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Introduction: The oxygen reduction reaction (ORR) is a crucial determinant of
the energy transformation capacity of fuel cells. This study investigates the
performance of N and B dual-doped carbon in ORR.

Methods: Six models using density functional theory (DFT) are developed to
compare the performance of different doping strategies. A highly efficient dual-
doped carbon ORR catalyst (S-850-1) is synthesized from Saccharina japonica,
containing 4.54 at% N and 1.05 at% B atom.

Results: Electrochemical analysis reveals that S-850-1 significantly outperforms
the nitrogen mono-doped carbon S-850, exhibiting a higher half-wave potential
of 0.861 V and a greater limited current density of −5.60mA cm⁻2, compared to S-
850’s 0.838 V and −5.24 mA cm⁻2. Furthermore, S-850-1 surpasses the
performance of 20% Pt/C, demonstrating enhanced durability and exceptional
resistance to CO and methanol. The 1.40 V open circuit voltage produced by S-
850-1 when integrated into a Zn-air battery can power an LED light.

Discussion: Both theoretical and practical evaluations validate the excellent ORR
performance of nitrogen and boron dual-doped carbon, as evidenced by the
agreement between the electrochemical results and DFT calculations. This work
not only extends the range of ORR catalysts derived from biomass but also
provides guidance on creating and producing affordable, effective catalysts that
utilize natural resources.
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1 Introduction

Fuel cells (FCs) are particularly important due to their potential for integration into the
hydrogen cycle (Hren et al., 2021; Mao et al., 2022). FCs are an innovative technology that
efficiently and quietly converts chemical energy into electricity, offering significant
ecological benefits. Their vast potential spans applications in small electronic devices,
civil aviation, and aerospace equipment (Xiao et al., 2021). The oxygen reduction process is
the main element influencing FCs’ energy conversion efficiency (ORR). Platinum (Pt), a
noble metal, is considered the best catalyst for ORR (Su et al., 2021). The performance of the
ORR catalyst is crucial for the efficiency of FCs (Arif et al., 2024). However, the limited
durability, high-cost, and vulnerability to CO and methanol poisoning of Pt, along with its
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restricted global supply, hinder its economic feasibility (Liu et al.,
2024). As a result, many researchers are investigating substitute
catalysts, including low precious metal alloy catalysts, heteroatom-
doped carbon catalysts, and transition metal-based catalysts
(Bhoyate et al., 2023). Heteroatom doping carbon ORR catalysts
have attracted a lot of attention because of their improved activity,
extended stability, and outstanding resistance to methanol and CO
(Gu et al., 2018).

Common heteroatoms used include boron (B), sulfur (S),
phosphorus (P), and nitrogen (N) (Choi et al., 2013; Ferrero et al.,
2016; Choi et al., 2012; Yang et al., 2012; Zhao et al., 2017; Cai et al.,
2019). These heteroatoms may alter the electron distribution in
nearby carbon atoms, improving oxygen molecule adsorption,
reduction, and desorption, due to their different electronegativities
from carbon (Zheng et al., 2012; Higgins et al., 2014). In contrast,
biomass-derived carbon catalysts doped with heteroatoms offer
several inherent advantages, including an abundant supply of
natural heteroatoms, lower synthesis costs, and environmental
sustainability (Borghei et al., 2018; Wang et al., 2020). Research
indicates that carbon materials from biomass sources such as water
hyacinth, soybean, okara, bamboo fungus, and grape skin are often
mono-nitrogen doped (Liu et al., 2015; Guo et al., 2015; Gao et al.,
2014a; Gao et al., 2014b; Chen et al., 2014; Alatalo et al., 2016; Zhao
et al., 2018; Zhang et al., 2023a; Huang et al., 2020). Few studies have
investigated carbon derived from biomass with dual heteroatom
doping, with most research focusing on N and S dual doping in
materials such as feathers, seaweed, chrysanthemum, and honeysuckle
(Liu et al., 2014; Xu et al., 2017; Gao et al., 2015a; Gao et al., 2015b).
Compared to single heteroatom doping, introducing multiple types of
heteroatoms can further increase the asymmetry of carbon atoms’
spin and charge density, potentially enhancing ORR performance
(Huang et al., 2020). Additionally, external boron doping in N-doping
carbon has been demonstrated to further improve ORR performance
(Wei et al., 2021). For instance, the current density and half-wave
potential of B doping N doped carbon have been reported to increase
from −0.23 to −0.21 V and from −5.26 to −5.64 mA cm−2, respectively
(Huang et al., 2017; Zeng et al., 2020). Few studies have focused on
biomass-derived dual heteroatom-doped carbon catalysts, with most

