
CO2 electrochemical reduction to CO are much higher than those in
0.5 M KHCO3, and the high CO2 solubility of [Bmim][PF6]/MeCN
is one of the reasons (Chen et al., 2020b). Zhou et al. studied the
electrochemical ammonia synthesis at ambient conditions and
achieved a FE of NRR higher than 60%. A key factor in this high
efficiency was the relatively elevated N2 solubility in the IL
electrolyte (Zhou et al., 2017). Therefore, using IL as electrolytes
can be an effective strategy to enhance the gas solubility and thus
improve the performance of eCO2RR and NRR.

ILs can be theoretically composed of any combination of cations
and anions, making ILs highly desirable but also time-consuming
and expensive to measure their properties experimentally.
Therefore, a fast and reliable predictive method is needed to
screen out the suitable ILs for specific tasks, such as finding ILs
with high gas solubility for electrocatalytic conversion of CO2 and
N2. Several models have been developed and applied to predict the
solubility of gases in the systems containing ILs. Molecular dynamics
(MD) simulations, frequently combined with density functional
theory (DFT), provide valuable microscopic insights and serve as
a robust complement to experimental results (Zhao et al., 2024).
While these computational techniques have significantly enhanced
our understanding of ILs properties, their limitations such as
complex model architectures and extended computational times
have constrained the efficiency and broader application of these
methods in IL research. In addition, the activity coefficient models,
such as UNIFAC (Chen et al., 2020c), UNIQUAC, (Kamgar and
Rahimpour, 2016) etc., usually show good capabilities in predicting
the solubility of gases in ILs. However, these models require

parameters of each functional group and the binary interaction
coefficients among them, and their application is limited to a certain
extent. The methods based on quantum chemistry (QM) overcome
the limitations of the aforementioned techniques by obtaining
missing molecular properties through ab initio calculations, being
independent of experimental data. Furthermore, some QM-based
methods have already been applied to Computer-Aided Molecular
Design (CAMD) methods, such as those based on the Conductor-
like Screening Model (COSMO), including the Conductor-like
Screening Model for Realistic Solvents (COMSO-RS) proposed by
Klamt (1995) and the COSMO segment activity coefficient
(COMSO-SAC). Ali et al. employed COSMO-RS to predict the
solubility of CO2 in eight different ILs. The predictions were then
compared to experimental data, showing similar trends and a
moderate level of agreement, with deviations ranging from 8% to
62% (Hadj-Kali et al., 2020). The CO2 absorption capacity of 1,2,4-
triazolium-based ILs and the imidazolium-based ILs with different
anions was predicted with COSMO-RS, and the triazolium-based
ILs exhibited higher values (Mohammed et al., 2023). It was also
found that the HOMO energy level of the anion plays a more
prominent role in solubility compared to the LUMO energy level of
the cation, which can be explained by the greater tendency of CO2 to
accept electrons more rather than donate them. Manan et al. verified
the predictive accuracy of COSMO-RS by investigating the solubility
of 15 gases, including CO2 and N2, in 27 different ILs. The study
demonstrated that, while COSMO-RS can qualitatively predict
solubility, its accuracy needs to be further improved for reliable
quantitative predictions. For example, the absolute relative
deviations (ARD) of the CO2 solubility in [Bmim][BF4] is as
high as 32.4% and that for N2 is 57.8% (Manan et al., 2009). A
common method to improve the prediction performance of
COSMO-RS is to employ experimental data to correct the model
predictions. For instance, Zhao et al. (2017), Liu et al. (2021), Wang
et al. (2021), and Farahipour et al. (2016) used a linear expression to
correct the Henry’s law constants obtained from COSMO-RS.
However, no work has been done so far to study a wide range of
ILs, and the work is on the CO2 solubility but not on the N2

solubility.
In recent years, benefiting from the rapid development of

machine learning algorithms, quantitative structure-property
relationship (QSPR) models have been extensively applied to
predict the properties of ILs, such as density, viscosity, activity
coefficient, gas solubility, and so on. Song et al. (2020) employed the
artificial neural network (ANN) and support vector machine (SVM)
algorithms to construct predictive models based on group
contribution (GC) methods, effectively predicting the solubility of
CO2 in various ILs using 10,116 datasets across different
temperatures and pressures. The ANN-GC model has an
estimated mean absolute error (MAE) of 0.0202 and a coefficient
of determination (R2) of 0.9836, while the SVM-GC model shows a
MAE of 0.0240 and a R2 of 0.9783. Tian et al. integrated ANN and
SVM with the ionic fragments contribution (IFC) to predict the
solubility of CO2 and N2 in ILs. In their work, 13,055 datasets of CO2

