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Introduction: Untargeted metabolomics is often used in studies that aim to trace
the metabolic profile in a broad context, with the data-dependent acquisition
(DDA) mode being the most commonly used method. However, this approach
has the limitation that not all detected ions are fragmented in the data acquisition
process, in addition to the lack of specificity regarding the process of
fragmentation of biological signals. The present work aims to extend the
detection of biological signals and contribute to overcoming the
fragmentation limits of the DDA mode with a dynamic procedure that
combines experimental and in silico approaches.

Methods: Metabolomic analysis was performed on three different species of
actinomycetes using liquid chromatography coupled with mass spectrometry.
The data obtained were preprocessed by the MZmine software and processed by
the custom package RegFilter.

Results and Discussion: RegFilter allowed the coverage of the entire
chromatographic run and the selection of precursor ions for fragmentation
that were previously missed in DDA mode. Most of the ions selected by the
tool could be annotated through three levels of annotation, presenting
biologically relevant candidates. In addition, the tool offers the possibility of
creating local spectral libraries curated according to the user’s interests. Thus, the
adoption of a dynamic analysis flow using RegFilter allowed for detection
optimization and curation of potential biological signals, previously absent in
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the DDA mode, being a good complementary approach to the current mode of
data acquisition. In addition, this workflow enables the creation and search of in-
house tailored custom libraries.

KEYWORDS

mass spectrometry, data dependent acquisition, chemometrics, untargeted
metabolomics, natural products

1 Introduction

Metabolomics offers the possibility of molecular phenotyping
and has been applied to diverse fields of knowledge, from
biotechnology to environmental chemistry (Kuehnbaum and
Britz-McKibbin, 2013). Unlike nucleic acids and even proteins,
the metabolites produced in a given biological context help the
understanding of rapid spatio-temporal changes triggered by the
environment. To harness the metabolic complexity, metabolomics
uses several analytical techniques, focusing on mass spectrometry
(MS) (Wehrens and Saleck, 2019). Targeted metabolomics focuses
on specific metabolites, and its main advantage, besides specificity, is
its reproducible quantitative aspect. In contrast, untargeted
metabolomics is characterized by the enormous size and
complexity of the data sets generated. One of the major
advantages of this approach is the possibility of profiling a large
number of new molecules, which in turn would have the capacity to
reveal unexplored metabolic pathways (Prosser et al., 2014; Banh
et al., 2021), establish evolutionary parallels (Nunes et al., 2017;
Roach et al., 2021), offer possible insights about what is happening in
a given cellular scenario (Zaramela et al., 2021), and present new
natural products of biotechnological and pharmacological interest in
a wide and diverse range of organisms (Wilke et al., 2021; Kato et al.,
2024). Currently, more than 60% of pharmaceutical assets are
related directly or indirectly to natural products, i.e., chemical
substances produced by living organisms (Newman and Cragg,
2020; Kim et al., 2021).

Often, the data generated in untargeted metabolomics
experiments are not explored in their entirety. The recent
advances in data sharing, and availability of public spectral
data libraries, in platforms such as Metlin (Xue et al., 2020),
Metabolights (Yurekten et al., 2024), MoNA (https://mona.
fiehnlab.ucdavis.edu/), Metabolomics Workbench (Sud et al.,
2016) and GNPS (Wang et al., 2016; Wang et al., 2020) as
well as analytical and integrative tools such as Mzmine
(Schmid et al., 2023), NAP (da Silva et al., 2018),
MolNetEnhancer (Ernst et al., 2019), ChemWalker (Borelli
et al., 2023), ModiFinder (Shahneh et al., 2024), and NP3 MS
Workflow (Bazzano et al., 2024) greatly expanded the potential of
metabolomics application. However, the highly redundant and
noisy data of mass spectra from complex mixtures is a great
challenge. A promising strategy would be to target selected
signals, deepening studies within a given context of interest,
rationally moving from an untargeted to a targeted approach.
This strategy is justified by the fact that many of the detected ions
are not fragmented in the mostly used fragmentation mode for
untargeted metabolomics: the data-dependent acquisition
(DDA) mode (Broeckling et al., 2018; Davies et al., 2021;
Davies et al., 2021; Stincone et al., 2023).

Reasons for the preference for DDA in untargeted metabolomics
experiments include the availability of optimized tools and
workflows for acquiring and processing these data (Stincone
et al., 2023; Guo and Huan, 2020), as well as the ready
availability of the acquired spectra and their quality (McBride
et al., 2023). However, one of the main limitations of using this
data acquisition mode in MS2 is the non-fragmentation of a number
of features (Broeckling et al., 2018). Despite the progress that has
been made in terms of increased fragmentation coverage, it is
reasonable to assume that much relevant biological information
is lost in this process.Moving from an untargeted approach to
rationally selecting relevant features in a given context is a logical
next step in metabolomics research. The construction of feature
selection lists based on objective statistical criteria has been
presented as a promising resource in this context (Zhang et al.,
2023). However, the proper automation of the process, as well as the
ability to store the fragmentation spectra resulting from this
selection process, is still a task to be overcome. In this scenario,
the present work aims to introduce an hybrid and dynamic approach
which combines experimental and computational procedures,
providing a feature selection tool that optimizes the detection of
biological signals, and contributes to overcoming the fragmentation
limits of the DDA mode and the ability to create in-house
spectral libraries.