previous research emphasizing the synthesis of N and B dual-doping
carbon using chemical precursors (Lee et al., 2016; Li et al., 2022).
Developing a dual-doped carbon ORR catalyst from biomass could
present a strong candidate for commercial applications, offering
distinct advantages: high ORR activity, cheap, sustainability, and
environmental friendliness.

The brown algae saccharina japonica (phylum phaeophyta) is
rich in protein, with content ranging from 6.8% to 10.3%, and serves
as both a food source and a valuable source of heteroatoms (Xu et al.,
2014; Su et al., 2022). Proteins, which are predominantly composed
of nitrogen-rich amino acids, are the primary contributors of
nitrogen. Boron is sourced from NaBH₄. This study examines the
efficiency of N and B dual-doping carbon using DFT calculations.
Saccharina japonica is rich in N element, and NaBH₄ serves as a
source of both B and N atoms. Through high-temperature pyrolysis,
dual-doped carbon materials containing N (4.54 at%) and B (1.05 at
%) are produced. S-850-1, the synthesized sample, has a better
limited current density (−5.60 mA cm2) and half-wave potential
(0.861 V) than N-doping carbon (S-850: 0.838 V
and −5.24 mA cm2). S-850-1 shows promise as ORR catalyst in
FCs, considering the abundance of saccharina japonica worldwide
and the rarity of N, B dual-doping carbon generated from biomass.

2 Experimental

2.1 Materials

Saccharina japonica is cleaned with water, and then baked to
dryness. After being dried and powdered into a fine powder (5 g),
10 g ZnCl2 and 500 mL water are combined, and the above mixture
are constantly agitated for 48 h. Above mixture is baked in an oven
(80°C) until a fully dry colloid form. This colloid undergoes pyrolysis
into a quartz at 850°C for 2 h. Above carbon material is combined
with NaBH4 at a 1:1 mass ratio. The heated material is washed
repeatedly with 2MHCl solution and water until it reaches a neutral
pH. The final product is labeled S-850-1. The sample, prepared using
the same method as described above without the addition of ZnCl2,

SCHEME 1
The synthesis process of N and B dual-doping carbon ORR catalyst derived from saccharina japonica.
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is designated as SN-850-1. The pyrolysis temperature of the samples
is increased from 850°C to 1,000°C, with holding times of 2 and 3 h,
respectively, denoted as S-1000-2 and S-1000-3. S-1000-2 is mixed
with NaBH₄ in a 1:1 ratio, with the pyrolysis temperature set at
850°C and held for 2 h, resulting in the sample being named S-850-B.

2.2 DFT calculations

The population analysis, electron density difference, and
adsorption free energy of O*, OH*, and OOH* (descriptors) are
calculated using VASP software. The exchange-correlation
functional is set to GGA-PBE. The energy cutoff for the plane-
wave basis set is 500 eV, and the projector augmented wave method
is used for pseudopotentials. A solvation model is applied using
implicit solvation, and the dielectric constant for water (H₂O) is set
to 78.5. The slab model is based on a graphene structure with a (4 ×
4 × 3) supercell, with the bottom two layers of the slab fixed during
relaxation. A vacuum layer of 20.0 Å is included, and the cleave
plane is oriented along the (002) direction.

2.3 Characterization

D/MAX-Ultima + diffractometer with Co. Kα radiation is used for
XRD. Using a WBL-810 apparatus, N2 adsorption-desorption tests are
carried out at 77 K. The microstructural morphology of the produced
samples is examined with a Supra-55 sapphire fitted FE-SEM.