solubility and 415 datasets of N2 solubility were collected for model
training and validation. As a result, the R2 values obtained for the
CO2 solubility predictions are 0.9855 for IFC-SVM and 0.9732 for
IFC-ANN in the training sets. Similarly, the R2 values for the N2

solubility predictions are 0.9966 and 0.9909 for IFC-SVM and IFC-
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ANN, respectively (Tian et al., 2023). Recently, Tian et al. established
two models based on both the random forest (RF) and gradient
boosting regressor (GBR) to predict the N2 solubility in ILs. The
input features of the model include temperature, pressure, and
COSMO-derived descriptors. After training the model with four
of five folders, R2 and AARD were obtained with values of 0.9986%
and 14.24% for RF-IFC and 0.9999% and 5.28% for GBR-IFC,
respectively (Tian et al., 2024). Ali and co-workers developed two
deep learning models, namely, ANN and long short-term memory
(LSTM), to predict CO2 solubility in ILs using a dataset of
10,116 data points across 164 kinds of ILs under various
temperature and pressure conditions. Both models demonstrated
strong predictive performance, with R2 values of 0.986 and 0.985 for
ANN and LSTM, respectively. Moreover, the results showed that
while both models provided excellent accuracy in predicting CO2

solubility, the ANN model achieved reliable accuracy with
significantly lower computational time compared to the LSTM
model (Ali et al., 2024). The above results confirm that the
prediction models originated from the GC methods combined
with the ML algorithms can be used to predict the solubility of
CO2 and N2 effectively.

However, to the best of our knowledge, it was found that there
are only a few research using COSMO-RS to predict the solubility of
N2 in ILs, and its prediction capacity of COSMO-RS is uncertain. In
addition, there is a lack of robust models to predict the gas
solubilities based on COSMO-RS that already qualitatively
represent the gas solubility. Hence, in this work, the solubility of
CO2 and N2 in various ILs over wide ranges of temperature and
pressure was extensively studied based on COSMO-RS. Firstly, a
comprehensive collection of the literature data on the solubility of
CO2 and N2 in ILs was conducted. Subsequently, COSMO-RS was
utilized to predict the solubility of CO2 and N2 in ILs, accompanied
by discussion and analysis. To further improve the performance of
COSMO-RS, the modification was carried out, including two
options: a correction method and a hybrid model based on the
ML algorithm and GC method.

2 Modelling

2.1 COSMO-RS

All COSMO-RS calculations were performed using the
COSMOtherm software (version 19.0.4, with the BP_TZVP_
19.ctd parameterization, COSMOlogic, Leverkusen, Germany). To
begin with, the quantum chemical Gaussian09 package was
employed to optimize the structures of the studied compounds,
which include CO2, N2, and components of IL, at the B3LYP/6-
31++G (d, p) level. Frequency calculations were conducted to
confirm that the optimized structures correspond to true minima.
Second, the resulting COSMO files of the optimized structures were
subsequently imported into the COSMOtherm program to compute
the solubility of CO2 and N2 in the studied ILs. For the solubility
calculations of gases in ILs, the cation and anion components are
treated as separate molecules with equal molar fractions (ncation =
nanion = nIL), furthermore, the input variables (T, P) were set to be
consistent with the experimental conditions reported in the
literature.