2 Materials and methods

2.1 Collection, extract preparation, and
metabolomics analysis

The actinomycetes BRA006, BRA010, and BRA177,
from MicroMarin collection (https://www.labbmar.ufc.br/
micromarinbr) were cultured in A1 medium [Starch (10 g/L);
Yeast extract (4 g/L); Peptone (2 g/L); Sea Water 75%] in a
volume of 100 mL in 250 mL Erlenmeyer flasks. The liquid
cultures were extracted with ethyl acetate, and the organic phase
was dried under pressure and kept at 4°C. For the LC-MS/MS
analyses, organic extracts were diluted in methanol and injected
at 1.0 mg/mL, 0.5 mg/mL, 0.25 mg/mL, 0.125 mg/mL, and 0.
0625 mg/mL concentrations in 1:1 H2O:metanol (Bauermeister
et al., 2016). The LC-MS/MS analysis itself was conducted in the
Acquity UPLC H-Class (Waters, Milford, MA - US) hyphenated
with Impact II mass spectrometer (Bruker Daltonics, Billerica - US).
The mobile phase (flow 0.3 mL.min-1) consisted of water (A) and
methanol (B) acidified with formic acid at 0.1% in the following
gradient: 0.0–15.0 min (5%–20% B, curve 6); 15.0–30.0 min (20%–
95% B, curve 6); 30.0–33.0 min - (100 B, curve 1); 33.0–40.0 min (5%
B, curve 1). C18 - Luna (Phenomonex®–100 mm × 2.1 mm x 2.6 μm)

Frontiers in Chemistry frontiersin.org02

Arini et al. 10.3389/fchem.2024.1477492

https://mona.fiehnlab.ucdavis.edu/
https://mona.fiehnlab.ucdavis.edu/
https://www.labbmar.ufc.br/micromarinbr
https://www.labbmar.ufc.br/micromarinbr
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2024.1477492


and the temperature adjusted to 35°C. The parameters adjusted for
the spectrometer were: end plate offset of 500V; capillary voltage of
4.5kV; nitrogen (N2) was used as gas; drying gas flow at 5.0L.min-1;
drying gas temperature at 180°C; 4 bar nebulizer gas pressure;
positive ESI mode. Spectra (m/z 30–2000) were recorded at a rate
of 8 Hz. Accurate masses were obtained using a solution of sodium
formic acid [HCOO-Na+] at 10 mM as an internal standard.

2.2 Computational methods

2.2.1 Raw data conversion and preprocessing
through MZmine

Raw MS files were converted to. mzXML format using
MSConvert software (Chambers et al., 2012). Such converted files
were pre-processed by MZmine software version 2.53. Data
preprocessing in full scan and MS/MS modes was performed
separately. The following parameters were used for the full scan
mode: (i) Mass detection (MS level 1): mass detector - Centroid;
noise level - 1E3; (ii) ADAP: min group size - 4; Group intensity
threshould - 1E3; Min highest intensity - 3E3; m/z tolerance -
0.001m/z or 15ppm; (iii) Chromatogram deconvolution:
algorithm - Baseline cut-off; Min peak height - 3E3; Peak
duration range: 0–15; Baseline level - 1E3; m/z center calculation:
Median;m/z range forMS2 scan pairing (Da): 0.01; RT range forMS2

scan pairing (min): 0.2; (iv) Isotopic peaks grouper: m/z tolerance:
0.001 m/z or 15ppm; Retention time tolerance: 0.2; Maximum
charge: 3; Representative isotopes: Most intense; (v) Join aligner:
m/z tolerance: 0.001m/z or 15ppm; Weight for m/z: 75; Retention
time tolerance: 0.2; Weight for RT: 25; (v) Peak finder: Intensity
tolerance: 10; m/z tolerance: 0.001m/z or 15ppm; Retentation time
tolerance: 0.2; (vi) Export to CSV file: Export common elements:
Export row ID, Export row m/z, Export row retention time; Export
data file elements: Peak area; Peak m/z min; Peak m/z max; Filter
rows: All.