2.4 Electrochemical measurements

The electrochemical studies are done using a Corrtest
CS310 M electrochemical station. Following a combination of
10 mg sample, 5 mL isopropanol, and 20 µL 5% Nafion, the
mixture underwent a 20 min ultrasonography treatment.
Experiments using LSV (linear sweep voltammetry) and CV
(cyclic voltammetry) are conducted at scan speeds of 10 and
20 mV s−1, respectively. At rotating speeds from 400 to
2,500 rpm, LSV curves are recorded in alkaline electrolyte.

To get the transferred electron number (N), the Koutechy-
Levich (K-L) curve’s slope is calculated using Equations 1, 2.

FIGURE 1
(A) Graphene, (B) graphitic-N doped carbon, (C) pyridinic-N doped carbon, (D) B doped carbon, (E) graphitic-N, B dual doped carbon, and (F)
pyridinic-N, B dual doped carbon’s charge distribution images.
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The current density measured during the electrochemical
experiments is denoted as J, while Jk represents the kinetic current
density and JL corresponds to the limited current density. n is the
representation of the transmitted electron number. B represents the
Levich slope, and the electrode rotating rate is indicated by ω. The
Faraday constant, denoted as F. The diffusion coefficient of O2 is
represented asD, and the bulk concentration of O2 is denoted as C. v is
the kinetic viscosity representation.

3 Results and discussions

3.1 Model design

This study uses DFT calculations to confirm that the ORR
activity of the N, B dual-doping carbon model is higher than that

of the N or B mono-doping carbon models. Saccharina japonica and
NaBH4 are employed as sources of N and B, respectively. High-
temperature pyrolysis and washing with 2 M HCl solution are then
applied to produce carbon materials doped with N (4.54 at%) and B
(1.05 at%) as shown in Scheme 1.

Reports commonly identify graphitic and pyridinic nitrogen as
the most effective active sites for ORR (Guo et al., 2020; Liang and
Yuan, 2024). Figures 1, 2 depict reaction energy barriers and the
charge distribution for models of graphene, pyridinic-N, graphitic-
N, and B-doping carbon. The O*, OH*, and OOH* species exhibit
favorable adsorption and desorption energies, as shown by their
adsorption at the reaction sites marked by red circles in these
models. The graphene model demonstrates a homogeneous
charge distribution, as seen in Figures 1A, 2A, leading to a
substantial energy barrier for the reaction (1.21 eV in step 2) and
limited adsorption capacity. As shown in Figure 1B, graphitic-N
(N13) is bonded to three carbon atoms (C12, C14, C23), forming three
C-N bonds. The electronegativity of N atom (3.04) is higher than
that of C atom (2.55), causing the N atom to attract the valence
electrons of the C atoms. As a result, N atom accumulates electrons,

FIGURE 2
Energy step images of (A) graphene, (B) graphitic-N doped carbon, (C) pyridinic-N doped carbon, (D) B doped carbon, (E) graphitic-N, B dual doped
carbon, and (F) pyridinic-N, B dual doped carbon.
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gaining a charge of −0.64 e, while the three surrounding C atoms
(C12, C14, C23) lose valence electrons, each acquiring a charge of
+0.21 e. The reaction energy barrier of the graphitic-N doped carbon
model is reduced to 0.70 eV in step 2 (Figure 2B), attributed to the
uneven distribution of the electron cloud.

In Figure 1C, the pyridinic-N atom forms C-N bonds with two
carbon atoms (C12 and C14). Due to the presence of a lone pair of
electrons, pyridinic-N exhibits a weaker electron-attracting ability
compared to graphitic-N. Consequently, C12 and C14 carry a charge
of +0.17 e, while C23 exhibits a charge of +0.06 e. Due to the uneven
electron cloud distribution, the reaction energy barrier of pyridinic-
N doped carbon is reduced to 0.80 eV (step 1) in Figure 2C.