2.2 Machine learning

At present, multiple ML algorithms have been used to estimate
the physical and thermodynamic properties of ILs and IL-involved
systems. Among them, the XGBoost algorithm proposed by Chen
and Guestrin (2016) is a powerful and efficient algorithm owing to
its high training efficiency, good prediction effect, multi-controllable
parameters, and user-friendly features. XGBoost can be regarded as
a variant of Gradient Boosting Decision Tree (GBDT). Unlike
GBDT, XGBoost introduces regular terms to limit the model
complexity to reduce the probability of over-fitting, and the
second-order derivative information is used for optimization,
which accelerates the convergence process of the model and
improves the training efficiency. By assuming a dataset contains
n examples andm features, the mathematic expressions (Equation 1)
and objective function (Equation 2) of the XGBoost algorithm are
outlined as follows:

ŷi � ∑
K

k�1
fk xi( ), fk ∈ F (1)

Here, fk is the kth independent tree, and F represents the space of
regression trees.

obj � ∑
n

i�1
l ŷi, yi( ) +∑

N

k�1
Ω fk( ) (2)

where l is a differentiable convex loss function that measures the
difference between the prediction ŷi and the target yi, and Ω is the
regularization term.

2.3 Hybrid model

Since the selection and number of features (i.e., the functional
groups) significantly affect the accuracy and generalization ability
of the ML model, the division of the functional groups followed
the JR method in this work (Nannoolal et al., 2007), with the
detailed information provided in Supplementary Table S1. Also,
for the studied ILs, the same functional group may be contained
in both cations and anions, and to better describe the impact of
functional groups in anions and cations on solubility, a “-” sign
was added after the functional groups from anions.
Consequently, the studied ILs were divided into 41 groups for
CO2 solubility modeling and 38 groups for N2

solubility modeling.
Before model development, the data used were normalized and

standardized to eliminate the effects of data magnitude. First, the
CO2 and N2 solubility datasets were divided into the training set and
the test set, with a division ratio of 8:2. The input features for the
XGBoost-GC model include temperature (T), pressure (P), and
groups on cations and anions (41 for CO2 dataset, and 38 for N2

dataset). The target variable for the CO2 dataset was set to be the
relative deviation (xExp−xCOSMO−RS

xExp
) between the experimental results

and the predictions generated by the original COSMO-RS model.
For N2, the target variable is the absolute deviation
(xExp − xCOSMO−RS) between the experimental values and the
COSMO-RS model predictions for each sample. For comparison,
a model with the same input features but using experimental values
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as the target variables was also studied, which is named XGBoost-
GC-D.

The optimal parameters were obtained through the Bayesian
optimization algorithm. Since the XGBoost algorithm is a decision
tree-based model, the number of trees should be proper, and too few
trees will result in poor prediction, while too many trees may lead to
over-learning and over-fitting. The same goes for the maximum
depth of the tree. Therefore, simultaneous optimization was
performed on these parameters, where the number of trees
ranged from 1 to 100 with corresponding maximum depth from
1 to 10. The ranges for the learning rate and subsample ratio were set
to 0.01–0.3 and 0–1, respectively. The number of iterations was 200,
and the specific parameters are listed in Supplementary Table S2.

3 Results and discussion

3.1 Data collection

Given that the work of Lei et al. (2014) systematically collected
CO2 solubility data in ILs published before 2013 and used it as a
database, the CO2 solubility data used in this work mainly come
from literature reported in the past decade (Nonthanasin et al., 2014;
Tagiuri et al., 2014; Gonzalez-Miquel et al., 2014; Makino et al.,
2014a; Bahadur et al., 2015; Carvalho et al., 2014; Makino et al.,
2014b; Zhou et al., 2014; Zeng et al., 2015; Almantariotis et al., 2017;
Liu et al., 2016; Zhou et al., 2016; Zoubeik et al., 2016; Nematpour
et al., 2016; Watanabe et al., 2016; Zubeir et al., 2016a; Zubeir et al.,
2016b; Dai et al., 2017; Jalili et al., 2017; Bai et al., 2017; Mirzaei et al.,
2018; Zhao et al., 2018; Jalili et al., 2019; Nath and Henni, 2020;
Safarov et al., 2019; Wang et al., 2022; Henni et al., 2023; Kodama
et al., 2023; Mirzaei et al., 2023; Suzuki et al., 2024a; Suzuki et al.,
2024b), and the experimental data with zero or negative solubility
are not considered. Finally, 3,036 sets of CO2 solubility (mole
fraction: 0.00116–0.713) in 72 different ILs were selected at
temperatures of 273.15–413.15 K and pressures of 9.7–6,532.8 kPa.