The following parameters have been adopted for the MS/MS
data acquired in DDA mode: (i) Mass detection (MS level 1): mass
detector - Centroid; noise level - 1E3; (ii) Mass detection (MS level
2): mass detector - Centroid; noise level - 1E2; (iii) ADAP: min
group size - 4; Group intensity threshold - 1E3; Min highest intensity
- 3E3; m/z tolerance - 0.001m/z or 15ppm; (iv) Chromatogram
deconvolution: algorithm - Baseline cut-off; Min peak height - 3E3;
Peak duration range: 0–15; Baseline level - 1E3; m/z center
calculation: Median; m/z range for MS2 scan pairing (Da): 0.01;
RT range for MS2 scan pairing (min): 0.2; (v) Isotopic peaks grouper:
m/z tolerance: 0.001m/z or 15ppm; Retention time tolerance: 0.2;
Maximum charge: 3; Representative isotopes: Most intense; (vi) Join
aligner: m/z tolerance: 0.001m/z or 15ppm; Weight for m/z: 75;
Retention time tolerance: 0.2; Weight for RT: 25; (vii) Peak finder:
Intensity tolerance: 10;m/z tolerance: 0.001m/z or 15ppm; Retention
time tolerance: 0.2; (viii) Export to CSV file: Export common
elements: Export row ID, Export row m/z, Export row retention
time; Export data file elements: Peak area; Peak m/z min; Peak m/z
max; Filter rows: All; (ix) Export/Submit to GNPS-FBMN: Filter
rows: Only with MS2.

The following parameters have been adopted for the MS/MS
mode of data obtained with the scheduled precursor list (SPL): (i)
Mass detection (MS level 1): mass detector - Centroid; noise level -

1E2; (ii) Mass detection (MS level 2): mass detector - Centroid; noise
level - 1E1; (iii) ADAP: min group size - 4; Group intensity
threshould - 1E2; Min highest intensity - 3E2; m/z tolerance -
0.001m/z or 15ppm; (iv) Chromatogram deconvolution:
algorithm - Baseline cut-off; Min peak height - 3E2; Peak
duration range: 0–15; Baseline level - 1E2; m/z center calculation:
Median;m/z range forMS2 scan pairing (Da): 0.01; RT range forMS2

scan pairing (min): 0.2; (v) Isotopic peaks grouper: m/z tolerance:
0.001m/z or 15ppm; Retentation time tolerance: 0.2; Maximum
charge: 3; Representative isotopes: Most intense; (vi) Join aligner:
m/z tolerance: 0.001m/z or 15ppm; Weight for m/z: 75; Retentation
time tolerance: 0.2; Weight for RT: 25; (vii) Peak finder: Intensity
tolerance: 10; m/z tolerance: 0.001m/z or 15ppm; Retentation time
tolerance: 0.2; (viii) Export to CSV file: Export common elements:
Export row ID, Export row m/z, Export row retention time; Export
data file elements: Peak area; Peak m/z min; Peak m/z max; Filter
rows: All; (ix) Export/Submit to GNPS-FBMN: Filter rows:
Only with MS2.

In all cases, a batch mode file was made available in the Zenodo
repository in the Data Availability session.

2.2.2 Ion filtering and schedule precursor list (SPL)
construction

RegFilter is an open-source software written in Python and
available from the laboratory’s GitHub repository (https://github.
com/computational-chemical-biology/regression_filter). To use it,
the user must follow the installation steps described in the
repository. Once installed, RegFilter uses as input material a table
in.csv format containing the spectral data previously acquired by the
user in full scan mode and duly pre-processed by MZmine (Schmid
et al., 2023) software as described above. The package’s instructions
guide user on how to use the package and export a report showing
the number of total features, the number of filtered features, and a
new.csv table with the filtered features with their respective retention
times, that can be formatted as a SPL for different mass
spectrometers.

2.2.3 GNPS2 molecular networking and in silico
annotation

From the raw data of the spectral analysis, we preprocessed these
data through MZmine (Schmid et al., 2023), generating an area
below the chromatographic curve quantification table (.csv) and a
list of fragmentation spectra (.mgf) files which were imported into
the GNPS (Wang et al., 2016) and GNPS2 platforms (gnps2.org/),
where the molecular network and spectral pairing annotation was
performed by the Feature Based Molecular Network (FBMN)
workflow (Nothias et al., 2020). For the nodes that could not be
annotated by spectral library matching, the MS/MS mass spectra
were annotated in two layers of annotation. First, we propagated
annotations based on the topology of the molecular network using
the ChemWalker tool (Borelli et al., 2023) through its new graphical
interface available on GNPS2 (https://gnps2.org/workflowinput?
workflowname=chemwalker_nextflow_workflow). The criteria
used to propagate the annotation were: (i) Adduct: [M + H]+; (ii)
tolerance: 15 ppm. A second layer of in silico annotation was then
performed using the SIRIUS tool (Dührkop et al., 2019) version 5.8.
5 for the nodes that could not be annotated in the previous steps. The
recommended parameters for the Q-TOF instrument were adopted,
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using the formulas available in all databases and taking into account
the adducts [M + H]+, [M + K]+, and [M + Na]+. In both cases of in
silico annotation, we considered the best-ranked candidate as the
annotation for the corresponding spectrum.