Electronegativity of B atom (2.04) is lower than that of C atom,
causing its electrons to be attracted by the surrounding C atoms
(C13, C22, and C24). B atom carries a charge of +0.184 e, while the
neighboring C atoms (C13, C22, and C24) carry a charge of −0.059 e in
Figure 1D. The reaction energy barrier of B-doped carbon is further
reduced to 0.60 eV (step 2) in Figure 2D. In Figure 1E, the dual
doped graphitic-N and B atoms further disrupts the electron cloud
distribution. The electron density of graphitic-N atom increases
to −0.65 e, while the electron density of B atom decreases to +0.15 e.
The surrounding carbon atoms, C12 and C14, carry a charge of
+0.20 e, C23 carries +0.18 e, while C25 and C34 carry −0.04 e. These
changes in electron distribution are attributed to the coupling effect
between the graphitic-N and B atoms. In Figure 2E, the reaction
energy barrier of graphitic-N and B doped carbon is further reduced
to 0.53 eV in step 2. Similarly, pyridinic-N and B dual doping also
further disrupts the electron distribution in the carbon structure.
The electron density of pyridinic-N atom increases to −0.64 e, while
the electron density of B atom decreases to +0.15 e. The surrounding

carbon atoms, C12 and C14, carry a charge of +0.17 e, C23 carries
+0.03 e, while C25 and C34 carry −0.04 e. In Figure 2F, the reaction
energy barrier of graphitic-N and B doped carbon is further reduced
to 0.51 eV in step 2. According to the DFT calculation results, the
graphitic-N, pyridinic-N and B dual-doped carbon structure further
disrupts the electron cloud distribution, adjusts the adsorption
energies of intermediate species O*, OH*, and OOH*, thereby
lowering the energy barrier for the ORR, which is beneficial for
enhancing ORR catalytic performance.

3.2 Physical characterization

DFT findings suggest that N, B dual-doping carbon may exhibit
exceptional ORR performance. N, B dual-doping carbon ORR
catalysts are synthesized from saccharina japonica.

SEM pictures provide visual information on the shape and
structure of the as-synthesized samples. In Figure 3A, S-850-
1 exhibits a porous surface morphology, with interconnected
carbon particles forming the surface porosity. The porous
morphology enhances the exposure of active sites and improves
O2 molecule transport. As shown in Figure 3B, SN-850-
1 demonstrates a large, solid bulk structure at the micrometer
scale, with a non-porous surface. SEM analysis indicates that the
porous structure of the sample is attributed to the influence of ZnCl2
activator. N₂ adsorption-desorption study assesses the surface area
and distribution of pore sizes. In Figure 3C, mesopores are evident,
with both S-850 and S-850-1 exhibiting type-IV isotherms and a
distinct hysteresis loop in the medium and high-pressure regions
(Wang et al., 2011). However, SN-850-1 exhibits a type II isotherm,

FIGURE 3
(A, B) SEM images of S-850-1 and SN-850-1, (C, D) N2 adsorption-desorption isotherms and pore size of the as-synthesized samples.
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indicating a non-porous structure (Li et al., 2019). After doping with
B, S-850-1 shows a modest increase in specific surface area from
1,108 to 1,173 m2 g⁻1, which is likely attributable to the B atomic
incorporation. SN-850-1 exhibits a comparatively low specific
surface area of 89 m2 g⁻1. Non-local density functional theory,
the distribution of pore size shown in Figure 3D is
predominantly in the 15–50 nm range, indicating the presence of
mesopores. SN-850-1 is characterized by a non-porous structure.
Based on the above physical characteristics, ZnCl2 activator is
identified as a key factor in the development of the porous
structure of biomass-derived carbon-based ORR catalyst,
potentially impacting ORR performance.

XPS measurements can be used to analyze the types and quantities
of doping N and B atoms. Figure 4A reveals the presence of doped N
atoms through peaks at approximately 187 eV (B), 284 eV (C), 532 eV
(O), and 400 eV (N) for the as-synthesized samples (Lee et al., 2016). S-
850 contains only doped C, O, and N atoms, whereas S-850-1 exhibits
significant B doping, confirming the incorporation of B atoms into the
N-doped carbon matrix. S-850-1 shows a higher O content than N and
B. The pyrolysis temperature of the samples is increased to 1,000°C and
maintained for 2 h to ensure the complete volatilization of doped N
atom. S-1000-2 is mixed with NaBH₄ in a 1:1 ratio, with the pyrolysis
temperature set at 850°C and held for 2 h, resulting in the sample being
named S-850-B.