However, for N2, the relevant experimental data are much less
abundant than for CO2. Here, we collected and screened N2

solubility data in the previous literature (Zhou et al., 2014;
Almantariotis et al., 2017; Liu et al., 2016; Zhou et al., 2016;
Jacquemin et al., 2006a; Jacquemin et al., 2006b; Zhou et al.,
2013; Almantariotis et al., 2012; Stevanovic and Gomes, 2013;
Zhao et al., 2011; Anderson et al., 2007; Yuan et al., 2006; Afzal
et al., 2015; Zhang et al., 2017; Bentley et al., 2023). Similarly, the
datasets with zero or negative solubility were discarded. A total of
457 N2 solubility data points in 31 types of ILs were collected, with
values ranging from 0.000171 to 0.6187 mol fraction at
283.20–353.20 K and 4.69–14982 kPa. Supplementary Tables S3,
S4 provided the detailed experimental ranges of temperature,
pressure, and solubility for various CO2-IL and N2-IL systems.

Supplementary Figures S1, S2 show the temperature, pressure,
and solubility distributions. It could be seen that the temperature
data distribution of the two datasets is relatively uniform, while the
pressure data were mainly concentrated in 0–1,000 kPa. The CO2

solubility data is relatively evenly distributed, while the N2 solubility
data is mainly concentrated below 0.05.

The chemical structures of the cations and anions investigated in
this work are illustrated in Supplementary Table S5. The cations

include imidazolium, pyridinium, pyrrolidinium, ammonium, and
phosphonium, and the anions contain acetate, sulfate, sulfonate,
tetrafluoroborate [BF4], hexafluorophosphate [PF6], Bis
[(trifluoromethyl)sulfonyl]azanide [NTf2], etc.

3.2 Model performance

Appropriate model evaluation metrics are crucial for
evaluating the accuracy of the model. To provide a reasonable
evaluation, the average absolute relative deviation (AARD,
Equation 3) and coefficient of determination (R2, Equation 4)
were used to quantify the discrepancies between the experimental
and predicted CO2 solubilities, where the former is a bias-centric
metric while the latter is a variance-oriented one. However, for
the N2 dataset, considering the low accuracy of experimental
measurements linked to the low solubility of N2 in the solvents,
the verage absolute deviation (AAD, Equation 5) and R2

were used.

AARD% � 1
N

∑
N

i�1

xi − x′
i( )

xi

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
× 100 (3)

R2 � 1 −
∑
N

i�1
x′
i − xi( )

2

∑
N

i�1
�xi − xi( )2

(4)

AAD% � 1
N

∑
N

i�1
xi − x′

i

∣∣∣∣
∣∣∣∣ × 100 (5)

where N is the total number of samples, the experimental and
predicted values of gas solubility in ILs are denoted as xi and x′

i ,
respectively, and �xi represents the mean value of the gas
solubility in ILs.

3.3 COSMO-RS predictions

As described in Section 2.1, the solubility of CO2 and N2 in the
identified ILs under the same conditions (T, P, ILs) as reported in the
literature was predicted using COSMOthermX (version 19.0.4) and
compared with the experimental values (see Supplementary Tables
S6, S7). Figures 1A, B present the comparison of the experimentally
determined and COSMO-RS predicted gas solubility of CO2 and N2,
respectively. In Figure 1A, it is evident that the COSMO-RS model
tends to underpredict the solubility of CO2 in ILs, with an AARD of
43.4% and a R2 of 0.599. For N2, as depicted in Figure 1B, the
solubility data are spread on either side of the diagonal, with an AAD
of 4.95% and a R2 of 0.242.

It should be emphasized that the overall trend of the solubilities
predicted by COSMO-RS is consistent with the experimental data at
various temperatures and pressures (Supplementary Figures S3, S4),
confirming that the qualitative prediction of COSMO-RS can be
used to reliably screen ILs based on their gas solubilities. To further
analyze the model predictions, the N2 solubility in two ILs was taken
as an example to discuss the effects of temperature and pressure. As
depicted in Figure 1C, the model prediction performance for
[HMIM][eFAP] depends on the studied temperature. As the
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temperature increase, the points on the consistency diagram get
closer to the diagonal line, i.e., the model prediction gets close to the
experimental results, and thus the corresponding AAD gradually
decreases. This indicates that the prediction of COSMO-RS is more
accurate at relatively high temperatures. The same trend was
observed for [MDEA][Cl] (Figures 1C, D). Additionally, when
the temperature remains constant (e.g., T = 303.4 K), as the
pressure increases, both the experimentally measured and
theoretically predicted solubilities of N2 in [HMIM][eFAP] show
the same increasing trend and the accuracy of COSMO-RS is
gradually decreasing (Supplementary Figure S5). The results of
this study demonstrate that, within a certain temperature and
pressure range, COSMO-RS can accurately capture the effects of
input variables (T, P) on the solubility of N2 in different cation and
anion combinations.