3 Results and discussion

3.1 Regression filter: optimizing the
detection of biological signals through a
semi-automated feature selection tool

Some of the bottlenecks that deserve to be highlighted in the
processing and analysis of metabolomics data from untargeted
experiments are (i) the selection of features directly related to the
sample, i.e., biological signals, and (ii) the fragmentation of features
that are lost in DDA. To overcome these limitations, we have created
a dynamic analysis flow that combines experimental and
computational approaches, as illustrated in Figure 1. In this
analysis flow, a sample of interest is diluted serially (until 8-fold
dilution). An LC-MS analysis is performed on the undiluted sample
and each dilution in full scan mode. The raw data are converted to
the.mzXML format and then pre-processed by theMZmine software
(Schmid et al., 2023) with the parameters that best fit the user’s
necessities. The .csv file obtained in this step is subjected to feature
filtering using an algorithm called Regression Filter (RegFilter). This
algorithm is implemented in Python and describes the conditions to
filter features. All the ions presented in the entire dilution series
whose area under their curve decreases linearly, respecting a
coefficient of determination (R2) greater than or equal to 0.9
(default value that can be adjusted by the user) and a negative
angular coefficient for the fitted regression model, are stored and
reported to the user. The output is then exported as a new .csv file
containing all the selected features with their respective retention
times, which is then inserted into the mass spectrometer software as
a scheduled precursor list (SPL), where the ions it contains are
fragmented only in the undiluted sample.

In addition to the feature filtering algorithm itself, the package
provides several functions for data analysis and visualization as well
as the possibility of storing spectra of interest for in-house library
building. To test the tool’s efficiency in extracting features of

potential biological relevance, as well as its potential to select
features previously lost in the DDA mode, we performed a series
of experiments in which the cellular extract of three marine
actinomycetes (BRA006, BRA010, and BRA177) belonging to a
Brazilian collection of bacterial isolates was subjected to the
workflow, and the results obtained were compared with a dataset
of fragmentation spectra obtained in DDA, the most common
acquisition mode for untargeted experiments in complex
biological samples. The choice to work on this biological matrix
is due to the potential for the production of bioactive compounds
that this group of bacteria represents, opening the possibility for the
discovery, cataloging, and curation of new chemical entities (van
Bergeijk et al., 2020; Chen et al., 2021).

3.2 RegFilter efficiency on chromatographic
run coverage

We analyzed whether RegFilter was able to cover the entire
chromatographic run. As can be seen in Figure 2 and
Supplementary Figure S1 with the chromatograms 3D plot
where we compared SPL and DDA chromatograms from those
ions that led to fragmentation, RegFilter covered the entire
analysis region from the three bacterial extracts. It is worth
noting that ions with a low mass/charge ratio (m/z) were
more frequently captured by the list compared to DDA, where
the prevalence of these precursors destined for fragmentation
throughout the chromatographic run is clear. Additionally, a less
noisy baseline is observed in these chromatographic runs in all
extracts, indicating that the noise filtering process was efficient.

Once verified that RegFilter could cover the entire analysis
region, we proceeded with a first comparative analysis between
the full scan and data-dependent acquisition (DDA) modes. The
results are shown in Table 1. We can see that the total number of
features detected in full scan mode is higher than the total number of
features detected in DDA mode. This is an expected event because
the instrument spends a considerable amount of time generating the
spectra at the MS2 level, which reduces the intensity of the features at
the MS1 level and, consequently, their detection, meaning that some
of the ions previously detected in full scan mode are no longer
detected (Guo and Huan, 2020).

FIGURE 1
Analysis workflow of an untargeted metabolomics experiment using the RegFilter platform.
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Applying RegFilter to the features detected in full scan mode,
considering a regression fitted with at least three points (the
experiments were conducted with 5 experimental points), it can
be seen that 135 features for strain BRA006, 219 features for strain
BRA010, and 150 features for strain BRA177 met the filtering

requirements. Based on this result, we wondered how many and
which features would be common to those detected by the DDA
mode. As shown in the Venn diagrams (Figures 2G–I) and Table 1,
we observed that 76 features, 135 features, and 77 features for strains
BRA006, BRA010, and BRA177, respectively, were present both in

FIGURE 2
RegFilter was able to efficiently cover all the chromatographic runs. (A–C) 3D chromatograms for the fragmented precursor ions for the three
actinomycetes analyzed, where (A) BRA006, (B) BRA010, and (C) BRA177. The blue and red lines indicate the precursor ions selected for fragmentation
with their respective intensities selected by SPL and DDA, respectively. (E–F) Extracted ion chromatograms (EIC) of meaningful examples of real signals
selected by RegFilter. (G–I) Venn diagrams showing the overlap between the precursor ions subjected to fragmentation by DDA mode and
scheduled precursor list (SPL) generated through RegFilter.
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the scheduled precursors list (SPL) selected by RegFilter and in the
fragmented precursor ions in DDA mode.