FIGURE 4
(A) Full-scan XPS, (B) Total N and B content, (C, D) High-resolution N and B atoms of S-850-1, (E) XRD pattern, (F) Raman spectrum.
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Pyrolysis at 1,000°C, with hold times of 2 and 3 h (noted as S-
1000-2 and S-1000-3), is conducted to fully volatilize N and B,
aiming to investigate the effect of doped O atom on ORR
performance. In the S-1000-2 and S-1000-3 samples, N and B are
indeed absent, with only O remaining, which is attributed to the

volatilization of N and B at high temperatures. The O contents of S-
1000-2 and S-1000-3 are 5.34 at% and 3.21 at%, respectively.
Subsequent electrochemical performance tests will be conducted
to analyze the effect of doped O atom on ORR performance. N
(1.45 at%) and B (0.23 at%) contents in SN-850-1 are lower than

FIGURE 5
(A, B) CV, LSV curves of the as-synthesized samples, (C) RDE curves, (D) K-L plots of S-850-1.

TABLE 1 Electrochemical characterizations of the as-synthesized samples and previously reported N, B-doped carbon catalysts.

Samples Peak
potential (V)

Onset
potential (V)

Half-wave
potential (V)

Limited current density @0.5V (mA
cm-2)

S-850 0.881 0.912 0.838 −5.24

S-850-1 0.895 0.962 0.861 −5.60

20% Pt/C 0.899 1.050 0.862 −5.60

S-850-B 0.805 0.976 0.785 −5.04

SN-850-1 0.795 0.935 0.768 −4.10

S-1000-2 0.682 0.890 0.640 −3.76

S-1000-3 0.682 0.890 0.641 −3.78

BN-GNRs (Tu et al., 2022) 0.870 0.954 0.852 −4.00

B-NHMC (Al-Enizi, 2022) 0.881 0.975 0.835 −4.20

BNC-600 (Zhou et al.,
2021)

0.759 0.930 0.790 −5.10

Frontiers in Chemistry frontiersin.org07

Zhang et al. 10.3389/fchem.2024.1478560

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2024.1478560


those in S-850-1 (N: 4.54 at% and B: 1.05 at%), indicating that the
porous structure facilitates the exposure of more heteroatoms.
Figure 4B shows doping N and B atomic content of the as-
synthesized samples. The high-resolution N1s spectra of S-850-
1 reveal peaks corresponding to graphitic-N (401 eV), pyridinic-
N (398 eV), pyrrolic-N (399 eV), and oxidized-N (402 eV) (Zhang
et al., 2023b; Huang et al., 2019). The doped B atoms are represented
by peaks at 187 eV (B₄C) and 189 eV (BC₃) in Figures 4C, D.
According to the XPS results, saccharina japonica may serve as a
precursor for the synthesis of N mono-doping carbon materials.
Additionally, combining saccharina japonica with NaBH₄ enables
the effective production of N and B dual-doping carbon, which may
show promising activity for ORR.

XRD patterns of S-850-1 and S-850 exhibit two distinct peaks at
2θ = 30.7° and 49.4°, which match to the (002) and (100)
crystallographic planes of a standard hexagonal carbon structure
(JCPDS card no. 41–1,487) in Figure 4E (Yu et al., 2014). The
diffraction peaks of the (002) plane in S-850 and S-850-1 show a
slight negative shift relative to the standard peak, indicating that the
diffraction is performed by ions (N, and B) of different radius or the
defects formed due to incorporation of N or B. Both S-850 and S-
850-1 display D and G bands in Raman spectra (Figure 4F). The
extent of disorder in the carbonmaterial is reflected in the ID/IG ratio
of these bands (Kim et al., 2011). For S-850-1, the ID/IG ratio is 1.23,
showing a slight increase compared to the N mono-doped S-850,

which has an ID/IG ratio of 1.22. This increases likely results from the
enhanced defect density due to B doping.