Furthermore, the results of the COSMO-RS model developed in
this study were compared with other predictive models reported in
the literature. For example, Kamgar and Rahimpour (2016) used
UNIQUAC and quantum models to predict the solubility of CO2 in
seven ILs. The study found that UNIQUAC showed good prediction
ability for the ILs studied, the ARD in most cases lower than 5%, and
the maximum ARD is 9.17%. The predictions of the UNIQUAC
model in the literature perform better. Additionally, the COSMO-RS

model was also used to predict the CO2 solubility for the same
system, showing an ARD ranging from 6.1% to 62.4%, especially,
when the pressure increases, the error becomes larger. Recently,
Chen and co-workers used a hierarchical extension strategy to
develop a UNIFAC-IL-Gas model for gas solubility prediction.
The results showed that for 13 types of gases, including CO2 and
N2, its prediction performance exceeded the COSMO-RS model
(Chen et al., 2020c). The above results further confirm that
compared to models that require parameters obtained from the
fitting of experimental data, the COSMO-RS model without
requirements of any experimental information predicts results
qualitatively.

3.4 COSMO-RS correction

As mentioned before, many studies have demonstrated that
higher accuracy can be achieved by performing linear regression on
the predicted values obtained by COSMO-RS. These corrected
models typically use the experimental values as the target
variables. However, in this work, it is evidenced that there is no
simple linear relationship between T, P, xCOSMO−RS and xExp

(Supplementary Figures S6, S7), a polynomial expression

FIGURE 1
Comparison of experimental and COSMO-RS predicted solubility for (A)CO2 and (B)N2 in various ILs, (C)Comparison of experimentally determined
and COSMO-RS predicted N2 solubility in [HMIM][eFAP] and [MDEA][Cl], (D) AAD of COSMO-RS model predictions at different temperatures.
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(Equation 6) combined with different regression strategies were used
to further improve the prediction of COSMO-RS:

Δx � f T, P( ) (6)

For CO2, the relative deviation (Δx1 � xExp−xCOSMO−RS
xExp

) was used
(Equation 7):

Δx1 � k1T + k2P + k3T
2 + k4TP + k5P

2 (7)
For N2, the absolute deviation (Δx2 � xExp − xCOSMO−RS) was

used (Equation 8):

Δx2 � k1T + k2P + k3T
2 + k4TP + k5P

2 (8)

Here, k1-k5 are the adjustable parameters.
Based on the collected data point, the adjustable parameters

were obtained, as listed in Supplementary Table S8. Figure 2 shows
the comparison between the experimental gas solubilities and
those predicted by the two models. It can be evident from
Figure 2A that the CO2 solubility predictions from the modified
model align more closely with the experimental values than those
from the original COSMO-RS model. After the model
modification, its AARD was decreased to 11.9% with a R2 of
0.970. For comparison, the AARD for the original COSMO-RS
is 43.4%. For N2, the modified model shows only a very slight
decrease in AAD, and there is no noticeable improvement in R2

compared with that before the modification. These results
demonstrate that the corrected model improves the accuracy of
the COSMO-RS model for predicting CO2 solubility. However,
such a correction does not work for the solubility of N2 in ILs. The
reasons for the above phenomenon are summarized as follows: 1)
The CO2 dataset and the N2 dataset may have different quality
levels. The data in the CO2 dataset is more accurate and complete
and thus can be corrected for better accuracy. 2) The model
assumptions themselves and the selection of features are less
applicable to the N2 dataset than to the CO2 dataset. 3) The
insufficient number of samples in the N2 dataset prevents the
model from effectively learning the relationship between the initial
predicted value and the experimental value.