It is worth noticing that there is a difference between the number
of fragmented features shown in Table 1 and Figures 2G–I, both in the
list and the DDA. Even with the pre-processing approach performed
through MZmine, there may be redundancy in the detected features,
which is common in data obtained in metabolomics experiments
(Zhang et al., 2023). Therefore, the observed difference is due to the
reduced redundancy verified by creating a unique identifier that
combines the m/z values and retention times for each feature.
Such diminished redundancy was achieved through a mass and
retention time matching function contained in the RegFilter
package. From these common precursor ions, we evaluate their
fragmentation profile, taking as a basis for comparison (i) the
number of peaks generated by fragmentation, (ii) the average, (iii)
themaximum and (iv)minimum intensities of these peak heights, and
of (v) the number of events in MS2, which is how many times a given
precursor ion was directed to fragmentation. Table 2 shows the
number of precursor ions, with a higher average for those ions
presented in three replicates (“upregulated”), showing statistically
significant differences in the parameters described above (p < 0.05,
Student’s t-test).

Of those ions that showed a statistically significant difference in
the mean, except the number of events in MS2 for all strains and the
minimum intensity for strains BRA010 and BRA177, the data-
dependent acquisition (DDA) mode showed a better performance
in obtaining fragmentation spectra compared to fragmentation

spectra generated by list targeting. The quality of fragmentation
spectra can be measured by evaluating the number of fragments
(Ausloos et al., 1999; Bern et al., 2004; Zhang et al., 2023) and the
signal intensity of the detected features (Bern et al., 2004; Broeckling
et al., 2018). Even with such quantitative prerogatives, the proper
assessment of the quality of a given spectrum depends critically on
the proper judgment and expertise of a spectrometrist, as well as the
pairing of the spectrum of a given compound of interest with a
reference spectrum (Ausloos et al., 1999).

Intuitively, since the number of events inMS2 for SPL was higher
for all strains compared to the number of events in MS2 for DDA, we
expected that the quality of the fragmentation spectra would,
consequently, be higher for the fragmented ions in SPL than in
DDA, which was not verified. However, it is important to highlight
that not all ions common between SPL and DDA in the three
bacterial strains showed a statistically significant difference in the
parameters evaluated. In fact, for most of these common ions, except
the events in MS2, the spectral comparison based on the evaluated
parameters did not show a statistically significant difference. Since
the entire basis of the spectral comparison is based on the spectra of
interest against reference spectra, we decided to go one step further
in comparing these spectra. Therefore, we took the common ions
fragmented by both the list and DDA and performed their spectral
pairing separately in the GNPS library (Wang et al., 2016). For the
spectra that were annotated and had the same annotation for the
same precursor ion present in both the SPL and DDA, we evaluated
the number of common peaks relative to the reference spectra. The
results of this comparison are shown in Supplementary Figure S2.

Comparing the average number of common peaks of the same
annotated ions between SPL and DDA, there is no significant
statistical difference between them. Therefore, the quality of the
fragmentation spectra generated by SPL and DDA has the same
annotation potential. Taking into account the context of the
analysis, the collision energy used was the same for the ions
contained in both the SPL and the DDA, which helps to explain
this absence of difference observed. Next, we decided to test the
hypothesis that the use of fragmentation lists would lead to a
selection of less noisy features. For this purpose, we used the
construction of extracted ion chromatograms (EIC) for each of
the precursor ions included in both the list generated by RegFilter
and the precursor ions fragmented by DDA for each of the three
model strains studied. The distinction between signal and noise is
given by the shape of the curve of the extracted ion chromatogram. A
true signal has a well-defined sinusoidal shape, whereas the noise is
characterized by its random distribution profile (Jankevics
et al., 2012).

Using this profile as an evaluation reference, we manually
inspected and analyzed each of the chromatograms, and
quantified the percentage of noise for all three strains, both from
the precursors included in the fragmentation list (SPL) and DDA
mode. These results are presented in Table 2 (percentage of noisy
spectra). It can be seen that there is no real difference in the amount
of noise between the ions generated from the list (SPL) and those
from the DDA. Detecting noisy features is an inherent challenge in
MS-based metabolomics experiments (Beisken et al., 2015). One of
the pitfalls of analyses performed with this analytical technique,
especially when considering time-of-flight analyzers, is that signals
of reproducible intensities tend to be generated in noisy regions

TABLE 1 Comparison between data obtained in untargeted metabolomics
experiments for each of the actinomycetes BRA006, BRA010, and BRA177.