3.3 Electrochemical characterization

This work assessed the ORR performance of the as-synthesized
samples and 20% Pt/C using CV and LSV tests in 0.1 M KOH
electrolyte, with recorded potentials plotted against the RHE scale.
Figure 5A shows clear reduction peaks for the above samples,
demonstrating their ORR activity in an alkaline electrolyte.
Compared to S-850 (0.881 V) and S-850-B (0.805 V), S-850-
1 exhibits a higher peak potential (0.895 V), closely matching
that of 20% Pt/C (0.899 V). The results show that the N, B dual-
doped carbon catalyst has significantly higher ORR performance
than the N or B mono doped carbon catalyst, even approaching that
of 20% Pt/C. The peak potentials of the N and Bmono doped carbon
catalysts (S-850 and S-850-B) are higher than those of the N, B dual-
doped SN-850-1 (0.795 V) with low surface area and non-porous
structure, indicating a direct relationship between surface area,
porosity, and ORR performance.

Among the carbon catalysts with different doped O contents, S-
1000-2 (O: 5.34 at%) and S-1000-3 (O: 3.21 at%) without N and B
doping exhibit similar peak potentials of 0.682 V, which are lower
than those of the N- and B-doped carbon catalysts, indicating that O

FIGURE 6
(A) LSV curves pre- and post-5000CV cycles, (B)Chronoamperometricmeasurements, (C)Chronoamperometricmeasurements are obtained, with
the inflection point indicating the introduction of CO, (D) CV curves in solution and in the presence of methanol.
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doping has a minimal effect on ORR performance. Furthermore, the
peak potential of the most effective S-850-1 exceeds that of
previously reported N and B dual-doped carbon catalysts (BN-
GNRs: 0.870 V (Tu et al., 2022), B-NHMC: 0.881 V (Al-Enizi, 2022),
BNC-600: 0.759 V (Zhou et al., 2021)), which can be attributed to its
lower N and B content, as well as its smaller surface area and pore
structure. The LSV curves, shown in Figure 5B, demonstrate that the
performance of S-850-1 is like that of 20% Pt/C. Specifically, S-850-
1 shows improvements of 23 mV and 0.36 mA cm⁻2 in half-wave
potential and limited current density (0.861 V and −5.60 mA cm−2),
respectively, compared to S-850 (0.838 V and −5.24 mA cm−2). The
half-wave potential and limited current density of S-850-1 are nearly
identical to those of 20% Pt/C. While S-850-1 starts with an initial
potential of 0.962 V, it shifts negatively by 83 mV compared to the
1.050 V of 20% Pt/C. The trends observed in the onset potential,
half-wave potential, and limited diffusion current density of the
other samples are consistent with the above CV results. The detailed
electrochemical data are listed in Table 1.

Based on the preceding physical and electrochemical test results,
the N, B dual-doped carbon structure demonstrates a notable
enhancement in ORR performance, surpassing that of the mono
N and B doped carbon structures. Furthermore, the ORR activity of
the N, B dual-doped carbon catalyst S-850-1 exceeds that of
previously reported N, B dual-doped materials in the literature,
suggesting that S-850-1 holds substantial potential for
commercialization as an ORR catalyst. The LSV curves (rotation
rates: 400–2,500 rpm), shown in Figure 5C, demonstrate that higher
rotation rates increase the limiting diffusion current density, reduce

diffusion distance, and enhance oxygen transport (Tan et al., 2012).
K-L plots within the 0.3–0.7 V potential range reveal strong linearity
for S-850-1, suggesting first-order reaction kinetics for oxygen
reduction (Xu et al., 2017). Moreover, S-850-1 has an electron
transfer number (n) of 3.85, indicating a predominant 4-
electron ORR way.