3.5 Hybrid models

The COSMO-RS model can be used for qualitative prediction,
which is sufficient for IL screening. The correction with a
polynomial expression on COSMO-RS can improve the
prediction capability in the solubility for certain gases (CO2, etc.)
but not for all (e.g., N2). In this section, an alternative option was
used to develop a hybrid model, where XGBoost-GC was coupled
with COSMO-RS to achieve reliable predictions of CO2 and N2

solubility in ILs.

3.5.1 CO2 solubility
The comparison between experimentally determined and

XGBoost-GC model-predicted CO2 solubility for both the
training and test sets is depicted in Figure 3A, with the detailed
data listed in Supplementary Table S9. Unlike the corrected
COSMO-RS model (as seen in Figure 2A), the XGBoost-GC
model demonstrates a significantly better alignment with the
diagonal, indicating an improved prediction accuracy. The AARD
for the entire dataset is as low as 0.94%, with a R2 of 0.9996. In
comparison, the XGBoost-GC-D model, which directly uses
experimental values as target variables, also shows good
prediction capabilities, achieving an AARD of 3.74% and an R2

of 0.9985. This performance may be due to the meticulous division
of IL groups and the optimization of the model Hyperparameter.

For a thorough evaluation of the model predictions, the
discrepancies between experimental and model-predicted CO2

solubilities are plotted against the experimental values (refer to
the inset in Figure 3A). The error distribution is also displayed in
Figure 3B. It is clear that the majority of the errors are closely
clustered around zero, signifying a high degree of accuracy for the
XGBoost-GCmodel, with only a small fraction of errors exceeding ±
0.03. These larger errors tend to occur when the solubility of CO2

exceeds 0.3, with the maximum absolute error being
approximately −0.034. On the other hand, the error distribution
for the XGBoost-GC-D model (Figure 3D) exhibits a more
disordered pattern, with errors distributed across a wider range,
and the maximum error is −0.049. This suggests that the XGBoost-

FIGURE 2
Comparison of experimental and model-predicted solubility of (A) CO2 and (B) N2 in various ILs.
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GC-D model is less accurate compared to XGBoost-GC. Therefore,
it can be concluded that the XGBoost-GC model provides more
accurate predictions, making it the more reliable hybrid model for
predicting CO2 solubility.

We further compared the performance of the established model
with those reported in the literature. The detailed statistical results
are shown in Table 1. To predict the CO2 solubility, regardless of
whether the input features are group information or other

FIGURE 3
Comparison of experimental CO2 solubility in ILs with predictions from (A) the XGBoost-GC and (C) the XGBoost-GC-D models, (The inset shows
the prediction errors for CO2 solubility by the XGBoost-GC model and XGBoost-GC-D model). Distribution of prediction errors for CO2 solubility as
predicted by (B) the XGBoost-GC model and (D) the XGBoost-GC-D model.

TABLE 1 Comparison of the models established in this work and reported in the literature for CO2 solubility prediction.

Model Total data points R2 AARD AAD (MAE) References

XGBoost-GC 3,036 0.9996 0.94% 0.00146 This work

XGBoost-GC-D 3,036 0.9985 3.74% 0.00333 This work

ANN-GCa 10,116 0.9836 - 0.0202 Song et al. (2020)

SVM-GCa 10,116 0.9783 - 0.0240 Song et al. (2020)

IFC-SVMa 13,055 0.9763 - 0.0192 Tian et al. (2023)

IFC-ANNa 13,055 0.9711 - 0.0261 Tian et al. (2023)

SE-MLP 9,224 0.9873 - 0.0169 Liu et al. (2023)

ANN 2,930 0.9947 3.58% - Sedghamiz et al. (2015)

arepresents the data from the test set.
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descriptors, the hybrid model XGBoost-GC achieved higher
prediction accuracy with less data, reflecting the superior
performance of the XGBoost-GC model.