BRA006 BRA010 BRA177

Total features - full
scan mode

1,384 2068 1,584

Total features – DDA
mode

1,068 1,222 1,147

SPL DDA SPL DDA SPL DDA

Fragmented features 135 486 219 640 150 525

Common fragmented
features

76 135 77

TABLE 2 Comparison between parameters of the fragmentation spectra
between SPL and DDA modes (p < 0.05, Student’s t-test).

BRA006 BRA010 BRA177

SPL DDA SPL DDA SPL DDA

Number of peaks 5 22 4 55 5 20

Mean intensity 1 26 6 53 3 40

Maximum intensity 4 28 4 64 6 34

Minimum intensity 3 4 25 5 5 2

MS2 events 54 1 114 0 64 8

Percentage of noisy
spectraa

4,4 4,9 5,9 3,8 4,7 4,4

aManually inspected.
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(Sands et al., 2021). In this sense, the practice of serial dilution is
widely used as a resource to identify such noisy features, allowing the
selection of quality features and acting as more reliable and
interpretable data (Jankevics et al., 2012; Sands et al., 2021). The
reproducibility of such noisy signals described by Sands et al. (2021)
was confirmed in our results, as even with a five-point regression
model, these noisy signals persisted throughout the dilution curve.
In other words, the filtering process based on a linear regression
model alone does not guarantee the exclusion of noisy features,
requiring an additional selection step. In this sense, RegFilter proved
to be an excellent resource in the process of presenting, detecting,
and selecting quality features, as it allows the user to visualize and
discriminate what these features are.

It is important to note that the reduction of noise and better-
quality fragmentation spectra has been previously reported in the
literature (Jankevics et al., 2012; Broeckling et al., 2018). The fact that
these observations were not replicated in the present study is partly
due to the low complexity of the bacteria extract used. More complex
matrices, such as plants or environmental samples, may present
higher complexity and benefit from noise removal and increased
spectral quality in addition to the complementary coverage
demonstrated here.

3.3 Flying under the radar: detecting once-
missed signals in data-dependent
acquisition mode and exploring the
potential of in-house MS libraries

Turning our attention to the features contained only in SPL, we
decided to look for annotations for precursor ions, and their
respective fragmentation spectra, contained only in the list. To
investigate the consistency of the features, we further inspected
the presence of the precursor ions (m/z) and the corresponding
retention times for each of the precursor ions present in the list in
the DDA MS1 data, i.e., the total features. The overlap between the
precursor ions in the list and the total features detected in DDA was
99.2%, 99.0%, and 100.0% for strains BRA006, BRA010, and
BRA177, respectively (Figure 3). In other words, almost all of the
precursor ions selected in the fragmentation list were present in the
MS1 of the DDA method, but not all were fragmented. We decided
to go one step further in analyzing this result. Therefore, we
manually examined each of these ions that were exclusively

fragmented by the list and were present in MS1 of the DDA, but
not fragmented in the latter mode. We found that in 33.9% of cases
for strain BRA006, 22.4% of cases for strain BRA010% and 29.7% of
cases for strain BRA177 the base peak (most intense ion on the MS1

spectrum) was the ion fragmented by the list, and not fragmented by
DDA. For the other ions fragmented by the list, the peaks selected
were not the base peak, having intensities from 1.1 to 86.2 times
lower than the highest intensity ion for BRA006, from 1.2 to 46.5 for
BRA010, and from 1.2 to 57.1 for BRA177, which explains their lack
of fragmentation by the data-dependent acquisition mode. One of
the limitations of the data-dependent fragmentation method is
precisely its stochastic nature, where ions with similar intensities
may or may not be fragmented (Davies et al., 2021). This finding was
only possible by manual verification and analysis of these data. Even
in the case of the smallest fraction of fragmented ions included in the
list, it is still noteworthy because even those ions that would
theoretically be good candidates for fragmentation by the DDA
mode were not fragmented and, most importantly, RegFilter was
able to select these ions.

Now, to look for annotations in the fragmentation spectra of the
ions selected from the list, we took three approaches: first, we
performed their spectral pairing using the GNPS2 library (Wang
et al., 2016), as it comes from one of the largest public libraries of
spectral data (Bittremieux et al., 2022). For those features that could
not be annotated using this approach, we decided to go one step
further and use ChemWalker to propagate the annotations through
the topology of the molecular network (Borelli et al., 2023). Finally,
we used the SIRIUS tool (Dührkop et al., 2019) on the fragmentation
spectra of each of the candidates that could not be annotated
through GNPS spectral pairing as well as ChemWalker
annotation propagation. It should be noted that none of the
annotated spectra was considered noise, but rather a true signal.
As a result, 43 annotations were recovered for BRA006,
46 annotations for BRA010, and 47 annotations for BRA177.
Proportionally, they represent 76.8%, 68.7%, and 73.4% of the
features uniquely contained in the SPL for strains BRA006,
BRA010, and BRA177, respectively. All the annotations are
presented in the Supplementary Table S1.