The longevity of catalysts is a key challenge for fuel cell
commercialization (Wu et al., 2011). After 5,000 CV cycles, S-
850-1 shows a negative shift of 26 mV in half-wave potential
(@1,600 rpm) and a decrease of −0.52 mA cm⁻2 in limiting
diffusion current density from its initial values. In comparison,
commercial 20% Pt/C experiences a more significant decline, with
shifts of 161 mV and −1.64 mA cm⁻2, respectively (Figure 6A). The
outstanding stability of S-850-1 may be ascribed to the robust
covalent C-N bonds and the lack of complications such as Pt
nanoparticle aggregation and dissolution (Zhong et al., 2013).
Additionally, under chronoamperometric testing at 0.5 V for
18,000 s, the current density of 20% Pt/C drops to 0.8 mA cm⁻2,
while S-850-1 maintains a current density of approximately
1.1 mA cm⁻2 (Figure 6B). CO gas poses a significant challenge
for fuel cells by increasing the risk of ORR catalyst poisoning.
Figure 6C illustrates the catalysts’ tolerance to CO. Upon CO
introduction at 4,000 s, 20% Pt/C’s current density decreases to
about 56%, indicating a higher susceptibility to CO poisoning
compared to S-850-1, which retains about 79% of its current
density. In direct methanol fuel cells, methanol may migrate
from the anode to the cathode, where it can potentially poison
the ORR catalyst (Gao et al., 2015c). Therefore, methanol tolerance

FIGURE 7
(A) S-850-1 and Zn plate, (B) Open circuit voltage, (C) Current density of Zn-air battery.
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is crucial for optimal catalyst performance. As shown in Figure 6D,
S-850-1 demonstrates high selectivity for oxygen and shows no
significant activity loss upon the addition of 10 mL methanol,
indicating effective resistance to methanol crossover. In contrast,
the ORR performance of 20% Pt/C is adversely affected bymethanol,
as it is more prone to methanol oxidation reactions (MOR). These
results highlight that S-850-1 surpasses 20% Pt/C in terms of
stability and resistance to methanol and CO poisoning.

This study constructs a Zn-air battery to further investigate the
performance of S-850-1. The Zn-air battery features a 4.5 cm2

operating surface, with a 6 M KOH solution circulating at 20 mL
per minute as the electrolyte. The oxide layer is removed by sanding
the zinc plate (length: about 8.5 cm, width: about 3 cm), as shown in
Figure 7A. S-850-1 coated on stainless steel mesh (approximate
length: 7.5 cm, approximate width: 3 cm). The Zn-air battery’s open
circuit voltage and current density in Figure 7B, c are 1.40 V and
0.72 A, respectively, which illuminates the LED light. The findings
suggest that S-850-1 may be used as an ORR catalyst for Zn-
air batteries.

Future research directions will focus on exploring novel biomass
that is inherently rich in various heteroatoms, enabling the
formation of self-doped carbon-based ORR catalysts with high
heteroatom content. This approach will avoid the use of external
doping chemicals and reduce preparation costs. In the process of
scaling up the industrial production of biomass-derived carbon-
based ORR catalysts, challenges may arise due to variations in the
heteroatom content caused by differences in the origin and seasonal
changes of biomass materials across different batches. Additionally,
it is crucial to develop scalable and cost-effective processes, such as
ball milling, to produce heteroatom-doped carbon-based
electrocatalysts. These processes should ensure the catalysts
possess optimal structural and surface chemical properties to
meet the demands of industrial applications (Sekhon et al., 2022;
Koolen et al., 2023).

4 Conclusion

The study successfully develops an efficient N, B dual-doped
carbon ORR catalyst (S-850-1) using Saccharina japonica, DFT
calculations, NaBH₄ doping, and pyrolysis methods. Initially, six
theoretical models demonstrate that N and B dual-doping carbon
offers superior ORR performance compared to N and B mono-
doped carbon. Saccharina japonica and NaBH₄ serve as the
precursor and boron source, respectively, for pyrolyzing N
(4.54 at%) and B (1.05 at%) dual-doped carbon (S-850-1) at
850°C. The ORR activity of S-850-1 outperforms that of N
mono-doped carbon (S-850), evidenced by its higher half-wave
potential (0.861 vs. 0.838 V) and greater limited current density
(−5.60 vs. −5.24 mA cm⁻2). This indicates that N, B dual-doping
carbon has enhanced ORR performance. Furthermore, S-850-1 is
utilized to fabricate a Zn-air battery with an open circuit voltage of

1.40 V, successfully powering an LED light. These electrochemical
results corroborate the DFT predictions, suggesting that S-850-1,
derived from the widely available Saccharina japonica, has the
potential to be a commercially viable ORR catalyst for the next
generation of fuel cells.
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