3.5.2 N2 solubility
The experimentally determined and ML model-predicted N2

solubility for the both training and test sets are illustrated in Figures
4A, C, detailed data are provided in Supplementary Table S10. It can be
clearly observed from Figure 4A that themajority of data points, for both
the training and test sets, are closely aligned along the y = x line, indicting
high accuracy in the predictions of the XGBoost-GC model. The model
achieved an R2 of 0.9981 and an AAD of 0.15% across the entire dataset,
demonstrating significant improvement in the predictions of the hybrid
model over the original COSMO-RSmodel. Similarly, the XGBoost-GC-
D model also exhibits good predictive performance, though slightly less
accurate than the XGBoost-GC model. As shown in Figures 4A, B, the
majority of the errors for the XGBoost-GC model fall within the range
of ± 0.02, with the maximum absolute error being around −0.062. In
contrast, Figure 4D illustrates that most of the errors for the XGBoost-
GC-D model are close to zero, although a few errors exceed ± 0.03, with
the maximum reaching approximately 0.036. This discrepancy could
potentially be due to the limited amount of available data, highlighting

the importance of conducting more experimental measurements to
improve the robustness of the model.

Table 2 summarizes a comparison of different models, mainly
including IFC-SVM, IFC-ANN, RF-IFC and GBR-IFC. The table
shows that when the amount of data and the number of ILs are both
similar, the R2 and AAD of the XGBoost-GC model are better than
those of the SVM-IFC, ANN-GC, and RF-IFC models proposed by
Tian et al., but not as good as the GBR-IFC model. This may be
attributed to the fact that they introduced COSMO-derived
descriptors as input variables, which contain more molecular
information such as electronic distribution, molecular size, etc.,
making the input parameter information more comprehensive
and thus achieving higher prediction accuracy.

3.6 Challenges and prospects

Machine learning has demonstrated significant potential in
predicting various properties of ILs, particularly in fields such as
green chemistry and electrochemical processes. ILs possess a variety
of tunable properties, which are often time-consuming and costly to
determine experimentally. MLmodels, trained on experimental data or

FIGURE 4
Comparison of experimental N2 solubility in ILs with predictions from (A) the XGBoost-GC and (C) the XGBoost-GC-Dmodels, (The inset shows the
prediction errors for N2 solubility by the XGBoost-GCmodel and XGBoost-GC-Dmodel). Distribution of prediction errors for N2 solubility as predicted by
(B) the XGBoost-GC model and (D) the XGBoost-GC-D model.
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theoretical predictions, offer a rapid and efficient means of predicting
key properties such as viscosity, density, conductivity, and solubility.
However, the performance of ML models is highly dependent on the
quality and comprehensiveness of the datasets used for training, and
thus the availability of high-quality data remains a critical challenge.

In addition, various thermodynamic models have shown high
prediction accuracy for IL-containing systems due to their solid
thermodynamic foundations. Effectively combining ML algorithms
with these models to improve prediction accuracy without relying on
large amounts of experimental data is crucial yet highly challenging.

The accuracy of ML models is highly depended on the selection of
meaningful features, such as temperature, pressure, and structural
information. The selection of features that better represent the
geometric and electronic structures of ILs, along with the application
of data-cleaning techniques, can further improve prediction accuracy.
Additionally, future advancements may involve the implementation of
more sophisticated algorithms, such as deep neural networks, which
have the potential to capture complex, non-linear relationships between
the structures of ILs and their corresponding properties.

4 Conclusion

Ionic liquids (ILs) are an emerging category of chemicals that have
shown promise as electrolytes or co-catalysts for CO2 and N2

electrocatalytic conversion. The combination of cations and anions
makes it highly designable but also presents a significant challenge in
screening out suitable ILs for specific tasks. In this work, we developed
different strategies based on the COSMO-RSmodel to accurately predict
the CO2 and N2 solubility, thus aiding in the screening of the optimal ILs
for the electrocatalytic conversion of CO2 and N2. We first established a
database containing 3,036 solubility data for CO2 and 457 solubility data
for N2 in ILs at various temperatures and pressures. The COSMO-RS
model was employed to predict the solubility of CO2 andN2. The AARD
between the experimental and COSMO-RS predicted solubilities of the
CO2was relatively high, i.e., 43.4%and theR2 for theCO2 andN2 datasets
are 0.599 and 0.242, respectively. Polynomial regression was employed to
correct the COSMO-RS predicted solubilities, resulting in a significant
decrease in AARD for CO2 and a slight decrease in AAD for N2. Further
performance improvements were achieved through a hybrid model that
combined COSMO-RS with machine learning and group information
methods. The developed hybrid model demonstrated better prediction
performance, with high R2 and low AARD for the CO2 dataset and low
AAD for the N2 dataset.
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