To gain further information on the biological interpretation of
the identified molecules, we cross-referenced the annotation data of
each of the molecules contained in the three bacteria with the KEGG
database (Kanehisa and Goto, 2000) to assess whether the set of
molecules detected had already been described and cataloged in the

FIGURE 3
Venn diagrams of features present in the fragmentation list (SPL) and detected among the total features contained in DDA mode. (A) BRA006, (B)
BRA010 and (C) BRA177.
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encyclopedia along with its metabolic pathway presented. The
compounds annotated with their respective pathway are
presented in Supplementary Table S2. From the total set,
39 annotated compounds were identified using KEGG with their
respective metabolic pathway associated. Of which, nine for
BRA006, 10 for BRA010, and 20 for BRA177 were described
along known pathways. The relationship between the compounds
described and their respective pathways is shown in Supplementary
Table S2. We can see that there are compounds common to the three
strains, such as styrene, and others, such as 2-methylbenzaldehyde,
that are common to BRA006 and BRA010. In turn, it is interesting to
note that there are common metabolic pathways between the three
strains but with different intermediates, such as purine metabolic
pathways. Particularly in the case of the BRA177 compound, it is
interesting to note that of the 20 annotated features, three had the
same annotation for three different features, indicating the possible
presence of isomers and/or adducts. However, the most important
aspect of this result is that list-directed feature fragmentation makes
it possible to annotate biological signals previously lost in DDA.

As mentioned in the tool description, with the RegFilter
package, it is possible to build in-house libraries to store spectra
of interest using a html-based graphical interface included in the

package. The sequence of steps to create such a library is shown in
Supplementary Figure S1. We created a small library by focusing our
attention on the ions targeted for fragmentation by the list, and with
this repository in hand, we followed two different approaches, as
shown in Figure 1. First, using the MASST tool (Wang et al., 2020),
we searched the individual spectra against public spectrometric data,
which greatly expands the potential of public spectral libraries. Of
those that matched the platform, the spectrumwith the highest score
was downloaded, and, through a local search function, that is part of
the package, we performed the reverse path. In other words, we show
how one could take a spectrum obtained from a public database,
perform spectral matching, calculate the similarity score, and
evaluate the number of peaks shared between this reference
spectrum and all those contained in one’s local library. Figures
4A–C shows the results of examples to showcase the potential of
local spectral collections, where the cosine score values and number
of paired peaks for actinomycetes BRA006 (6A), BRA010 (6B), and
BRA177 (6C) were 0.9565 and 25, 0.3228 and 10, 0.6048 and 13,
respectively. In addition, we analyzed the spectra contained in the
in-house libraries for the three strains with microbeMASST (Zuffa
et al., 2024) to evaluate the potential of these spectra to provide
evidence for the taxonomy of these actinomycetes through this

FIGURE 4
The spectra contained only the chemically and biologically relevant information. 4A–C: Examples of mirror plots between the best matches among
reference spectra extracted from GNPS and the in-house database, for the actinomycetes BRA006 (A), BRA010 (B), and BRA177 (C). (D) Representative
cladogram indicating the interspecies proximity of a given metabolite that is exclusively included in the list (SPL).
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selected list of spectra. It was possible to find similarities between
them and other spectra described for other microorganisms
(Figure 4D). These results illustrate the potential and advantages
of building custom libraries to obtain chemical information. It also
demonstrates the potential of the Regfilter tool for obtaining spectra
of relevant biological importance.

Among the current challenges in the design of experiments and
tools that allow both the acquisition and the efficient use of
metabolomics data based on mass spectrometry, the selection of
features relevant to a context of interest, allowing a targeted
experiment from an untargeted, is one of them. In this sense, the
results obtained by the hybrid approach proposed in this work, with
emphasis on the RegFilter package, have shown that this tool is not
only capable of selecting biologically relevant features but also allows
the fragmentation of features previously lost by the DDA mode as
well as to visualize the profile of the selected features, presenting
itself as a complementary resource to data acquisition in DDA.
Proposals for the use of serial dilution in mass spectrometry-based
metabolomics experiments have been suggested in the literature
with different goals (Jankevics et al., 2012; Duan et al., 2016; Sands
et al., 2021; Zhang et al., 2023). The focus of Duan and co-workers
(2016) was to overcome the problem of noise inherent in
experiments using mass spectrometry as an analytical resource.
To overcome this problem, the authors used serially diluted
quality control samples to detect signals that show a linear
pattern of quantification in the spectrometry and are, therefore,
not due to random noise. The authors reported that the method was
able to reduce signals detected from a mixture of 20 known
compounds, with 1,342 mass peaks detected. After filtering, only
102 mass peaks (7.6%) were recovered and assigned to the
20 original compounds. When considering our results, RegFilter
was able to select and recover 9.3% of BRA006, 9.9% of BRA010, and
9.0% of BRA177 biological signals from the total number of features
observed in MS1 full scan mode. Despite the difference in recovering
signals from standard samples, these numbers align with the finding
that mass spectra are highly redundant and noisy. Still, in terms of
recovering potentially relevant signals, this is a considerable
recovery since they are true signals and can be considered of
higher quality and reliability (Sands et al., 2021). It should be
noted that the process was carried out in a semi-automated way,
and these are relatively low complexity samples if compared with
plant or environmental extracts, where more signal and more noise
are expected. The results highlight the potential for applying linear
regression methods for more complex samples where the proportion
of signal/noise is smaller.

RegFilter was able to select ions of low relative abundance,
overcoming one of the limitations already described for this
acquisition mode itself (Zhang et al., 2023). Another important
difference in using this analytical tool is that RegFilter proved to be
effective in what could be called the enrichment of data with
potential biological value since the features detected by it proved
to be stable throughout the dilution steps and, therefore, exclusively
related to the biological sample. Several works point to the need to
increase the coverage of ions to be fragmented in untargeted
metabolomics experiments. Multiple injections of the same
sample (Broeckling et al., 2018), selecting the totality of ions
contained in specific regions of the chromatogram (Davies et al.,
2021), and automating the exclusion of ions to avoid redundancy

(McBride et al., 2023) are some of the many strategies to increase the
number of ions to be fragmented in a given context of interest.
However, in addition to increasing the fragmentation coverage, as
important as the number of fragmented ions is the choice of which
of these ions are targeted for fragmentation. In this sense, the debate
on the fragmentation of specific ions mediated by inclusion lists has
been a recent topic (Koelmel et al., 2017; Broeckling et al., 2018;
Zhang et al., 2023). In the case of economically expensive
experiments (Aksenov et al., 2017), a more targeted selection
would allow the optimization of time and resources in
discovering molecules of biological interest.

Recently, Zhang et al. (2023) presented improvements and
advantages of using a list of pre-selected precursors to gain
biological information in untargeted metabolomics experiments.
To this end, the list of precursors is constructed by analyzing the
samples of interest in full scan mode, and based on these data and
which ions would be statistically different in MS1 full scan mode
between contrasting experimental groups of samples, the list is
constructed, and the ions contained therein are fragmented. The
approach presented by the authors has important parallels with our
approach in RegFilter, where both first use MS1 full scan data to
construct the inclusion lists. However, the inclusion criteria are
different and this is where RegFilter stands out for the novelty of its
approach. Firstly, the selection of features is semi-automatic,
allowing full automation, as the software can be applied to a
serial dilution, and the list generated can be communicated to
the instrument to fragment samples that are obtained in
sequence (Broeckling et al., 2018), which itself represents an
optimization in the time for data acquisition and analysis. The
feature selection criteria promoted by RegFilter are essentially based
on two aspects: provided that the features contained in a dilution
series are consistent with the construction of a curve with a
coefficient of determination (R2) greater than or equal to 0.9 and
with a negative slope coefficient, these features are included in the
fragmentation list. Zhang et al. (2023), on the other hand, used the
construction of lists with control samples to extrapolate the data to
real samples. In this sense, RegFilter can build lists from the samples
themselves simply by diluting them.

These different approaches can be complementary, as the
filter points out noisy features that may not be removed by a
differentially regulated approach. The main drawbacks of serial
dilutions are additional data collection and features that have low
intensity and may not present in at least three less diluted
samples to fit a curve. Of all the challenges in mass
spectrometry-based metabolomics, one of the greatest is
undoubtedly the design and execution of experiments that
allow for more effective targeting when collecting and
navigating the sea of data generated in this field. Even with
increasing access to cutting-edge techniques, improved data
analysis capabilities, and advances in technology to build
thinner and more accurate spectrometers, a lot of information
is lost in untargeted analysis. Or worse, a lot of data is discarded,
and data replication using the untargeted approach on the same
biological matrix is performed repeatedly. In this respect,
RegFilter is a promising tool, not only to guide the acquisition
of data relevant to the sample of interest but especially to allow
the acquisition and selection of data to be curated and stored,
allowing the construction of spectral libraries of specific interest.
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4 Conclusion

In conclusion, the adoption of an analysis flow that dynamically
integrates experimental and computational approaches, with the latter
introducing the RegFilter feature selection tool, has made it possible to
optimize the detection of biological signals belonging to the sample of
interest that were previously lost in the traditional Data-Dependent
Fragmentation (DDA)mode. Furthermore, RegFilter package opens up
the possibility of creating curated spectral libraries with relevant
biological information. Thus, the use of RegFilter proves to be an
effective and complementary tool to the DDAmode of data acquisition,
both in directing the features to be fragmented from a non-directed
approach, curating and in storing these spectra.
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